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Abstract: Small Cell Lung Cancer (SCLC) is an aggressive disease and challenging to treat due to 
its mixture of transcriptional subtypes and subtype transitions. Transcription factor (TF) networks 
have been the focus of studies to identify SCLC subtype regulators via systems approaches. Yet, 
their structures, which can provide clues on subtype drivers and transitions, are barely 
investigated. Here, we analyze the structure of an SCLC TF network by using graph theory 
concepts and identify its structurally important components responsible for complex signal 
processing, called hubs. We show that the hubs of the network are regulators of different SCLC 
subtypes by analyzing first the unbiased network structure and then integrating RNA-seq data as 
weights assigned to each interaction. Data-driven analysis emphasizes MYC as a hub, consistent 
with recent reports. Furthermore, we hypothesize that the pathways connecting functionally 
distinct hubs may control subtype transitions and test this hypothesis via network simulations on 
a candidate pathway and observe subtype transition. Overall, structural analyses of complex 
networks can identify their functionally important components and pathways driving the 
network dynamics. Such analyses can be an initial step for generating hypotheses and can guide 
the discovery of target pathways whose perturbation may change the network dynamics 
phenotypically. 
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INTRODUCTION 
Throughout their evolution, cells differentiate and specialize into different subtypes, that are 
often controlled by underlying molecular-level mechanisms [1-3]. This process is generally 
pictured by the famous metaphor that is a ball rolling down a hill, called the Waddington 
Landscape [4]. Analogous to a ball rolling down a hill, which may change its direction by the effect 
of obstacles in its way, lose its kinetic energy, slow down, and eventually reside at a stable point, 
cells may change their trajectories and differentiate to different subtypes due to some regulatory 
or evolutional triggers while they are maturing. Similarly, due to abnormalities, stochasticity, or 
other unknown reasons, they may diverge from their trajectories and become cancerous cells 
[5]. Moreover, cancerous cells may also evolve and differentiate into other subtypes [6-8]. 
Therefore, developing effective treatments for cancer has been a challenge due to 
heterogeneous cell subpopulations that appear within a tumor. Genetic or non-genetic 
mechanisms can drive the cancerous cell subpopulations via plasticity, drug-induced selection, 
or state transitions between the subtypes and have them escape the treatment or recur with a 
resistance to the treatment [9-11], which is the case in multiple cancer types such as breast 
cancer [12,13], melanoma [14], and Small Cell Lung Cancer (SCLC) [15-20]. 

SCLC is an extremely aggressive disease with a low survival rate [21-25] (7% 5-year survival 
as of 2022 [26]). Although it was characterized as molecularly homogeneous due to loss of TP53 
and RB1, and neuroendocrine/epithelial differentiation [27,28], SCLC was shown to be 
heterogeneous [29-37] by the identification of its mixtures of transcriptional subtypes such as 
neuroendocrine (NE) stem-cell-like subtype centered on the expression of the transcription 
factors ASCL1 and NEUROD1 [35] and non-neuroendocrine (NON-NE) subtype centered on the 
expression of the transcription factor YAP1 [36]. Overall, the SCLC subtypes have been classified 
into four classes SCLC-A (also labeled as NE), SCLC-N (also labeled as NEv1), SCLC-Y (also labeled 
as NON-NE), and SCLC-P defined by the expression of the transcription factors ASCL1 (A), 
NEUROD1 (N), YAP1(Y), and POU2F3 (P), respectively [29-37]. Recently, the fifth subtype has also 
been proposed named SCLC-A2 (also labeled as NEv2) which is driven by ASCL1 but distinct from 
the SCLC-A neuroendocrine subtype [38]. The disease seems to start by including the NE type, 
and then the cancerous cell population begins to include the NON-NE subtype, which is more 
treatment-resistant [34,39,40]. In addition to various subtypes with different levels of resistance 
to treatment, such transitions between the subtypes further complicate the treatment of the 
disease. Therefore, understanding molecular heterogeneity in SCLC is essential for developing 
more precise, tailored treatments to cure the pathology. 

Transcription factor (TF) networks have been the focus of the studies to understand the 
mechanism of the disease and to identify different SCLC subtypes as they are associated with the 
overexpression of different transcription factors [30,34,37,38,41]. These networks have been 
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mechanistically analyzed at the systems level which led to the identification of regulators and 
destabilizers of different subtypes [30, 34, 38], and have contributed to our understanding of the 
underlying gene regulatory system. However, the structural properties of these networks were 
barely studied about a decade ago [42]. It has been shown in many studies that the structure of 
a network can be as important as its functional features and their analysis may help to identify 
key components associated with fundamental functional behaviors [43-45]. Specifically, hubs 
(Box 1) of the networks are shown to have key functional properties [46-51]. In this study, we 
topologically analyze the SCLC TF network (Figure 1) of [34, 38] that has been key in the 
identification of different SCLC subtypes. It comprises literature-based connections that are 
verified from ChEA, a database of ChIP-seq-derived interactions [52]. Overall, the network 
consists of 35 TFs connected through 239 activatory and inhibitory interactions (red and green 
arrows in Figure 1, respectively). Combinational ON–OFF states of the TFs in this network have 
been shown to drive cells toward different subtypes [34]. Here, one of our goals is to identify the 
hubs of the SCLC TF network, which are the special nodes that interconnect several key pathways 
and play an important role in collecting, processing, and distributing key signals throughout the 
signaling mechanism. We hypothesize that the hubs might be important for the overall network 
functioning and perhaps may help to identify specific TFs that regulate SCLC subtypes. 
Furthermore, although the earlier studies elucidate regulators of different SCLC subtypes, they 
lack mechanisms of subtype transitions whose understanding is critical to controlling disease 
progression. We also hypothesize that the pathways connecting the functionally distinct hubs 
may have roles in the subtype transitions. 

To identify the hubs of the SCLC TF network, we implement a graph theory concept called 
Dense Spanning Tree (DST, see Box 1), which can be found by solving an optimization problem 
(Methods section A) [53-55]. We initially analyze a relatively unbiased network structure by 
considering the undirected and unweighted network. Later, we integrate previously-published 
RNA-seq data into our analysis, which is the probability of each interaction occurring [34, 38], 
assigned to each interaction as weights. To identify the hubs given the weighted network graph, 
we extend the DST concept into Minimum Dense Spanning Tree (MDST, see Box 1) concept for 
which the DST optimization problem is extended into a multi-objective optimization problem 
(Methods section B). Interestingly, all the found hubs are either regulators or destabilizers of the 
previously identified SCLC subtypes as elaborated in the Results section. Next, we test a pathway 
connecting the two functionally distinct hubs via simulations and observe a transition from the 
NON-NE to NE subtype. Furthermore, running and tracking several asynchronous NON-NE to NE 
transition simulations suggest additional TFs other than the hubs that may have a role in this 
transition.  
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The paper is organized as follows. First, we present the results of the DST and MDST 
analyses of the SCLC TF network in Results sections A and B. Then, we present the results of the 
asynchronous subtype transition simulations in Results section C. Next, we provide the 
mathematical details of DST and MDST analyses as well as the details of the transition simulations 
in Methods sections A, B, and C, respectively. In addition, we compare the DST and MDST analysis 
results in the Supplementary Material. Finally, we conclude the paper with some concluding 
remarks.  

 

Figure 1. Small cell lung cancer transcription factor network reproduced from [34, 38]. The hexagonal 

nodes represent the individual transcription factors, the red edges represent the inhibitory 

interactions, and the green edges represent the activatory interactions. 
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Box 1: Brief Definitions 
• Graph is a collection of objects (points) linked together based on some pairwise relations. Figure 

B1-1 is an example of a graph (G) with the vertex set V = {a, b, c, d, e}. Some random weights are 
assigned to the edges for exemplary purposes.  

• Tree is an acyclic graph, i.e., a graph that do not contain any cycles (loops). Figure B1-2 is an 
example of a tree. 

• Node (Vertex) is an individual object (point) in a graph. “a” in Figure B1-1 is an example of nodes 
in the graphs. 

• Edge is a link connecting two nodes in a graph. The link connecting “a” and “b” in Figure B1-1 is an 
example of edges. 

• Node Degree is the number of edges connected to the node. 
For more details on basic Graph Theory definitions, please see [56]. 

Given a graph G with a vertex set V: 

• Spanning Tree (ST) is a subset of G that contains all the vertices in V with minimum number of 
edges [54]. They are not unique and known as the basis of the graph. Figure B1-2 is an example of 
ST. It contains all the vertices in G with minimum number of edges. 

• Minimum Spanning Tree (MST) is a special spanning tree that minimizes the total weights assigned 
to the edges. Figure B1-3 is an example of MST. It is a ST and it minimizes the total edge weights. 

• Dense Spanning Tree (DST): is a special spanning tree that minimizes the total distances between 
the vertices [54]. Figure B1-4 is an example of DST. It does not care about the edge weights, but it 
minimizes the total distances between the nodes. Note that the distance between two nodes here 
is defined as the number of edges in the shortest path between the nodes, e.g., the distance 
between “a” and “e” in Figure B1-1 is two. 

• Minimum Dense Spanning Tree (MDST): is a special spanning tree of a weighted graph that 
minimizes the total distances between the vertices while minimizing the total weights assigned to 
the edges. Figure B1-5 is an example of MDST. It minimizes both total distances between the nodes 
and the total weights assigned to the edges. 

• Hub: is a node (component) of a graph (network) that has the number of connections above 
average [57]. Node “b” in Figure B1-4 is an example for hubs, which has higher node degree and 
connects multiple nodes. 

 
Figure B1. Examples for the introduced concepts. (1) An example of a weighted graph with random weights 
assigned for exemplary purposes. In a real network, the weight of an edge could be the likelihood (or strength) 
of the connection or other values such as mutual information, etc. (2) An example of a spanning tree. (3) An 
example of a minimum spanning tree. (4) An example of a dense spanning tree. (5) An example of a minimum 
dense spanning tree introduced in this paper (see Methods section B). 
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RESULTS 
In our analyses, given the SCLC TF network (Figure 1), we search for hubs of the network by 
finding the substructure DSTs (Box 1). The DST of a given network contains hubs that are known 
to be structurally important nodes interconnecting several pathways. Due to their high and 
strategic connectedness, they are very likely to have functional importance as well. This concept 
has many applications in different areas such as telecommunications networks, social networks, 
resource allocation, and biological networks [55].  

In biological networks, the DSTs of the network are substructures that preserve the 
shortest pathways between the nodes (TFs) and hence they preserve the maximum influence 
among the individual components while highlighting a few nodes as the hubs. Since the identified 
hubs connect several pathways, they receive so many signals from their peripherals, process 
them, and distribute them to multiple other nodes. Therefore, in general, they have functional 
importance as well [46-51]. Also, depending on the size of the initial network, the identified DSTs 
may contain multiple hubs. Due to their individual importance, the pathways connecting the hubs 
might also be important as they are the pathways communicating complex signaling between the 
hubs. In this section, we show that the hubs of the SCLC TF network are relevant to the SCLC 
subtypes. Additionally, we test a pathway connecting two identified hubs via network 
simulations. All the results are elaborated in the following subsections.  

A. Structural analysis of the unbiased SCLC TF network identifies some of the known SCLC 
subtype regulators and destabilizers. 

We start our analysis by converting the SCLC TF network (Figure 1) into an undirected, 
unweighted network (see Methods section A). In this way, we just consider whether there is an 
interaction between two nodes or not without weighing their importance, which allows us to 
analyze a relatively unbiased network structure. Then, we search for the DSTs of the SCLC TF 
network following the approach of [55]. Upon solving the global optimization problem in 
Equation (1) (Methods section A), we observed 146,143 DSTs, all having the same optimum total 
distances between the TFs. Examples of the found DSTs are presented in Figure 2. In one of the 
DSTs, FLI1 and MITF are identified as the hubs (Figure 2A) while in the other DST, FLI1, ASCL1, 
and FOXA1 are identified as the hubs (Figure 2B). Since different DSTs may highlight different TFs 
as the hubs, we computed the average node degrees (Box 1) of the nodes among all the found 
146,143 DSTs, which is collectively presented in Figure 3. As seen in the figure, FLI1 is a major 
hub with about 20 connections on average among all the found DSTs. In addition, MITF, ASCL1, 
NR0B1, and FOXA1 are the other hubs with relatively high average node degrees in some DSTs.  
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 The found major and side hubs are not only structurally important but also shown to have 
biological importance to the identified SCLC subtypes. For instance, FLI1 – the major hub in Figure 
3 – is shown to be one of the regulators of the SCLC NE subtype [34,58,59]. Similarly, ASCL1, 
NR0B1, and FOXA1 are reported as one of the regulators of SCLC NE and NEv2 subtypes, and 

 

Figure 2. Examples of the found DSTs of SCLC TF network. (A) An example DST in which FLI1 and MITF 

are the two hubs. (B) An example of found DSTs in which FLI1, ASCL1, and FOXA1 are the three hubs. 
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MITF is reported as one of the regulators of the SCLC NON-NE subtype [34], which shows the 
specificity of the hubs of SCLC TF network.  

B. Data-driven structural analysis of the SCLC TF network highlights MYC as a hub in 
addition to those previously identified as subtype regulators and destabilizers.  

Next, we repeat our hub search by integrating experimental data into the analysis. The data is 
the individual probabilities of each interaction between the TFs in the SCLC TF network (Figure 
1), extracted from RNA-seq data [34]. The probabilities are integrated into the network structure 
as the weights that are assigned to the associated edges. Then, to identify the hubs of the 
weighted SCLC TF network, we extend the DST concept into MDST (Box 1) for which we solve an 
extended multi-objective optimization problem (Methods section B). Apart from DSTs, MDSTs 
allow us to highlight the hubs while preserving the maximum likelihood of the interactions. 

Upon solving the optimization, we observed only 46 MDSTs which is drastically lower than 
the number of DSTs (146,143) found with the unbiased network structure. This means that this 
analysis guided by prior knowledge, i.e., the experimental data, can constrain the search space 

 

Figure 3. Average node degrees of each TF among the found DSTs. FLI1 is the major hub with about 20 

connections on average in the found DSTs. The other hubs are MITF, ASCL1, NR0B1, and FOXA1 with 

relatively high connectedness on average. 
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more efficiently. Once we compute the average node degrees among the found MDSTs, we 
observe that FLI1 still is the major hub (Figure 4). Similarly, ASCL1 and MITF are still identified as 
the hubs but this time with higher average node degrees compared to the unbiased network 
analysis (Figure 4). In other words, they become more major hubs, which coincides with their 
biological importance in SCLC as reported in the literature [30,31,34,38,40,60-62]. Interestingly, 
the data-driven structural analysis further reveals MYC as another hub (Figure 4), which does not 
appear in the unbiased network analysis (Figure 3). Recently, MYC was shown to be one of the 
key TFs for SCLC [32,63-65], which initiates Notch signaling to reprogram neuroendocrine fate 
from NE to NEv1 to NEv2 to NON-NE states [40]. Overall, our observations support that 
structurally important nodes are very like to be functionally significant as well. Therefore, such 
structural analyses could be an initial step in the analysis of complex intracellular networked 
processes because of their potential to pinpoint important network components, which would 
guide experimental target discovery. 

 

Figure 4. Average node degrees of each TF among the found MDSTs. FLI1 is the major hub with about 

14 connections on average in the found MDSTs. The other hubs are ASCL1, MITF, and MYC with 

relatively high connectedness on average. Interestingly, MYC appears after integration of the data. 
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C. The pathways connecting the SCLC TF network hubs may have a role in SCLC subtype 
transitions: NON-NE to NE transition occurs when FLI1 – ASCL1 – MITF pathway is active. 

SCLC TF network contains multiple hubs with varying average node degrees. These hubs are 
shown to have distinct functional features in terms of SCLC subtypes, as elaborated in the 
previous sections, which leads us to a question: Do the pathways connecting different hubs that 
are identified as regulators of different SCLC subtypes have any role in subtype transition? For 
instance, FLI1 and MITF are the two major hubs identified in both unbiased (Figure 3) and data-
driven structural analyses (Figure 4). One of the pathways connecting these two hubs is through 
FLI1 – ASCL1 – MITF. FLI1 being a regulator of the SCLC NE subtype, MITF being a regulator of the 
NON-NE subtype, and ASCL1 being a destabilizer of the NON-NE subtype and regulator of the NE 
subtypes [34] suggest that this pathway has a potential role in NON-NE to NE subtype transition. 
One can also identify such structurally important pathways by checking the interactions 
remaining in the found DSTs and MDSTs with high probability, as exemplified in Supplementary 
Material. 
 To test the possible role of this pathway in the NON-NE to NE subtype transition, here we 
simulate the SCLC TF network using a tool called BooleaBayes [34] that automatically infers gene 
regulatory mechanisms, based on Boolean logic models, and links inputs and output states 
tailored to -omics datasets such as those from RNA-seq data. Upon setting the network's initial 
state to NON-NE subtype based on previously identified combinational ON-OFF states of the TFs 
[34], keeping the FLI1 – ASCL1 – MITF pathway active, and running asynchronous network 
simulation (i.e., one TF is randomly picked and updated at each iteration) using the extracted 
logic rules (Methods section C), we observe a transition from NON-NE to NE subtype (Figure 5). 
 
Dynamic analysis of asynchronous NON-NE to NE subtype transition simulations: 
Although the NON-NE to NE subtype transition was observed by keeping the FLI1 – ASCL1 – MITF 
pathway active, there are possibly other TFs and dominant pathways that contribute to the 
transition. Identifying those TFs and dominant pathways may reveal how the system 
mechanistically executes such transitions and allow us to identify potential other TFs playing a 
role in the transition. Therefore, as the next step, we run 700 asynchronous NON-NE to NE 
subtype transition simulations and keep track of all the iterations. Then, we compute the Longest 
Common Sequence (LCS) based distance (Methods section D) between the target SCLC Boolean 
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NE state and the instantaneous network state at each iteration (Methods section C). As seen in 
Figure 6, throughout the NON-NE to NE transition, the network state dynamically alternates 
between NON-NE and NE subtypes through many distance-increasing and -decreasing patterns 
until it finally converges to the NE state. This means that some reaction patterns drive the cells 
toward the NE subtype (distance-decreasing patterns in Figure 7) whereas some other reaction 
patterns drive the cells toward the NON-NE subtype (distance-increasing patterns in Figure 7). 
 Overall, the 700 asynchronous NON-NE to NE subtype transition simulations, in which 
transition occurs in the order of 105 asynchronous iterations, contain about 7x105 distance 
increasing and 5x105 distance decreasing patterns. To see which TF appears most in the distance-
increasing and -decreasing patterns, we compute their frequencies (Figure 8). Interestingly, four 
TFs that are ASCL1, FLI1, NR0B1, and CEBPD, appear more than the other TFs in the distance-

 

Figure 5. SCLC subtype transition from NON-NE to NE subtype. The network was initially set to NON-

NE subtype. After running several asynchronous iterations by keeping the FLI1 – ASCL1 – MITF pathway 

active, the system converges to Ne subtype. This pathway was identified based on the hubs observed 

from both unbiased and data-driven network structure analyses. The details of network simulation are 

provided in Methods Section C. The red color means TF is ON and cream color means TF is OFF. 
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decreasing patterns (Figure 8A) whereas the same four TFs appear less than the others in the 
distance-increasing patterns (Figure 8B). This means that in addition to the ASCL1 and FLI1 which 
are part of the pathway identified NON-NE to NE transition pathway, NR0B1 and CEBPD may have 
a regulatory involvement in this transition as well. Moreover, throughout all the asynchronous 
iterations among 700 NON-NE to NE transitions, we compute the number of iterations for each 
TFs, on which an update of the TF causes an increase in the distance between the network’s 
instantaneous state and NE subtype. As seen in Figure 9A, in addition to ASCL1 and FLI1 which 
never drives the cells toward the NON-NE subtype, NR0B1 and CEBPD are the two TFs that have 
a lower effect on the increase in the distance between the network state and the NE subtype 
compared to the others, which further supports their possible regulatory involvement in NON-
NE to NE subtype transition. Furthermore, we compute the probability of TFs being ON at the 
network state during the initiation of distance decrease patterns (Figure 9B). With about 0.2 
probability of being ON, NR0B1 seems to drive the cells toward the NE subtype by mostly being 
OFF whereas the activity status of CEBPD seems not very important as its probability of being ON 

 

Figure 6. Longest Common Sequence-based distance between NE subtype and the instantaneous 

network state versus asynchronous iterations. Starting from NON-NE state, the system converges to 

and diverges from NE state multiple times throughout the iterations until finally it fully converges. 
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is very close to 0.5. Additionally, Figure 9B suggests that whenever ISL1 and FOXA2 appear in the 
distance-decreasing patterns which is very likely as seen in Figure 8A, they are mostly ON with 
relatively high probabilities which implies that they may have a role in the NON-NE to NE 
transition. 
  Overall, the presented results suggest that structural analysis of the biological networks 
may guide the identification of functionally important molecules. More specifically, the concepts 
of DST and here extended to MDST by integrating data can identify hubs of the networks which 
can be potential targets in the experiments due to their involvement in complex biological 
processes. Focusing on the SCLC TF network that is being analyzed in this work, all the identified 
hubs in both unbiased and data-driven analysis show biological importance in terms of SCLC 

 

Figure 7. Examples of increase and decrease distance patterns between the network instantaneous 

state and SCLC NE subtype. 
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subtype regulation and destabilization as supported by the literature. Moreover, integrating data 
into the structural analysis highlights MYC as another hub whose importance in SCLC subtypes 
has recently been discovered [32,63-65]. This observation further supports those previously 
reported results. Furthermore, the ability to identify multiple hubs that have distinct functional 
roles in SCLC subtypes lets us scrutinize the pathways connecting the hubs. Upon asynchronously 

 

Figure 8. Frequencies of TFs in the distance decreasing and increasing patterns. (A) Appearance of TFs 

in the distance decreasing patterns. (B) Appearance of TFs in the distance increasing patterns. 
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simulating the network by keeping the pathway connecting FLI1 and MITF – the two major hubs 
– active, we observed a transition from NON-NE to NE subtype. In addition, analysis of 700 
asynchronous NON-NE to NE transition simulations suggests other TFs that may play a role in this 

 

Figure 9. Effect of TFs in distance increase and decrease between network state and NE subtype. (A) 

Number of iterations on which update of TF cause an increase in the distance between network state 

and NE subtype. (B) Probability of TF is ON in the network state initiating distance decreasing patterns. 
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transition. As a result, starting from a pure network structure, its analysis leads us to understand 
the underlying mechanism of a complex biological system, which is noteworthy. 
 
METHODS 

A. Dense Spanning Trees of the unbiased SCLC TF network 
Given the SCLC TF network (Figure 1), to analyze its structure and identify the hubs (Box 1) that 
are potentially fundamental in terms of their roles in complex biological processes, we search for 
the substructures called dense spanning trees (DSTs, Box 1). Suppose G is a graph that represents 
the SCLC TF network, V(G) is the set of nodes that represent the TFs in the network and E(G) is 
the set of edges that represents the interactions between the TFs in the network. Then, the DST 
of G is a substructure that minimizes the total distances between the TFs and contains all the TFs 
in V(G) with a minimum number of interactions while highlighting some nodes with high 
connectedness, i.e., the hubs. In other words, the DSTs are the subnetworks of the SCLC TF 
network that comprises the hubs and the shortest pathways from the hubs to all other TFs 
preserving the maximum biological influence.  
 To identify the hubs of the SCLC TF network, we start with a relatively unbiased network 
structure by removing all the edge directions, I.e., the information on activatory and inhibitory 
interactions, and not using any data on strength of the connections (Supplementary Figure 1). 
Then, the DSTs of the network are observed by solving the following optimization [55]: 

For the graph G with vertex set 𝑉(𝐺) = {𝑣!, 	𝑣", 	 … , 	𝑣#} where 𝑁 = |𝑉|, and edge set 
𝐸(𝐺) = {𝑒!, 	𝑒", 	 … , 	𝑒$} where 𝑀 = |𝐸|, 
 

min
%&&⃗

4 𝑑(𝑣( , 	𝑣)|ℎ7⃗ ∗)
#

(,),!,		(.)

 

  subject to 
  ℎ( ∈ {1, 	2, 	 … , 	𝑀} ⊂ 	ℤ/, 	𝑖 = 1,… , ?ℎ7⃗ ?, 
  ℎ( ≠ ℎ) , 	∀𝑖 ≠ 𝑗, 
  ℎ7⃗  contains at least one edge adjacent to 𝑣( ∈ 𝑉, 	∀𝑖 = 1,… ,𝑁, 
  ℎ7⃗ ∗ = KruskalCℎ7⃗ D, 

(1) 

 
in which ℎ7⃗ ∗ denotes the minimum spanning tree obtained from ℎ7⃗  that is a subset of E(G), and 
𝑑C𝑣( , 	𝑣)D is the distance between nodes 𝑣(  and 𝑣)  defined as the total number of edges in the 
shortest pathway between 𝑣(  and 𝑣). The main idea here is to find the optimal subset(s) of edges 
E(G) from which the constructed DST has the optimal objective value which is the total distances 
between the individual nodes. For more mathematical details and possible applications of this 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.01.535226doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.01.535226
http://creativecommons.org/licenses/by/4.0/


 17 

approach, we refer the reader to [54,55]. Upon solving the optimization problem (1) via Genetic 
Algorithm (GA), which is a metaheuristic optimization method that attempts to find the global 
optimum or at least its good approximation [66], we observed 146,143 DSTs with the same 
objective value. 

B. Integrating data into the structural analysis: Minimum Dense Spanning Trees 
As the next step, we blend this pure structural analysis with some data that is the probability of 
the existence of the interactions, i.e., the strength of the connections estimated from RNA-seq 
data [34]. The probabilities are integrated into the network structure as the weights that are 
assigned to the associated edges. Then, to identify the hubs of the weighted SCLC TF network, 
here we reformulate the optimization problem constructed to find DSTs in Equation (1) as a multi-
objective optimization problem given in Equation (2) and call the resulting optimal trees as the 
minimum dense spanning trees (MDSTs, Box 1). MDSTs add another information layer to the 
found trees by preserving the maximum likelihood of the interactions in addition to the minimum 
total distances between the nodes while highlighting the hubs of the network. More precisely, 
MDSTs of the SCLC TF network are the subnetworks that preserve the most probable interactions 
as well as the maximum biological influence between the TFs via the shortest pathways through 
the hubs. Note that one can assign different weights to the interactions by different means such 
as the mutual information between the TFs extracted from experimental data. In this case, the 
MDSTs will be the substructures that preserve the highest mutual information in addition to the 
shortest pathways through the hubs. 

To find the MDSTs of the SCLC TF network, we extend Equation (1) as follows: Suppose 
for each interaction 𝑖, we are given a probability 𝑝(, that is probability of the existence of the 𝑖0% 
interaction. Then, for the graph G with vertex set 𝑉(𝐺) = {𝑣!, 	𝑣", 	 … , 	𝑣#} where 𝑁 = |𝑉|, and 
edge set 𝐸(𝐺) = {𝑒!, 	𝑒", 	 … , 	𝑒$} where 𝑀 = |𝐸| with associated weights 𝑤( , 	𝑖 = 1, 	 … , 	𝑀:  

 

min
%&&⃗
G 4 𝑑(𝑣( , 	𝑣)|ℎ7⃗ ∗)

#

(,),!,		(.)

, 	41C𝑒( ∈ ℎ7⃗ D × (𝑤()
$

(,!

I 

  subject to 
  ℎ( ∈ {1, 	2, 	 … , 	𝑀} ⊂ 	ℤ/, 	𝑖 = 1,… , ?ℎ7⃗ ?, 
  ℎ( ≠ ℎ) , 	∀𝑖 ≠ 𝑗, 
  ℎ7⃗  contains at least one edge adjacent to 𝑣( ∈ 𝑉, 	∀𝑖 = 1,… ,𝑁, 
  ℎ7⃗ ∗ = KruskalCℎ7⃗ D,	

(2) 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.01.535226doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.01.535226
http://creativecommons.org/licenses/by/4.0/


 18 

in which weight 𝑤( = 1 − 𝑝( , ℎ7⃗ ∗ denotes the minimum spanning tree obtained from ℎ7⃗  that is a 
subset of E(G), and 𝑑C𝑣( , 	𝑣)D is the distance between nodes 𝑣(  and 𝑣), and 1C𝑒( ∈ ℎ7⃗ D results in 1 
if the edge 𝑒(  is in ℎ7⃗ . Here, the first objective function is the minimization of the total sum of 
distances between the nodes whereas the second objective function is the minimization of the 
sum of weights assigned to each edge, which is the same as the maximization of the sum of 
probabilities of each selected interaction exists based on the definition of weights. Once we 
solved the multi-objective optimization problem (2) by GA, we observed 46 MDSTs all having the 
same objective value, which shows the effect of prior knowledge on narrowing down the search 
space. 

C. SCLC TF network subtype transition simulations 
To see how important the pathways connecting the hubs having distinct functional features are, 
we simulate the SCLC TF network using a tool called BooleaBayes [34]. BooleaBayes is a Boolean 
rule-fitting algorithm that infers local regulatory mechanisms near stable cell subtypes from gene 
expression data. The approach has previously been applied to the SCLC TF network (Figure 1) to 
identify and rank master regulators and master destabilizers of SCLC subtypes assuming binary, 
i.e., ON and OFF, activity states of each transcription factor (Supplementary Figure 2). Further 
details of BooleaBayes and how it infers the logic rules can be found in [34]. 

Using the Boolean rules extracted via BooleaBayes, we test the role of FLI1 – ASCL1 – MITF 
pathway, in which FLI1 and MITF are the two major hubs found by both DST and MDST 
approaches, in NON-NE to NE subtype transition. This is hypothesized due to FLI1 being a 
regulator of the SCLC NE subtype, MITF being a regulator of the NON-NE subtype, and ASCL1 
being a destabilizer of the NON-NE subtype and regulator of the NE subtype [34]. First, we set 
the initial state of the network to the NON-NE subtype using the logic TF states in Supplementary 
Figure 2. Then, we simulate the network using a general asynchronous update scheme with the 
inferred Boolean rules and keeping the FLI1 – ASCL1 – MITF pathway active by setting ASCL1 and 
FLI1 always “ON”. After several asynchronous iterations (usually in the order of 105), in which a 
random TF is picked at each iteration and updated based on the extracted probabilistic Boolean 
rules, the network converged to one of the NE subtype Boolean states (Supplementary Figure 2). 
Note that due to the nature of the asynchronous update scheme, the convergence of the system 
to the NE subtype may occur in a different number of iterations and update patterns at each run 
of the transition simulations. 

D. Distance measure between instantaneous network state and NE subtype 
To track the network state and understand its dynamic behavior throughout NON-NE to NE 
transition, we compute the distance between the network’s instantaneous state at each iteration 
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and the target NE subtype. The distance metric we chose is Longest Common Sequence (LCS) 
metric [67] due to its sensitivity to order differences by assigning a larger distance value to the 
difference between the network state and target state. Given two vectors 𝑣! and 𝑣" of length 𝑚, 
that in our case represent the network state and the target state, respectively, the LCS-based 
distance 𝑑123 is defined as follows: 

𝑑123(𝑣!, 𝑣") = 𝐴(𝑣!, 𝑣!) + 𝐴(𝑣", 𝑣") − 	𝐴(𝑣!, 𝑣") (3) 
 
where 𝐴(𝑣!, 𝑣")	is to the number of elements in 𝑣! that uniquely matches the elements of 𝑣" in 
the same order (not necessarily contiguous). Note that one can use other distance metrics such 
as Hamming distance to perform the same analysis.  

Computing LCS-based distance between the instantaneous network state and NE subtype 
throughout the asynchronous transition simulations shows us how the network converges and 
diverges from the NE subtype starting from the NON-NE subtype. Furthermore, this allows us to 
identify some patterns causing increase and decrease between the two network states; and 
hence, allows us to identify other TFs that may contribute to this transition. 
 
DISCUSSION 
Small Cell Lung Cancer (SCLC) is an aggressive disease with its mixtures of transcriptional subtypes 
such as neuroendocrine (NE) and non-neuroendocrine (NON-NE), later being more treatment-
resistant, regulated by the expression of different transcription factors (TFs). In addition to the 
heterogeneity in cancerous cell types, transitions between the subtypes make the disease even 
harder to treat. To date, SCLC TF networks have been broadly studied via systems approaches to 
reveal regulators and destabilizers of different subtypes. Yet, the studies lack mechanisms of 
subtype transitions, whose understanding is critical to control disease progression and perhaps 
develop ways for permanent cure. In this work, we hypothesize that analysis of the SCLC TF 
network structure (Figure 1), which is barely investigated to our best knowledge, can provide 
clues on distinct subtype drivers, and further reveal pathways controlling subtype transitions. To 
test this hypothesis, here we use graph theory concepts called Dense Spanning Trees and its 
extended version called Minimum Dense Spanning Trees (DSTs and MDSTs, see Box 1 and 
Methods sections A and B). DSTs and MDSTs are special subnetworks of the initial TF network 
that feature strategical nodes called hubs and the pathways connecting the hubs. Hubs are 
critical nodes due to interconnecting several key pathways and collecting, processing, and 
distributing key signals throughout the signaling mechanism. Moreover, the pathways 
connecting the hubs are also important as they are potential probes for controlling complex 
signaling across hubs. Therefore, given two hubs regulating different SCLC subtypes, we 
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hypothesize that the pathways connecting these hubs could be targets to control subtype 
transitions. 

First, with DSTs, we analyze a relatively unbiased network structure by removing all the 
edge directions, i.e., the information on activatory and inhibitory interactions, and not using any 
data on strength of the connections (Figure 3). Next, we integrate data into this pure structural 
analysis, assigned to each edge as weights that are the probability of the existence of the 
interactions, i.e., the strength of the connections estimated from RNA-seq data [34]. Then, we 
extend the DST into MDST (Methods section B) to identify the hubs of the weighted network 
structure (Figure 4). Interestingly, all the hubs such as ASCL1, FLI1, and MITF identified in both 
unbiased and data-driven structural analyses are either regulators or destabilizers of different 
SCLC subtypes as reported in the literature, which confirms our hypothesis on the importance of 
hubs. Additionally, the structural analysis driven by the data highlights MYC as another hub in 
addition to those identified in unbiased analysis (Figure 4), which supports its importance in SCLC 
subtypes as shown in recent studies [32,63-65]. To test the roles of pathways connecting 
functionally distinct hubs, we asynchronously simulate the SCLC TF network using a Boolean 
modeling framework extracted by a tool called BooleaBayes [34] (Methods section C). As a result 
of several asynchronous iterations and keeping the pathway connecting FLI1 and MITF – the two 
major hubs in both unbiased and data-driven analyses – active, we observe a transition from 
NON-NE to NE subtype (Figure 5), confirming our hypothesis on the importance of hub-
connecting pathways. Furthermore, after analyzing increasing and decreasing patterns in 
distance between the network state and NE subtype (Figure 6 and Figure 7) in 700 asynchronous 
NON-NE to NE transition simulations, we conclude that the TFs NR0B1 and CEBPD may also play 
a role in this transition in addition to FLI1 and ASCL1 (Figure 8 and Figure 9). 

Note that, one can integrate different data into this analysis, assigned as the weights to 
the edges. For instance, instead of assigning probabilities of interactions, the mutual information 
between the pair of nodes can be used. In this case, resulting MDSTs would contain the hubs 
while preserving the highest mutual information and the maximum influence within the nodes. 
Similarly, one can assign the weights manually guided by prior knowledge to keep the preferred 
interactions in the resulting substructures. Also, one can apply the tools presented here for any 
network type such as protein-protein interactions networks (PPINs), gene regulatory networks 
(GRNs), cell signaling networks, and metabolic networks. In addition, they can be applied to any 
network structures such as directed or undirected and weighted or unweighted. We would like 
to note that although preserving the directedness of interactions would integrate more 
information into the structural analysis, it would also require adding new constraints to the 
optimization problems (1) and (2), which may become harder to solve due to increased 
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complexity, leaving room for potential improvement to the found DSTs and MDSTs for the SCLC 
network.  

There are different ways to define and identify the hubs for a given network than ours. 
One can define a node that has the most connections (highest node degree) or a node that has 
the most connections that make it central in the network as the hub. However, we believe they 
are not very well suited for biological applications as they are purely structural concepts and 
don’t concern about the closeness, i.e., the influence of the nodes with each other. Moreover, 
such hubs are expected to occur only in scale-free networks, i.e., the networks whose degree 
distribution follows power law [57]. On the other hand, the concept of DSTs and MDSTs can 
identify hubs for any given network because, in DSTs and MDSTs, hubs are defined as the central 
nodes that minimize the total distance between every node, and such substructures can be found 
for any random network. Additionally, there are other ways to find DSTs of a given network such 
as the edge-swap heuristic algorithms presented in [53, 54]. However, we have previously shown 
that optimization-based approaches outperform such edge-swap heuristic algorithms [55] both 
in accuracy and computational complexity changing by the network size. Lastly, here, to identify 
the DST and MDSTs, we solve the optimization problems (1) and (2) using genetic algorithm (GA), 
which is a metaheuristic optimization method that attempts to find a globally optimal solution, 
but it does not guarantee a global solution because it does not guarantee exploration of all the 
search space and the solution quality and optimality depend on several parameters that need to 
be properly selected by the user, including population size, rate of mutation and crossover, etc. 
[66]. However, GA is well suited for problems that are discrete and combinatorial in nature by 
providing at least a good approximation of the global solution. Nevertheless, one can solve these 
optimization problems via other algorithms such as particle swarm optimization. 

Overall, the presented results have shown that the hubs of the SCLC TF network identified 
via DSTs and MDSTs are either regulators or destabilizers of different SCLC subtypes. This implies 
that structural analyses of the networks can be advantageous as the initial step as their results 
can be used as guidance to generate hypotheses to be tested in experiments. Moreover, the 
pathways connecting the functionally distinct hubs may have major roles in SCLC subtype 
transitions as shown by the simulations, which may allow the control of such transitions and help 
develop better treatment strategies by driving the cancerous cells toward more sensitive states. 
Furthermore, targeting those pathways in the experiments may lead to the identification of other 
dominant components in such transitions and hence help to understand the underlying 
mechanism of this complex signaling process. As a result, pure as well as data-driven structural 
analyses of the networked processes could be a plausible first step and may result in potentially 
important biological observations in complex systems as well as help generate hypotheses to be 
tested. 
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