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ABSTRACT 
Objective: Endothelial cells (ECs) are a major cell type in atherosclerosis progression, and heterogeneity in 
EC sub-phenotypes are becoming increasingly appreciated. Still, studies quantifying EC heterogeneity across 
whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking.  
 

Approach and Results: To create an in vitro dataset to study human EC heterogeneity, multiomic profiling 
concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on 
six distinct primary cultures of human aortic ECs (HAECs). To model pro-inflammatory and activating 
environments characteristic of the atherosclerotic microenvironment in vitro, HAECs from at least three 
donors were exposed to three distinct perturbations with their respective controls: transforming growth factor 
beta-2 (TGFB2), interleukin-1 beta (IL1B), and siRNA-mediated knock-down of the endothelial transcription 
factor ERG (siERG).  To form a comprehensive in vivo/ex vivo dataset of human atherosclerotic cell types, 
meta-analysis of single cell transcriptomes across 17 human arterial specimens was performed. Two 
computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous 
in vitro and in vivo cell profiles. HAEC cultures were reproducibly populated by 4 major clusters with distinct 
pathway enrichment profiles: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-
mesenchymal. Exposure to siERG, IL1B or TGFB2 elicited mostly distinct transcriptional and accessible 
chromatin responses. EC1 and EC2, the most canonically ‘healthy’ EC populations, were affected 
predominantly by siERG; the activated cluster EC3 was most responsive to IL1B; and the mesenchymal 
population EC4 was most affected by TGFB2. Quantitative comparisons between in vitro and in vivo 
transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with 
minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 
were most enriched for coronary artery disease (CAD) -associated SNPs from GWAS, suggesting these cell 
phenotypes harbor CAD-modulating mechanisms. 
 

Conclusion: Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular 
profiles. Surprisingly, the perturbations used here, which have been reported by others to be involved in the 
pathogenesis of atherosclerosis as well as induce endothelial-to-mesenchymal transition (EndMT), only 
modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. 
Identifying consistently heterogeneous EC subpopulations between in vitro and in vivo models should pave 
the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state 
decisions.  
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INTRODUCTION 

Endothelial Cells (ECs) in the vascular endothelium maintain hemostasis, mediate vasodilation, and 

regulate the migration of leukocytes into tissues during inflammation. Dysfunctions of the endothelium are a 

hallmark of the aging process and are also an important feature of diseases including atherosclerosis. 

Atherosclerosis is an inflammatory process fueled by cholesterol and leukocyte accumulation in the sub-

endothelial layer of arteries. It is the underlying pathobiology of ischemic heart disease and the leading cause 

of morbidity and mortality worldwide due to heart attack and stroke (1-3). Atherosclerosis of the coronary 

arteries is estimated to be about 50% genetic with hundreds of genomic loci contributing to genetic risk (4-6). 

A major opportunity for better understanding the molecular basis for how disease progresses lie in identifying 

the genomic and downstream functions impaired by risk variants in disease-relevant cell types. Genetic 

studies are increasingly suggesting that a significant proportion of genetic risk for atherosclerosis is encoded 

in perturbed functions of vascular ECs (5-7).   

Single cell sequencing technologies have begun to characterize the extent of EC molecular diversity 

in vitro and in vivo (8-19). Genetically engineered, lineage traced mouse models have also been instrumental 

for identifying which cells in atherosclerotic plaques arose from EC origin.  These studies have demonstrated 

that many cells of EC origin in plaques lack canonical EC marker genes and luminal location (20, 21). As 

many as one-third of mesenchymal-like cells in plaques have been reported to be of endothelial origin (20) 

suggesting that phenotypic transition from endothelial to mesenchymal (EndMT) is a feature of 

atherosclerosis; however, whether EndMT is a cause or bystander of atherogenesis or plaque rupture is not 

fully understood. Although lineage tracing is not possible in humans, immunocytochemical techniques 

suggest that EC heterogeneity is prevalent in atherosclerotic vessels. These studies have described an 

unexpectedly large number of cells co-expressing pairs of endothelial and mesenchymal proteins, including 

FAP/VWF, FSP-1/VWF, FAP/CD31, FSP-1/CD31 (20), p-SMAD2/FGFR1 (22), and αSMA/PECAM-1. An 

important implication of this result is that the use of canonical EC markers to isolate or identify ECs will likely 

omit certain EC populations. The extent of EC molecular and functional heterogeneity within a tissue during 

homeostasis and during disease is not well understood. One notable study exemplifying EC heterogeneity 

demonstrated that the EC-marker gene von Willebrand Factor (VWF) was expressed only in a subset of ECs 

from the same murine vessel, and the penetrance of VWF expression across ECs was tissue-specific (23). 

In a related study, expression of the leukocyte adhesion molecule VCAM-1 was found to be upregulated by 

the pro-inflammatory cytokine TNFa only in some of the ECs of a monolayer (24). In both studies, variability 

in DNA methylation on CpG dinucleotides at the gene promoters negatively correlated with VWF and VCAM-

1 expression. These findings raise the question as to how many molecular programs exist within ECs of a 

same tissue or culture, how this heterogeneity influences response to cellular perturbations, and what factors 

regulate these cellular states. 

There are notable benefits and limitations for studying heterogeneity using in vitro and in vivo 

approaches in atherosclerosis research. In vitro approaches provide unique opportunities for interrogating 
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consequences of genetic and chemical perturbations in highly controlled environments and are adept at 

identifying mechanistic relationships on accelerated timelines. In vivo approaches benefit from the complexity 

of the crosstalk among all cell types and tissues of the organism and are adept for identifying how 

perturbations manifest in living systems. It reasons that the integration of results from both approaches will 

best accelerate discovery. However, comprehensive analysis comparing heterogeneity of vascular ECs 

observed in vivo and in vitro remains unexplored. In the current study we performed meta-analysis on four 

human in/ex vivo single cell transcriptomic datasets (25-28), containing 17 arterial samples, from mild-to-

moderate calcified atherosclerotic plaques to evaluate the ability of the in vitro EC models to recapitulate 

molecular signatures observed in human atherosclerosis.  

Human aortic endothelial cells (HAECs) are among the most appropriate cell type for in vitro modeling 

of the arterial endothelium in atherosclerosis research insofar as they are human cells, they are more readily 

available than coronary artery ECs, they are not of venous origin like human umbilical vein ECs, and they can 

be isolated from explants of healthy donor hearts during transplantation. We set forth in the current study to 

quantify heterogeneity among HAECs using multimodal sequencing that simultaneously measures transcripts 

using RNA-seq and accessible chromatin using ATAC-seq from the same barcoded nuclei. To provide 

estimates for heterogeneity due to genetic background, we molecularly phenotyped HAECs from six 

genetically distinct human donors. We also quantified single cell responses to three perturbations known to 

be important in EC biology and atherosclerosis. The first was activation of transforming growth factor beta 

(TGFB) signaling, which is a hallmark of phenotypic transition and a regulator of EC heterogeneity (20, 29). 

The second was stimulation with the pro-inflammatory cytokine interleukin-1 beta (IL1B), which has been 

shown to model inflammation and EndMT in vitro (30-34), and whose inhibition reduced adverse 

cardiovascular events in a large clinical trial (35). The third perturbation utilized in our study was knock-down 

of the ETS related gene (ERG), which encodes a transcription factor of critical importance for EC fate 

specification and homeostasis (36-40).  

Lastly, we examine whether epigenetic landscapes among heterogeneous EC subtypes observed in 

this study were differentially enriched for coronary artery disease (CAD) genetic risk variants. Taken together, 

this study provides evidence that EC heterogeneity is prevalent in vivo and in vitro and that not all ECs respond 

similarly to activating perturbations.  

 
RESULTS 
EC Single Cell Transcriptomic Profiles Reveal a Heterogeneous Population 

To systematically uncover the heterogeneity of molecular landscapes in ECs at single cell resolution, 

we cultured primary HAECs isolated from luminal digests of ascending aortas from six de-identified heart 

transplant donors at low passage (passage 3-6) (41) (Figure 1A). Using the 10X Genomics multiome kit (42), 

single nucleus mRNA expression (snRNA-seq) and chromatin accessibility (snATAC-seq) data were collected 

simultaneously for a total of 15,220 nuclei after stringent quality control (Methods). RNA and ATAC data were 

integrated separately by treatment condition and then with each other as reported previously (Methods) (43).  
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  snRNA-seq libraries were sequenced to a median depth of 29,732-84,476 reads and 2,481-3,938 

transcripts per nucleus (Table S1 and Table S2 in the Data Supplement). Five distinct EC subtypes (EC1, 

EC2, EC3, EC4, and EC5) were detected from the fully integrated dataset, which included all donors, 

treatments, and data types (Figure 1B). Subtypes EC1 and EC3 comprised cells from all donors, whereas 

EC2 and EC4 contained cells from most donors, and EC5 was nearly exclusively populated by cells from a 

single donor (Figure 1C; Table S3 in the Data Supplement). Because we do not observe EC5 across multiple 

individuals, we chose not to focus additional analysis on this subtype. Pathway enrichment of marker genes 

revealed EC1 to exhibit an angiogenic phenotype (WP4331, p-value 4.0x10-9; GO:0038084, p-value 1.5x10-

9) with enriched transcripts including KDR, GAB1, PGF, and NRP2 (Figure 1D-G, Figure S1A in the Data 
Supplement). EC2 was enriched in proliferation (GO:1903047, p-value 7.4x10-35) with characteristic markers 

CENPE, CENPF, KIF11, KIF4A and TOP2A (Figure 1D-G, Figure S1A in the Data Supplement). EC3 

displayed enrichment in “regulation of smooth muscle cell proliferation” (GO:0048660; p-value 1.1x10-10) 

(Figure 1F). From the top 200 differentially expressed genes (DEGs) for EC3 we observed additional 

pathways enriched, including NABA CORE MATRISOME (M5884; p-value 1x10-34) and locomotion 

(GO:0040011; p-value 1.2x10-15), suggesting an activated mesenchymal-like phenotype (Figure S1B-C in 

the Data Supplement). A fourth subset, EC4, demonstrates enrichment in ECM organization (GO:0097435; 

p-value 3.2x10-19), a process characteristic of mesenchymal cells, with distinctive expression of collagen 

genes, including COL1A1, COL1A2, COL3A1, and COL5A1 (Figure 1D-G, Figure S1A in the Data 
Supplement) (44, 45). Top marker genes and pathways for each EC subtype are in Table S4-5 in the Data 
Supplement. These observations are in line with previous reports of angiogenic, proliferative, mesenchymal, 

and pro-coagulatory EC subtypes within ex vivo models (9, 10, 14, 19, 46) and underscore the heterogeneity 

of transcriptomic profiles in cultured HAECs. 

 

EC Subtypes Exhibit Distinct Open Chromatin Profiles and Enriched Motifs 
To investigate how different transcriptional signatures across ECs correspond to distinct chromatin 

states, we utilized the snATAC-seq portion of the multiome dataset. The snATAC-seq data were sequenced 

Figure 1 | HAEC transcriptomic profiling discover a heterogenous cell population. (A), Schematic diagram of 
the experimental design. ECs were isolated from six human heart transplant donor’s ascending aortic trimmings and 
treated with IL1B, TGFB2, or siERG (ERG siRNA) for 7 days (B), Weighted Nearest Neighbor UMAP (WNNUMAP) of 
aggregate cells from all perturbations and donors is shown. Each dot represents a cell, and the proximity between 
each cell approximates their similarity of both transcriptional and epigenetic profiles. Colors denote cluster 
membership. (C), The proportion of cells from each donor for each EC subtype. (D), Gene expression across top 
markers for each cluster including pan EC (ERG), EC1 (KDR), EC2 (TOP2A), and EC4 (COL1A1). (E), Top markers 
for pan EC (PECAM1, CDH5, ERG), EC1 (KDR, PGF), EC2 (CENPE, TOP2A), EC3 (SEMA3C, ACKR3), EC4 
(COL1A1, COL6A1), and EC5 (LRRC17, LAMA2). The size of the dot represents the percentage of cells within each 
EC subtype that express the given gene, while the shade of the dot represents the level of average expression (“Avg. 
Expn.” in the legend). (F), Heatmap of pathway enrichment analysis (PEA) results from submitting top 200 differentially 
expressed genes (DEGs; by ascending p-value) between EC subtypes. Rows (pathways) and columns (EC subtypes) 
are clustered based on -Log10(P) (G), Violin plots of top Metascape pathway module scores across EC subtypes. 
Module scores are generated for each cell barcode with Seurat function AddModuleScore(). 
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to a median depth of 22,939-126,122 reads with 3,480-19,259 peaks called per nucleus (Table S2 and S6 in 

the Data Supplement). Of 204,904 total identified peaks, 13,731 were differential across subtypes, with 79  

to 8,091 peaks uniquely accessible per EC subtype (Table S8 in the Data Supplement). Over 80% of total 

peaks were intergenic or intronic (Figure 2A-B) and the majority of unique peaks were from EC2 and EC4. 

Transcription factor (TF) motif enrichment analysis using Signac (47) was performed on Differentially 

Accessible Regions (DARs) per EC subtype (Figure 2C). It is important to note that TFs within a TF family 

may share DNA-binding motifs and may not be distinguished by motifs alone. As a result, TF names from the 

Jaspar database (48) indicate the TF family. We find the basic helix-loop-helix (bHLH) motif defined by the 

core sequence CANNTG enriched in EC1 peaks, including enrichments for ASCL2 (adjusted p-value 3.9x10-

50), TCF12 (adjusted p-value 1.7x10-21), and BHLHE22(var.2) (adjusted p-value 5.7x10-48) (Figure 2C-D).  

ETS motifs, including ETV1 (adjusted p-value 3.2x10-42 and 5.3x10-249, for EC1-2, respectively), SPIB 

(adjusted p-value 7.9x10-22 and 2.5x10-236, respectively), and GABPA (adjusted p-value 2.7x10-41 and 4.3x10-

244, respectively), were also enriched in EC1 as well as in EC2 peaks. These data are consistent with known 

roles for ETS TFs, including ERG and FLI1, in governing angiogenic and homeostatic endothelial phenotypes 

(49). Given that ERG expression (Figure 1E) correlated with incidence of the ETS motif in open chromatin 

(Figure 2D) across the nuclei, ERG is likely driving the EC1-2 sub-phenotypes. The near-exact match in 

motifs between the ETV1 motif position weight matrix in Jaspar and the de novo enriched motif from ERG 

ChIP-seq in human aortic ECs (40) further supports this conclusion (Figure 2E). In addition to ETS motifs, 

EC2 was enriched in ZFX (adjusted p-value 4.2x10-86) and ZNF148 (adjusted p-value 1.1x10-126), which are 

C2H2 zinc finger motifs. C2H2 zinc finger motifs, as well as KLF4 (adjusted p-value 5.4x10-32 and 8.4x10-135, 

for EC1-2, respectively), also show enrichment in EC1-2. EC3 peaks are enriched for GATA motifs including 

GATA4 (adjusted p-value 3.1x10-8), GATA5 (adjusted p-value 8x10-11), GATA1::TAL1 (adjusted p-value 

1.8x10-6), and bHLH motif BHLHE22(var.2) (adjusted p-value 0.01). EC4 open regions were uniquely enriched 

for TEA domain (TEAD) factors comprised of motifs named TEAD2 (adjusted p-value 1.2x10-238), TEAD3 

(adjusted p-value 2.1x10-306), and TEAD4 (adjusted p-value 6.9x10-252) (Figure 2C-D). Notably, TEAD factors 

have been found as enriched in vascular smooth muscle cells (VSMCs) (28, 50), which is consistent with EC4 

having the most mesenchymal phenotype of our EC subtypes.  

Taken together, these data demonstrate that EC1 and EC2 are the subtypes most canonically like 

‘healthy’ or angiogenic ECs insofar as they exhibit ETS motif enrichments. Additionally, we conclude that EC4 

is the most mesenchymal EC insofar as it exhibits TEAD factor enrichments.  

 

EC activating perturbations modestly shift cells into the EC3 subtype  
 Embedded in the dataset of this study were three experimental conditions known to promote EndMT 

along with their respective controls. Each experimental condition was administered to between three and five 

genetically distinct HAEC cultures. The conditions included 7-day exposure to IL1B (10 ng/ml), 7-day 

exposure to TGFB2 (10 ng/mL), and 7-day siRNA-mediated knock-down of ERG (siERG). The control for 

IL1B and TGFB2 treatments was 7-day growth in matched media lacking cytokine and the control for the  
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Figure 2 | ECs have epigenetically distinct cell states.  
(A), Upset plot of differential peaks across EC subtypes. Intersection size represents the number of genes at each 
intersection, while set size represents the number of genes for each EC subtype. (B), Genomic annotation for the 
complete peak set. (C), Heatmap of top transcription factors (TFs) from motif enrichment analysis for marker peaks in 
each EC subtype. Top TFs for each EC subtype are selected based on ascending p-value. Rows (TFs) and columns 
(EC subtype) are clustered based on enrichment score (ES). (D), Feature plots and position weight matrices (PWMs) 
for top TF binding motifs for EC1 (TCF12), EC2 (ETV1), EC3 (GATA5), and EC4 (TEAD3). Per-cell motif activity scores 
are computed with chromVAR, and motif activities per cell are visualized using Signac function FeaturePlot. (E), PWMs 
comparing Jaspar 2020 ETV1 motif to ERG motif reported in Hogan et al. 
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siERG condition was transfection with scrambled RNA 
 The UMAP presented in Figure 1 includes all the nuclei profiled across donors and conditions. We 

hypothesized that EC4, the most mesenchymal cluster, would be enriched for cells exposed to IL1B, TGFB2, 

and/or siERG relative to the controls thereby supporting that the EC4 subtype is a likely consequence of 

EndMT. Detailed in Figure 3 and Figures S2A-D in the Data Supplement are the relative proportions of cells 

from each experimental condition and donor by cluster. Contrary to our hypothesis, the EC4 cluster was not 

enriched for cells that were treated with cytokine or siERG relative to the controls; in fact, there is a non-

statistically significant trend for decreased numbers of EC4 cells from these conditions relative to controls 

insofar as all the donors with cells in EC4 show diminished proportions upon perturbation (Figure 3). The one 

cluster exhibiting increased proportions of cells upon EndMT perturbations was EC3, with 3 of 4 EC IL1B-

exposed donors having increased proportions in EC3 (p = 0.08 by 2-sided paired t-test; Figure 3A), 4 of 5 

TGFB2-exposed donors

  

 

having increased proportions (p = 0.04 by 2-sided paired t-test; Figure 3A), and 3 of 3 donors having 

increased EC3 proportions upon ERG knock-down (Figure 3B).  

 

Figure 3 | EC activating perturbations modestly shift cells into the EC3 subtype. (A), The proportion of cells in 
7-day control and 7-day IL1B treatment are shown per HAEC donor and cluster on the top and for 7-day control and 
7-day TGFB2 on the bottom (B), The proportion of cells in 7-day siSCR control and 7-day siERG knock-down are 
shown per HAEC donor and cluster. EC1 was omitted in A due to lack of cells in both conditions. 
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 In addition to heterogeneity across EC clusters, data in Figure 3 underscores that there is 

heterogeneity among EC cultures. To quantify this effect, we performed principal component (PC) analysis to 

evaluate the overall contributions that donor and experimental conditions have on variance in this dataset. 

We found that pro-EndMT perturbations elicited greater variance in RNA expression (38-56% of variance) 

than donor (17%-27% variance) (Figures S2E-G in the Data Supplement), supporting that the transcriptional 

and epigenetic programs elicited by experimental conditions have a greater overall consequence than donor. 

This finding provides the opportunity to elucidate how different EC clusters respond to pro-EndMT exposures 

across genetically distinct ECs. 

 

Pro-EndMT Perturbations In Vitro Elicit EC Subtype-Specific Transcriptional Responses 
We next sought to evaluate the similarities and differences among pro-EndMT perturbations and 

evaluate the transcriptional response elicited in each EC subtype. Differential gene expression analysis was  

performed using pseudo-bulked profiles grouped by donor, subcluster, and experimental groupings (Table 
S9 in the Data Supplement). 

Overall, we found heterogeneity in transcriptional responses across EC subtypes. While EC1 and EC2 

transcripts were predominantly perturbed by siERG, the greatest number of transcripts differentially 

expressed in EC3 were those responsive to IL1B, though siERG and TGFB2 also regulated tens to hundreds 

of transcripts in EC3. In contrast, transcripts in EC4 were predominantly responsive to TGFB2 (Figure 4A, 

Table S9 in the Data Supplement). With respect to EC4, we questioned whether transcripts were 

predominantly responsive to TGFB2 due to differences in expression of TGFB receptors. While we observed 

increased TGFBR1 expression in EC4, we observed relatively less expression of TGFBR2 and ACVRL1 in 

EC4 when compared to EC1, EC2, and EC3 (Figure S3A in the Data Supplement). We next questioned 

whether EC3 transcripts were predominantly responsive to IL1B due to differences in IL1B receptor 

expression. Notably, we did not observe differences in IL1B receptor expression, suggesting that their 

transcription is not responsible for divergent EC responses across EC subtypes (Figure S3B in the Data 
Supplement). Interestingly, we did observe differential expression of IL1RL1 in EC2, which may influence 

EC2 response to cytokine (Figure S3B in the Data Supplement).       
When comparing enriched pathways across perturbations, we observed that over 80% of transcripts 

differentially expressed by a treatment in EC4 were in response to TGFB2 (Figure 4A, Table S9 in the Data 
Supplement). TGFB2-affected transcripts for EC4 were enriched in invadopodia formation (R-HAS-8941237; 

p-value 2.7x10-7) and anchoring fibril formation (R-HAS-2214320; p-value 3.6x10-7) (Figure 4B). Notably, 

TGFB2-affected genes for EC3 share several mesenchymal-related enriched pathways with TGFB2-affected 

genes for EC4, including actin cytoskeleton organization (GO:0030036; p-value 4.4x10-7), NABA CORE 

MATRISOME (M5884; p-value 2.8x10-7), and ECM organization (R-HSA-1474244; p-value 5.4x10-7). TGFB2-

attenuated transcripts unique to EC3 were enriched in platelet activation (GO:0030168; p-value 1.4x10-4) 

(Figure 4B).  
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Most transcripts affected in EC3 were responsive to IL1B (Figure 4A). Importantly, several EC3 genes 

differentially expressed with IL1B were also affected with siERG (Figure 4A). IL1B-affected transcripts in EC3 

Figure 4 | EC activating perturbations in vitro elicit EC subtype-specific transcriptional responses. (A), Upset 
plots of up- and down-regulated DEGs across EC subtypes with siERG (grey), IL1B (pink), and TGFB2 (blue). 
Intersection size represents the number of genes at each intersection. (B), PEA for EC3-4 up- and down-regulated 
DEGs with TGFB2 compared to control media. (C), PEA for EC2-4 up- and down-regulated DEGs with IL1B 
compared to control media. (D), PEA for EC1-4 up- and down-regulated DEGs with siERG compared to siSCR. (E), 
PEA comparing up- and down-regulated DEGs that are mutually exclusive and shared between IL1B and siERG in 
EC3. 
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are not enriched in mesenchymal-like pathways (Figure 4C). However, EC3 IL1B-attenuated genes are 

enriched in blood vessel development (GO:0032502; p-value 5.1x10-11), indicating that this perturbation still 

has anti-endothelial effects (Figure 4C).  

Most genes significantly affected by perturbations in EC1 and EC2 were responsive to siERG, likely 

due to their more endothelial-like phenotypes compared to EC3 and EC4 (Figure 4A). siERG-affected genes 

in EC1 and EC2 were enriched in COVID-19 adverse outcome pathway (51) (WP4891; p-values 5x10-9 and 

8.3x10-5, for EC1-2 respectively) and AGE-RAGE signaling in diabetes (52) (hsa04933; p-values 8.9x10-16 

and 1.9x10-20, respectively), while EC3 siERG-perturbed genes are enriched with a unique metabolic profile 

demonstrated by enrichment in monosaccharide metabolic process (GO:0005996; p-value 1x10-6), 

carbohydrate metabolic process (GO:0005975; p-value 6.6x10-7), and aerobic glycolysis (WP4629; p-value 

4.1x10-5) (Figure 4D). In contrast, EC4 siERG-induced genes are enriched in positive regulation of 

angiogenesis (GO:0045766; p-value 4.5x10-6), a function normally impaired in ERG-depleted endothelial cells 

(Figure 4D) (37).  

Due to the role that ERG plays in inhibiting NF-KB-dependent inflammation in vitro and in vivo (36), 

we set out to characterize mutually exclusive and shared pathways between IL1B and siERG (Figure 4E). 

Importantly, siERG, but not IL1B-perturbed genes, involve several previously mentioned metabolic processes 

including carbohydrate metabolic process (GO:0005975; p-value 6.6x10-7), aerobic glycolysis (WP4629; p-

value 4.1x10-5), and monosaccharide metabolic process (GO:0005996; p-value 1x10-6). This suggests 

differences in the ability of ERG and IL1B to modify metabolism. Interestingly, IL1B but not siERG upregulated 

interferon signaling and viral responsive pathways (GO:0051607, p-value 1x10-37; R-HSA-913531, p-value 

1x10-41). Shared IL1B- and siERG-upregulated genes were enriched in COVID-19 adverse outcome pathway 

(WP4891; p-value 1.9x10-9) (51). Shared IL1B- and siERG-attenuated genes are enriched in several  

 

processes involving ribosomal proteins, including ribosome, cytoplasmic (CORUM:306; p-value 3.3x10-7),  

cytoplasmic ribosomal proteins (WP477; p-value 5.3x10-7), and peptide chain elongation (R-HSA-156902; p-

value 5.9x10-7) (Figure 4E). This finding indicates that the downregulation of ribosomal genes is a hallmark 

of inflammatory and ERG-depleted endothelium. Altogether, these data demonstrate the heterogeneity in EC 

subtype response to EndMT perturbations. 

 

In Vitro EC EndMT Models Reorganize Epigenetic Landscapes with Subtype Specificity 
To gain insight into gene regulatory mechanisms responsible for EC subtype transcriptional responses 

to IL1B, TGFB2, and siERG, we compared the effects of these perturbations on chromatin accessibility. 

Across all three treatments, we identified 4,034 differentially accessible regions (DARs, Table S10 in the Data 
Supplement, Methods). The majority of DARs for EC1 and EC2 were responsive to siERG, while the majority 

of DARs for EC3 were responsive to IL1B (Figure S4A in the Data Supplement, Table S10 in the Data 
Supplement). Interestingly, the epigenetic landscape of EC4 differs from its transcriptional response, insofar 

as most peaks were responsive to IL1B (not TGFB2) (Figure S4A in the Data Supplement, Table S10 in the 
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Data Supplement). To inform the TFs likely bound to differentially accessible regulatory elements, motif 

enrichment analysis was performed (Figure S4B-D in the Data Supplement). Several distinct TF motifs were 

enriched across EC subtypes. For IL1B, we observed enrichment in KLF15 (adjusted p-value 5x10-10) (kruppel 

like factor 15) in EC2 alone (Figure S4B in the Data Supplement). siERG induced peaks showed subtype-

specific motif enrichments, including TWIST1 (adjusted p-value 2.5x10-22) (twist family bHLH transcription 

factor 1), HAND2 (adjusted p-value 2.3x10-19) (heart and neural crest derivatives expressed 2) for EC1, RELA 

(adjusted p-value 9.5x10-20) (RELA proto-oncogene, NF-KB subunit) for EC2, and CEBPD (adjusted p-value 

1.6x10-29) for EC3 (Figure S4C in the Data Supplement). Minimal motif enrichment was observed with siERG 

for EC4. 

We also found several TF motifs enriched across more than one EC subtype upon perturbation. IL1B-

affected peaks gained in EC1 and EC2 shared enrichments for TFDP1 (adjusted p-value 1.3x10-4 and 9x10-

4 for EC1 and EC2, respectively) (transcription factor Dp1) and ZBTB14 motifs (adjusted p-value 2.2x10-4 and 

2x10-8, respectively) (zinc finger and BTB domain containing 14).  IL1B-induced peaks in EC3 and EC4 shared 

enrichment for CEBPD (adjusted p-value 4.4x10-73 and 1.6x10-33 for EC3 and EC4, respectively) and CEBPG 

motifs (adjusted p-value 5.4x10-45 and 7.1x10-18, respectively) (CCAAT enhancer binding protein delta and 

gamma) (Figure S4B in the Data Supplement). TGFB2-affected peaks in EC1, EC2, and EC3 shared 

enrichment for ZBTB14 (adjusted p-values 6.8x10-31, 5.1x10-12, and 2x10-8, for EC1, EC2, and EC3, 

respectively) while TGFB2-induced peaks in EC3 and EC4 shared enrichment for the SMAD5 motif (adjusted 

p-value 7.4x10-6 and 4.2x10-11, for EC3 and EC4, respectively) (SMAD family member 5) (Figure S4D in the 

Data Supplement). Taken together, while several enriched motifs are shared across EC subtypes, divergent 

epigenetic landscapes are also induced with pro-EndMT perturbations. We therefore conclude that different 

transcriptional responses to these perturbations across EC subtypes are elicited by distinct TFs, including 

members of families of the KLF, TWIST, HAND, p65, and CEBP families.  

 
Meta-Analysis of Ex Vivo Human Atherosclerotic Plaque snRNA-seq Datasets 

To understand the diversity of ECs in human atherosclerotic plaques and evaluate their relationships 

to our in vitro system, we performed a meta-analysis of data from recent publications that utilized scRNA-seq 

from human atherosclerotic lesions (25-28) (accessions in Table S11 in the Data Supplement). We identified 

24 diverse clusters among 58,129 cells after integration of 17 different coronary and carotid samples (Figure 
5A and Table S12 in the Data Supplement). Clusters were annotated using a combinatorial approach 

including canonical marker genes, CIPR (53), and the original publications (Figure 5B). Clusters were 

annotated as: T-lymphocytes, natural killer T-cells, ECs, macrophages, VSMCs, fibroblasts, B-lymphocytes, 

basophils, neurons, and plasmacytoid dendritic cells (PDCs) (Figure 5A). We find the greatest proportion of 

cells belonging to each major cell type derive from carotid arteries, except for neurons which derive exclusively 

from coronary arteries, and PDCs which derive exclusively from carotid arteries (Figures S5B-C in the Data 
Supplement). Expected pathway enrichments are observed for annotated cell types, including NABA CORE 
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MATRISOME (M5884; p-value 4.8x10-41) for fibroblasts, blood vessel development (GO:0001568; p-value  

atherosclerotic lesions.    

Figure 5 | ECs from ex vivo human atherosclerotic plaques show two major populations. (A), scRNA-seq 
UMAP of different cell subtypes across 17 samples of ex vivo human atherosclerotic plaques. (B), Dot plot of top 
markers for each cell type. (C), Heatmap of pathway enrichment analysis (PEA) results generated from submitting 
200 differentially expressed genes (DEGs) between Endothelial Cells 1 (Endo1) and Endothelial Cells 2 (Endo2). 
Rows (pathways) and columns (cell subtypes) are clustered based on -Log10(P). (E), Heatmap displaying expression 
of genes belonging to ribosome cytoplasmic pathway for Endo1 and Endo2. 
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5.6x10-33) for ECs, and actin cytoskeleton organization (GO:0030036; p-value 1.3x10-15) for VSMCs (Figure 
S5D-G in the Data Supplement). These observations support the diverse composition of human 

We evaluated what pathways distinguished the Endothelial Cells 1 (Endo1) and Endothelial Cells 2 

(Endo2) subtypes from our ex vivo meta-analysis (Figure 5C). We found Endo2 has an EndMT-related 

phenotype, with enrichment in mesenchymal pathways including NABA MATRISOME ASSOCIATED (M5885; 

p-value 1.6x10-14), ECM organization (R-HSA-1474244; p-value 6x10-17), skeletal system development 

(GO:0001501; p-value 3.4x10-13), and network map of SARS-CoV-2 signaling pathway (51) (WP5115; p-value 

1.3x10-11) (Figure 5C-D). Additionally, we observe enrichment for inflammatory pathways in Endo2 including 

prostaglandin synthesis and regulation (WP98; p-value 1.2x10-7), and complement and coagulation cascades 

(hsa04610; 1x10-10) (Figure 5C-D) (54, 55). On the contrary, Endo1 was highly enriched in multicellular 

organismal homeostasis (GO:0048871; p-value 3.3x10-8) and lowly enriched in mesenchymal pathways 

(M5885; p-value 1x10-3; no enrichment for R-HSA-1474244, GO:0001501, or WP5115), indicating an EC 

phenotype which has not undergone EndMT (Figure 5C-D). Interestingly, Endo1, but not Endo2, is highly 

enriched in ribosome, cytoplasmic pathway (CORUM:306; p-value 9.3x10-96), and TRBP containing complex 

(CORUM:5380; DICER, RPL7A, EIF6, MOV10 and subunits of the 60S ribosomal particle; p-value 1.5x10-22), 

suggesting a potential protective role for this complex along with ribosomal gene expression (56, 57). The 

depletion of these pathways may serve as a hallmark of activated endothelium (Figure 5C-E). We interpret 

these results to suggest that Endo1 is a classical endothelial state, while Endo2 appears to be characterized 

by ECM production and possibly indicate EndMT. This interpretation is further corroborated by evidence of 

upregulation of several classical EndMT markers in Endo2, including: FN1, BGN, COL8A1, ELN, CCN1, and 

FBLN5 (Figure S6 in the Data Supplement) (58-63).  

 
Ex Vivo-derived Module Score Analysis Reveals Differences among In Vitro EC Subtypes and EndMT 
Stimuli  

To directly evaluate relationships between the ex vivo and in vitro cell subpopulations, we utilized 

module scores. These quantitative scores are based on the sum of ex vivo marker genes across each cluster 

and were used to evaluate similarity to each in vitro cell subcluster. Unexpectedly, the ex vivo cluster that  

consistently generated the greatest module scores for in vitro ECs is the VSMCs cluster 5 (VSMC5) (Figure 
5A; Figure S7A in the Data Supplement). VSMC5 bridges the EC to SMC and fibroblast clusters in the ex 

vivo analysis (Figure 5A). Marker genes of VSMC5 are expressed across ex vivo and in vitro clusters (Figure 
S8A in the Data Supplement) and include important regulators of ECM, such as BGN, VCAN, FN1, as well 

as several collagen genes (COL1A1, COL1A2, COL3A1, COL6A1) (Figure S8A-B in the Data Supplement). 
VSMC5 marker transcripts also include several lncRNAs and mitochondrial transcripts (CARMN, MALAT1, 

NEAT1; MT-ATP6, MT-ND4, and MT-CYB) (Figure S8A in the Data Supplement). Ex vivo Endo1 and Endo2 

module scores are the second highest scoring across in vitro clusters. Cells scoring high for Endo1 are 

concentrated in the in vitro EC1 cluster, while cells scoring high in Endo2 are concentrated to the in vitro EC3 
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locale (Figure S7B-E in the Data Supplement). This supports that EC3 is a more activated subtype than 

EC1. Finally, among in vitro cells, those with highest VSMC5 module scores are concentrated in EC4, 

underscoring that EC4 is a more mesenchymal sub-phenotype in vitro (Figure S7B-E in the Data 
Supplement).  

We stratify these analyses by pro-EndMT treatment and find greater VSMC5 module scores with 

TGFB2 treatment versus control for EC3 (adjusted p-value = 0.001) and EC4 (adjusted p-value = 9.9x10-15) 

(Figure S9A-C in the Data Supplement). However, there is no difference in VSMC5 module scores for EC1-

2 between control and TGFB2 treatment, suggesting protective mechanisms against EndMT in more 

endothelial-like EC subtypes (i.e., EC1-2) that are absent in more mesenchymal-like EC (i.e., EC3-4) subtypes 

(Figure S9A-C and Table S12-13 in the Data Supplement). We observe siERG lowers Endo1 scores across 

all EC subtypes (adjusted p=9.9x10-15 for EC1-4), indicating ERG depletion decreases endothelial-likeness 

across all EC subtypes (Figure S9A-C and Table S13-14 in the Data Supplement). Moreover, siERG 

increases VSMC5 scores for EC2 (adjusted p=2.8x10-9) and EC3 (adjusted p-value 0.04), indicating siERG 

also induces EndMT for proliferative and IL1B-responsive EC phenotypes (Figure S9A-C and Table S13-14 

in the Data Supplement).  
 
EC Subtype is a Major Determinant in Modeling Cell States Observed in Atherosclerosis 
In addition to module score analysis, we applied a complementary approach to quantitatively relate in vitro 

EC subtypes and EndMT perturbations to ex vivo cell types. We calculate average expression profiles for all 

major cell populations in both ex vivo and in vitro datasets and examine the comprehensive pairwise 

relationship among populations with hierarchical clustering using Spearman Correlation (Figure 6A).  All in 

vitro transcripts significantly regulated across all pro-EndMT perturbations at 5% False Discovery Rate (FDR) 

(64) are used in this analysis, although several additional means to select transcripts showed similar results. 

This analysis reveals three major observations. First, in vitro EC4 cells are most like mesenchymal ex vivo 

cell types including VSMCs and fibroblasts (indicated by the yellow block of correlations in the bottom left of 

the heatmap in Figure 6A). Second, in vitro EC1, EC2, and EC3 are most like ex vivo Endo1 and Endo2 

populations, especially among the siSCR and 7-day control cells. Moreover, cells in the siSCR condition in 

EC1 are most like ex vivo Endo1, reinforcing that these two populations are the most canonically ‘healthy’ 

endothelial populations. Third, while EndMT treatments did elicit variation in how similar in vitro ECs 

resembled ex vivo transcriptomic signatures, these effects are secondary to which subtype the cells belonged 

(Figure 6A). Taken together, these findings underscore that EC subtype, versus perturbation, is a greater 

determinant of similarity to ex vivo cell types. 

CAD-Associated Genetic Variants Are Enriched Across EC Subtype Epigenomes 
Genetic predisposition to CAD is approximately 50% heritable with hundreds to thousands of genetic 

loci supposed to be involved in shaping an individual’s propensity for disease (65, 66). Most CAD-associated 

variants are not protein coding, suggesting they perturb cellular function through gene regulatory functions. 
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We therefore asked whether the open chromatin regions in this in vitro dataset coincided with locations of 

single nucleotide polymorphisms (SNPs) reported in the latest CAD meta-GWAS analysis from the Millions 

Veterans Project (MVP), which includes datasets from CARDIoGRAMplusC4D 1000G study, UK Biobank 

CAD study, and Biobank Japan (6). We found significant enrichment in CAD-associated SNPs for the  
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complete set of accessible regions across all EC subtypes (termed “panEC”; adjusted p-value 1.5ex10-93; 

Odds Ratio (OR)=1.8; Figure 6B, Table S15-16 in the Data Supplement) when comparing CAD SNPs 

exceeding the genome-wide significance threshold of p<5x10-8 versus non-significant SNPs (Methods). 

Among accessible regions unique to EC subtypes, EC4 shows the greatest enrichment (adjusted p-value 

7.85x10-6; OR=1.74). Additionally, EC2 is also enriched for CAD SNPs (adjusted p-value 6.3x10-8; OR=2.15), 

supporting a role for proliferative ECs in CAD. Of all accessible regions influenced by pro-EndMT 

perturbations, siERG and TGFB2 sets are most enriched for CAD variants (Figure 6B, Table S15-16 in the 

Data Supplement).   
The measurement of both gene expression and DNA accessibility in the same cell enables testing for 

direct correlation, or ‘links’, between accessibility of noncoding DNA elements and gene expression of their 

potential regulatory targets (i.e., gene promoters). This is achieved by testing for correlation between DNA 

accessibility and the expression of a nearby gene across single cells (47, 67). Focusing on EC4, we search 

for EC4-specific sites of correlated chromatin accessibility and linked target gene expression. Upon restricting 

linked peaks overlapping CAD SNPs, we identify 81 significant SNP-peak-gene trios (p < 0.05) representing 

46 unique genes with specific activity in EC4 (Table S17 in the Data Supplement). We submit the 46 unique 

genes to Metascape (68) and observe enrichment in EndMT-related pathways including blood vessel 

development (GO:0001568; p-value 2.1x10-10), crosslinking of collagen fibrils (R-HSA-2243919; p-value 

1.4x10-8), and canonical and non-canonical TGF-B signaling (WP3874; p-value 2.2x10-6) (Figure S10 in the 

Data Supplement). Literature review of this gene list further confirms several linked EC4-restricted genes 

associated with cardiovascular disease, including COL4A1, COL4A2, PECAM1, DSP, and BMP6, (Figure 
6C-E) (69-71).  

Altogether, these data underscore that common genetic variation influences individual propensities 

for CAD through ECM-organizing functions evidenced by the EC4 phenotype.  
 
DISCUSSION 

The major goals of this study were fourfold: (1) to quantitatively assess molecular heterogeneity of 

cultured HAECs in vitro, (2) to evaluate and compare molecular changes elicited by EC activating 

Figure 6 | EC subtype is a major determinant in the ability to recapitulate ‘omic profiles seen in 
atherosclerosis. (A), Heatmap displaying average expression between in vitro perturbation-subtype combinations 
and ex vivo cell subtypes using all up- and down-regulated genes between IL1B, TGFB2, or siERG versus respective 
controls. Spearman correlation was used as the distance metric. Rows (in vitro EC subtypes) and columns (ex vivo 
cell subtypes) are clustered using all significant genes (adjusted p-value < 0.05) induced and attenuated across all in 
vitro EC subtypes for each perturbation versus its respective control. (B), Heatmap of CAD-associated SNP 
enrichments across in vitro EC subtypes and perturbation-subtype combinations. Rows (EC subtypes and 
perturbation-subtype combinations) are clustered using -Log10(P) for enrichment in significant CAD-associated SNPs 
(p-value < 5x10-8). Note that “diff” represents peaks common to more than one EC subtype; it is found by subtracting 
EC1-5 subtype-specific peaks from the entire in vitro peak set (termed “panEC”). (C), Coverage plots displaying links 
for COL4A1/COL4A2 genes to EC4-specific peaks, including one overlapping with CAD-associated SNP rs9515203. 
(D), Coverage plot showing links for PECAM1 gene to EC4-specific peaks, including one overlapping with CAD-
associated SNP rs1108591. (E), Coverage plot showing links for BMP6 gene to EC4-specific peaks, including one 
overlapping with CAD-associated SNP rs6597292.  
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perturbations at single cell resolution, (3) to assess similarities between in vitro and ex vivo EC signatures to 

inform the extent to which in vitro models recapitulate ex vivo biology, and (4) investigate how heterogeneous 

EC populations are enriched for genetic associations to CAD. Findings for each of these goals are discussed 

below along with important implications and questions arising from this work.  

 The multiomic single cell profiles of 15,220 cells cultured in vitro from six individuals enabled the 

discovery of 5 EC subpopulations, named EC1, EC2, EC3, EC4, and EC5. Except for EC5, EC subpopulations 

were comprised of cells from multiple donors and perturbations, which lends credence to the reproducibility 

of these biological states. The loosely defined phenotypes, based on pathway enrichment analysis, were 

healthy/angiogenic for EC1, proliferative for EC2, activated for EC3, and mesenchymal for EC4. Angiogenic 

(9, 10, 14), proliferative (19, 72), and mesenchymal (19) ECs have been previously reported in literature. The 

three activating perturbations (TGFB2, IL1B, siERG) had markedly unique effects on different EC subclusters, 

highlighting the fact that in vitro systems contain populations of discrete cell subtypes, or states, that respond 

divergently to even reductionistic experimental conditions. Implications of such heterogeneity include both a 

need to elucidate what factors dictate treatment responsiveness, as well as experimental design and data 

interpretation that considers heterogeneity of response. The exact origin of EC heterogeneity observed in this 

study is unknown. We consider it likely that EC1 EC2, EC3, and EC4 subpopulations, which were populated 

by most donors, date back to the original isolation of ECs from aortic trimmings, implying that different states 

were preserved across passage in the culture conditions. However, we cannot exclude the possibility that 

some of the subpopulations have expanded since seeding of the cultures. If that were the case, EC1, EC2, 

EC3, and EC4 represent reproducible cell states consequent to primary culture of arterial cells. In fact, the 

limited correlation with ex vivo data supports (at least partially) this interpretation. Future studies will be 

required to delineate the exact source of heterogeneity in these systems.  

In this study, we set out to test whether the mesenchymal phenotype of EC4 was an end-stage result 

of EndMT and whether TGFB2, IL1B, and/or siERG would increase the proportion of cells in EC4. As shown 

in Figure 3, this hypothesis was incorrect, and the only cluster with a modest increase in cell proportions upon 

stimulation was EC3. We cannot exclude the possibility that EC3 is an EndMT cluster, although we would 

have expected more significant deviation from clusters EC1 and EC2. It is also possible that the duration and 

doses of perturbations chosen were not sufficient to elicit complete EndMT. While the duration and doses 

employed in our study were established based on literature reports reporting EndMT phenotypes (32, 49, 73), 

EndMT was quantified by expression of only a few marker genes rather than complete transcriptomic analysis. 

This raises an important conclusion of our study, which is that EndMT is not well-defined molecularly and it 

remains possible that several different molecular profiles may each represent variant flavors of EndMT.    

We found that TGFB2, IL1B, and siERG have many distinct effects on EC molecular profiles (Figures 
3-4). In general, TGFB2 elicits a greater transcriptomic and epigenomic response in the mesenchymal EC 

subtype, EC4, while siERG and IL1B regulate the greatest numbers of shared transcripts and chromatin 

regions in more endothelial clusters EC1, EC2, and EC3. One interpretation for this finding is that IL1B 

treatment and depletion of ERG directly affect rewiring transcription in ECs while TGFB2 may affect other cell 
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types in the vascular wall (or culture plate) that in turn affect ECs through paracrine interactions. Part of the 

similarities between IL1B and siERG responses may be explained by the fact that ERG depletion increases 

IL1B production (40).  

 The current study sought to evaluate similarities and differences between in vitro primary cultures of 

HAECs to ex vivo single cell signatures of cells from human lesions. First, we leveraged transcriptomic profiles 

from clusters in the scRNA meta-analysis of human lesions and evaluated each in vitro cluster using a module 

score (Figures 5 and Figure S8 in the Data Supplement). The three ex vivo clusters with greatest similarity 

to in vitro clusters were Endo1, Endo2, and VSMC5. Pathway enrichment analysis suggested that the ex vivo 

Endo1 cluster is close to the classic “healthy” EC state relative to Endo2, which returned pathway enrichments 

consistent with activated endothelium (Figure 5C-D). Interestingly, Endo2 is depleted in ribosome transcripts 

as well as transcripts in the Dicer complex (Figure 5C-E), which may serve as hallmarks of dysregulated 

endothelium in vivo. VSMC5 is an interesting ex vivo cluster insofar as it spans the endothelial, fibroblast, and 

VSMC clusters (Figure 5A) and is enriched for genes in actin cytoskeleton, extracellular matrix organization, 

and more (Figure S8 in the Data Supplement). In vitro EC1, EC2, and EC3 score generally greater in Endo1 

and Endo2 relative to the more mesenchymal EC4 (Figure S7 in the Data Supplement). Consistent with the 

intent of the pro-EndMT treatments, they generally decrease Endo1 and Endo2 scores and increase VSMC5 

scores. However, these effects are unexceptional in comparison to effects of EC subtype. In addition to 

module scores, we also utilized unsupervised clustering of Spearman correlation coefficients across ex vivo 

and in vitro average gene expression profiles, finding again that EC1, EC2, and EC3 are more like Endo1 and 

Endo2 and EC4 is more like VSMCs (Figure 6A). As expected, the control (siSCR) cells are most correlated 

to healthy Endo1 transcriptomes; however, the correlation coefficient achieved is modest, at rho = 0.56. We 

cannot exclude the possibility that the moderate correlation coefficient observed between in vitro and ex vivo 

ECs may be explained by anatomic differences (i.e., aortic versus coronary and carotid arteries). While 

reinforcing that in vitro cell cultures best resemble ECs isolated ex vivo, regardless of perturbation, this finding 

accentuates how different cultured cells are and paves the way for quantitatively evaluating and improving in 

vitro models.  

Finally, GWAS studies have established that hundreds of independent common genetic variants in 

human populations affect risk for CAD, yet discovering the causal mechanisms remains a major challenge 

given that most of the risk is in non-coding regions of the genome. One approach to prioritize causal variants 

in regulatory elements is through integration of open chromatin regions from the cell type and states of interest 

followed by expression quantitative trait loci (eQTL) or other linking evidence to target gene (74, 75). In the 

current study, we find significant enrichment for CAD-risk variants in open chromatin regions across the entire 

dataset (“panEC”) as well as specifically for EC2 and EC4 subpopulations (Figure 6B; Table S15-17 in the 

Data Supplement). Taken together, these data emphasize the value in multimodal datasets in human 

samples for prioritizing disease-associated SNPs and mechanisms.  
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METHODS 
Tissue Procurement and Cell Culture 

Primary HAECs were isolated from eight de-identified deceased heart donor aortic trimmings 

(belonging to three females and five males of Admixed Americans, European, and East Asian ancestries) at 

the University of California Los Angeles Hospital as described previously (41) (Table S7 in the Data 
Supplement). HAECs were isolated with a device developed to allow initial exposure of only the endothelium 

to enzymatic digestion. After washing, cells were seeded in wells previously coated with 1% gelatin and 

treated with 1 ug/cm2 human fibronectin. HAECs were identified by their typical cobblestone morphology, 

presence of Factor VIII-related antigen, and uptake of acetylated LDL labeled with 1,1’-dioctadecyl-1-3,3,3’,3’-

tetramethyl-indo-carbocyan-ine perchlorate (Di-acyetl-LDL), and grown and propagated in growth medium 

(M199 containing 20% FBS, supplemented with 2 mM L-glutamine, 1mM sodium pyruvate, 100 U/ml penicillin, 

and 100 ug/mL streptomycin) supplemented with heparin and EC growth supplement. HAECs at low passage 

(passage 3-6) were treated prior to harvest every 2 days for 7 days with either 10 ng/mL TGFB2, IL1B, or no 

additional protein, or two doses of small interfering RNA for ERG locus (siERG), or randomized siRNA 

(siSCR). Donors 7 and 8 were treated prior to harvest for 6 hours with either 1 ng/mL IL1B, or no additional 

protein, and included in the dataset during integration to generate the original UMAP (Figure 1B), but not 

used for the purposes of downstream analyses in this study (Table S7 in the Data Supplement). 
 

siRNA Knock-down, qPCR, and Western Blotting  
Knockdown of ERG was performed as previously described (40) using 1 nM siRNA oligonucleotides 

in OptiMEM (ThermoFisher Scientific) with Lipofectamine 2000 (ThermoFisher Scientific). Transfections were 

performed in serum-free media for 4 hours, then cells were grown in full growth media for 48 hours. All siRNAs 

and qPCR primers used in this study are listed in Table S18. Transfection efficiency for the siRNAs utilized 

in this study was verified using qPCR 7 days after transfection (Figure S11A in the Data Supplement). 
Protein knockdown is shown 2 days after transfection using the same siRNAs from a representative 

experiment (Figure S11B in the Data Supplement). Antibodies used included 1:1,000 recombinant anti-ERG 

antibody (ab133264) and 1:5,000 anti-histone H3 antibody (ab1791) (Abcam).  

 
Nuclear Dissociation and Library Preparation  

Nuclei from primary cells were isolated according to 10x Genomics Nuclei Isolation for Single Cell 

Multiome ATAC + Gene Expression Sequencing Demonstrated Protocol (CG000365, Rev C) (76). Nuclei 

were pooled isolated with lysis buffer consisting of 10 mM Tris-HCl (pH 7.5, Invitrogen, cat. no. 15567027), 

10 mM NaCl (Invitrogen, cat. no. AM9759), 3 mM MgCl2 (Alfa Aesar, cat. no. J61014), 0.1% Tween-20 

(Thermo Scientific, cat. no. 9005-64-5), 0.1% IGEPAL CA-630 (Thermo Scientific, cat. no. J61055.AP), 0.01% 

Digitonin (Thermo Fisher, cat. no. BN2006), 1% BSA (Sigma Aldrich, cat. no. A2153), 1 mM DTT (Thermo 

Fisher Scientific, cat. no. 707265ML), 1 U/μl RNase inhibitor (Sigma Protector RNase inhibitor; cat. no. 
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3335402001), and nuclease-free water (Invitrogen, cat. no. 10977015). The seven pooled samples were 

incubated on ice for 6.5 minutes with 100 μl lysis buffer and washed three times with 1 mL wash buffer 

consisting of 10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween-20, 1 mM DTT, 1U/μl RNase 

inhibitor, and nuclease-free water. Samples were centrifuged at 500 rcf for 5 minutes at 4C, and the pellets 

were resuspended in chilled Diluted Nuclei Buffer consisting of 1X Nuclei Buffer (20X) (10X Genomics), 1 mM 

DTT (Thermo Fisher Scientific, cat. no. 707265ML), 1 U/μl RNase inhibitor, and nuclease-free water. The 

homogenate was filtered through a 40-μm cell strainer (Flowmi, cat. no. BAH136800040) prior to proceeding 

immediately to 10X Chromium library preparation according to manufacturer protocol (CG000338).  

 
Genotyping and Multiplexing Cell Barcodes for Donor Identification   

Genotyping of HAEC donors was performed as described previously (74). Briefly, IMPUTE2 (77) was 

used to impute genotypes utilizing all populations from the 1000 Genomes Project reference panel (phase 3) 

(78). Genotypes were called for imputed SNPs with allelic R2 values greater than 0.9. Mapping between 

genomic coordinates was performed using liftOver (79). VCF files were subset by genotypes for the donors 

of interest using VCFtools (80).  

To identify donors across the in vitro dataset, snATAC- and snRNA-seq output BAM files from Cell 

Ranger ARC (10X Genomics, v.2.0.0) (42) were concatenated, sorted, and indexed using samtools (81). The 

concatenated BAM files were input with the genotype VCF file to demuxlet (82) to identify best matched 

donors for each cell barcode, using options “–field GT”. Verification of accurate donor identification was 

confirmed by visualizing female sex specific XIST for the known donor sexes (Figure S12 in the Data 
Supplement). 
 
snRNA-seq Bioinformatics Workflow  

A target of 10,000 nuclei were loaded onto each lane. Libraries were sequenced on NovaSeq6000. 

Reads were aligned to the GRCh38 (hg38) reference genome and quantified using Cell Ranger ARC (10X 

Genomics, v.2.0.0) (42). Datasets were subsequently preprocessed for RNA individually with Seurat version 

4.3.0 (43). Seurat objects were created from each dataset, and cells with < 500 counts were removed. This 

is a quality control step, as it is thought that cells with low number of counts are poor data quality. Similarly, 

for each cell, the percentage of counts that come from mitochondrial genes was determined. Cells with > 20% 

mitochondrial gene percent expression (which are thought to be of low quality, possibly due to membrane 

rupture) were excluded. Demuxlet (82) was next used to remove doublets. The filtered library was subset and 

merged by pro-EndMT perturbation. Data were normalized with NormalizeData, and cell cycle regression was 

performed by generating cell cycle phase scores for each cell using CellCycleScoring, followed by regression 

of these using ScaleData (83). Batch effects by treatment were corrected using FindIntegrationAnchors using 

10,000 anchors, followed by IntegrateData.  
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snATAC-seq Bioinformatics Workflow  

A target of 10,000 nuclei were loaded onto each lane. Libraries were sequenced on an NovaSeq6000. 

Reads were aligned to the GRCh38 (hg38) reference genome and quantified using Cell Ranger ARC (10X 

Genomics, v.2.0.0) (42). Datasets were subsequently preprocessed for ATAC individually with Seurat v4.3.0 

(43) and Signac v1.6.0 (84) to remove low-quality nuclei (nucleosome signal > 2, transcription start site 

enrichment < 1, ATAC count < 500, and % mitochondrial genes > 20) (43). Next, demuxlet (82) was used to 

remove doublets. A common peak set was quantified across snATAC-seq libraries using FeatureMatrix, prior 

to merging each lane. A series of two iterative peak calling steps were performed. The first step consisted of 

calling peaks for every EndMT perturbation, and the second involved calling peaks for every cluster generated 

from Weighted Nearest Neighbor Analysis (WNN) (Methods, “Integration and Weighted Nearest Neighbor 
Analyses”). Latent semantic indexing (LSI) was computed after each iterative peak calling step using Signac 

standard workflow (47). Batch effects by treatment were finally corrected using FindIntegrationAnchors using 

10,000 anchors, followed by IntegrateData.  

 
Integration and Weighted Nearest Neighbor Analyses 

Following snRNA-seq and snATAC-seq quality control filtering, barcodes for each modality were 

matched, and both datasets were combined by adding the snATAC-seq assay and integrated LSI to the 

snRNA-seq assay. WNN (43) was next calculated on the combined dataset, followed by joint UMAP 

(WNNUMAP) visualization using Signac (47) functions FindMultimodalNeighbors, RunUMAP, and 

FindClusters, respectively. WNN is an unsupervised framework to learn the relative utility of each data type 

in each cell, enabling an integrative analysis of multimodal datasets. This process involves learning cell-

specific modality “weights” and constructing a WNNUMAP that integrates the modalities. The subtypes 

discovered in the first round of WNN were utilized in an additional peak calling step for snATAC-seq, followed 

by latent semantic indexing (LSI) computation, re-integration, and a final round of WNN to achieve optimal 

peak predictions (Methods, “Single Nucleus ATAC Sequencing Bioinformatics Workflow”) (85).  

 
Differential Expression and Accessibility Region Analyses Across EC Subtypes and EndMT 
Perturbation-Subtype Combinations 

Differential expression between clusters was computed by constructing a logistic regression (LR) 

model predicting group membership based on the expression of a given gene in the set of cells being 

compared. The LR model included pro-EndMT perturbation as a latent variable and was compared to a null 

model using a likelihood ratio test (LRT). This was performed using Seurat FindMarkers, with “test.use = LR” 

and “latent.vars” set to perturbation. Differential expression between perturbation and control for each cluster 

was performed using pseudobulk method with DESeq2 (86). Raw RNA counts were extracted for each EndMT 

perturbation-subtype combination and counts, and metadata were aggregated to the sample level.  
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Differential accessibility between EC subtypes was performed using FindMarkers, with “test.use = LR” 

and latent.vars set to both the number of reads in peaks and perturbation. Finally, differential accessibility 

between perturbation and control for each cluster was performed using FindMarkers, with “test.use = LR” and 

latent.vars set to the number of reads in peaks.  

Bonferroni-adjusted p-values were used to determine significance at adjusted p-value < 0.05 for 

differential expression, and p-value < 0.005 for differential accessibility (64).  

 
Pathway Enrichment Analysis 

Pathway enrichment analysis (PEA) was performed using Metascape (68). Top DEGs for each EC 

subtype or subtype-perturbation were sorted based on ascending p-value. Genes listed for each pathway 

were pulled from the Metacape results file, “_FINAL_GO.csv”. For heatmaps produced by metascape, top 20 

or 100 pathways were pulled from Metascape .png files, “HeatmapSelectedGO.png”, 

“HeatmapSelectedGOParent.png”, or “HeatmapSelectedGOTop100.png”.  

 
Motif Enrichment Analysis  

A hypergeometric test was used to test for overrepresentation of each DNA motif in the set of 

differentially accessible peaks compared to a background set of peaks. We tested motifs present in the Jaspar 

database (2020 release) (48) by first identifying which peaks contained each motif using motifmatchr R 

package (https://bioconductor.org/packages/motifmatchr). We computed the GC content (percentage of G 

and C nucleotides) for each differentially accessible peak and sampled a background set of 40,000 peaks 

matched for GC content (47). Per-cell motif activity scores were computed by running chromVAR (87), and 

visualized using Seurat (43) function FeaturePlot.  

 
Human Atherosclerosis scRNA-seq Public Data Download, Mapping, and Integration Across Samples 

Count matrices of 17 samples taken from four different published scRNA-seq datasets were 

downloaded from the NCBI Gene Expression Omnibus (accessions listed in Table S11 in the Data 
Supplement), processed using Cell Ranger (10x Genomics Cell Ranger 6.0.0) (88) with reference GRCh38 

(version refdata-gex-GRCh38-2020-A, 10X Genomics), and analyzed using Seurat version 4.3.0 (43). Seurat 

objects were created from each dataset, and cells with < 500 counts and > 20% mitochondrial gene percent 

expression were excluded. Additionally, doublets were removed using DoubletFinder (89), which predicts 

doublets according to each real cell’s proximity in gene expression space to artificial doublets created by 

averaging the transcriptional profile of randomly chosen cell pairs. Next, normalization and variance 

stabilization, followed by PC analysis for 30 PCs were performed in Seurat (43) using default parameters. 

Batch effects across the 17 samples were corrected using Seurat functions (43) FindIntegrationAnchors using 

10,000 anchors, followed by IntegrateData. During the integration step, cell cycle regression was performed 

by assigning cell cycle scores with Seurat (43) function CellCycleScoring. The ex vivo dataset was first 

visualized, and canonical markers were identified for annotating cell types using FindAllMarkers.  
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Module Scoring 
 FindAllMarkers was used to identify top DEGs between each ex vivo cell subtype. Cells from the in 

vitro dataset were assigned an ex vivo cell subtype module score using Seurat (43) function AddModuleScore. 

The difference in module score between each in vitro EC subtype was established using Wilcoxon rank sum 

test with continuity correction and a two-sided alternative hypothesis.   

 
Comparison of Ex Vivo snRNA-seq Data to In Vitro snRNA-seq Data 

Meta-analyzed ex vivo human scRNA-seq data and in vitro snRNA-seq data were compared. Gene 

expression values for each ex vivo cell subtype and in vitro EC subtype-perturbation were produced using the 

AverageExpression function in Seurat (43) (which exponentiates log data, therefore output is depth 

normalized in non-log space). Figure 6A was generated using hclust function in R (90). Spearman correlation 

was used as the distance metric. Sample clustering was performed using all significant genes (adjusted p-

value < 0.05) induced and attenuated across all in vitro EC subtypes for each pro-EndMT perturbation versus 

its respective control. Figure S8A was made using average expression data for marker genes for each ex 

vivo cell subtype. Hierarchical clustering across ex vivo cell subtypes was performed using hclust function in 

R (90), using average expression as the distance metric for a given gene.  

 
GWAS SNP Enrichment Analysis  

The SNPs associated with CAD were extracted from the most recent available meta-analysis (6). We 

utilized a matched background of SNPs pulled from 1000 Genomes Project reference panel (phase 3) (78) 

which were filtered using PLINK (91) v1.90b5.3 with the following settings: “--maf 0.01”, “--geno 0.05”. 

Mapping between genomic coordinates was performed using liftOver (79). To evaluate for enrichment in CAD-

associated SNPs for each EC subtype and perturbation-subtype peak set, traseR package in R (traseR) (92) 

was used with the following: ‘test.method’ = “fisher”, ‘alternative’ = “greater”. 

 

Peak-To-Gene Linkage 
We estimated a linkage score for each peak-gene pair using the LinksPeaks function in Signac (47). 

For each gene, we computed the Pearson correlation coefficient r between the gene expression and the 

accessibility of each peak within 500 kb of the gene TSS. For each peak, we then computed a background 

set of expected correlation coefficients given properties of the peak by randomly sampling 200 peaks located 

on a different chromosome to the gene, matched for GC content, accessibility, and sequence length 

(MatchRegionStats function in Signac). We then computed the Pearson correlation between the expression 

of the gene and the set of background peaks. A z score was computed for each peak as z = (r − μ)/σ, where 

μ was the background mean correlation coefficient and σ was the s.d. of the background correlation 

coefficients for the peak. We computed a P value for each peak using a one-sided z-test and retained peak-
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gene links with a p-value < 0.05 and a Pearson correlation coefficient. The results were restricted to peak 

regions which overlapped with significant CAD-associated SNPs (Methods, “GWAS SNP Enrichment 
Analysis”).  
 
Data Visualization  

Data visualizations were performed using Seurat functions DimPlot, DotPlot, FeaturePlot, and VlnPlot. 

Other data visualizations were performed using ggplot2 (for stacked bar graphs) (93), UpSetR (for UpSet 

plots) (94), pheatmap (for DEG and DAR analysis heatmaps) and heatmap.2 (for Spearman’s rank correlation 

coefficient heatmap and Figure S8A) (95). 
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