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ABSTRACT 14 
Objective: Endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) are major cell 15 
types in atherosclerosis progression, and heterogeneity in EC sub-phenotypes are becoming increasingly 16 
appreciated. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both 17 
in vitro and in vivo models are lacking.  18 
 19 
Approach and Results: To create an in vitro dataset to study human EC heterogeneity, multiomic profiling 20 
concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on 21 
six distinct primary cultures of human aortic ECs (HAECs). To model pro-inflammatory and activating 22 
environments characteristic of the atherosclerotic microenvironment in vitro, HAECs from at least three 23 
donors were exposed to three distinct perturbations with their respective controls: transforming growth factor 24 
beta-2 (TGFB2), interleukin-1 beta (IL1B), and siRNA-mediated knock-down of the endothelial transcription 25 
factor ERG (siERG).  To form a comprehensive in vivo/ex vivo dataset of human atherosclerotic cell types, 26 
meta-analysis of single cell transcriptomes across 17 human arterial specimens was performed. Two 27 
computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous 28 
in vitro and in vivo cell profiles. HAEC cultures were reproducibly populated by 4 major clusters with distinct 29 
pathway enrichment profiles: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-30 
mesenchymal. Exposure to siERG, IL1B or TGFB2 elicited mostly distinct transcriptional and accessible 31 
chromatin responses. EC1 and EC2, the most canonically ‘healthy’ EC populations, were affected 32 
predominantly by siERG; the activated cluster EC3 was most responsive to IL1B; and the mesenchymal 33 
population EC4 was most affected by TGFB2. Quantitative comparisons between in vitro and in vivo 34 
transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with 35 
minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 36 
were most enriched for coronary artery disease (CAD)-associated SNPs from GWAS, suggesting these cell 37 
phenotypes harbor CAD-modulating mechanisms. 38 
 39 
Conclusion: Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular 40 
profiles. Surprisingly, the perturbations used here, which have been reported by others to be involved in the 41 
pathogenesis of atherosclerosis as well as induce endothelial-to-mesenchymal transition (EndMT), only 42 
modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. 43 
Identifying consistently heterogeneous EC subpopulations between in vitro and in vivo models should pave 44 
the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state 45 
decisions.  46 
 47 
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INTRODUCTION 48 
Endothelial Cells (ECs) in the vascular endothelium maintain hemostasis, mediate vasodilation, and 49 

regulate the migration of leukocytes into tissues during inflammation. Dysfunctions of the endothelium are a 50 
hallmark of the aging process and are also an important feature of diseases including atherosclerosis. 51 
Atherosclerosis is an inflammatory process fueled by cholesterol and leukocyte accumulation in the sub-52 
endothelial layer of arteries. It is the underlying pathobiology of ischemic heart disease and the leading cause 53 
of morbidity and mortality worldwide due to heart attack and stroke (1-3). Atherosclerosis of the coronary 54 
arteries is estimated to be about 50% genetic with hundreds of genomic loci contributing to genetic risk (4-6). 55 
A major opportunity for better understanding the molecular basis for how disease progresses lie in identifying 56 
the genomic and downstream functions impaired by risk variants in disease-relevant cell types. Genetic 57 
studies are increasingly suggesting that a significant proportion of genetic risk for atherosclerosis is encoded 58 
in perturbed functions of vascular ECs (5-7).   59 

Single cell sequencing technologies have begun to characterize the extent of EC molecular diversity 60 
in vitro and in vivo (8-19). Genetically engineered, lineage traced mouse models have also been instrumental 61 
for identifying which cells in atherosclerotic plaques arose from EC origin.  These studies have demonstrated 62 
that many cells of EC origin in plaques lack canonical EC marker genes and luminal location (20, 21). As 63 
many as one-third of mesenchymal-like cells in plaques have been reported to be of endothelial origin (20) 64 
suggesting that phenotypic transition from endothelial to mesenchymal (EndMT) is a feature of 65 
atherosclerosis; however, whether EndMT is a cause or bystander of atherogenesis or plaque rupture is not 66 
fully understood. Although lineage tracing is not possible in humans, immunocytochemical techniques 67 
suggest that EC heterogeneity is prevalent in atherosclerotic vessels. These studies have described an 68 
unexpectedly large number of cells co-expressing pairs of endothelial and mesenchymal proteins, including 69 
fibroblast activating protein/von Willebrand factor (FAP/VWF), fibroblast-specific protein-1/VWF (FSP-70 
1/VWF), FAP/platelet-endothelial cell adhesion molecule-1 (CD31 or PECAM-1), FSP-1/CD31 (20), 71 
phosphorylation of TGFB signaling intermediary SMAD2/FGF receptor 1 (p-SMAD2/FGFR1) (22), and α-72 
smooth muscle actin (αSMA)/PECAM-1 (23). An important implication of this result is that the use of canonical 73 
EC markers to isolate or identify ECs will likely omit certain EC populations. The extent of EC molecular and 74 
functional heterogeneity within a tissue during homeostasis and during disease is not well understood. One 75 
notable study exemplifying EC heterogeneity demonstrated that the EC-marker gene von Willebrand Factor 76 
(VWF) was expressed only in a subset of ECs from the same murine vessel, and the penetrance of VWF 77 
expression across ECs was tissue-specific (24). In a related study, expression of the leukocyte adhesion 78 
molecule VCAM-1 was found to be upregulated by the pro-inflammatory cytokine tumor necrosis factor alpha 79 
(TNFa) only in some of the ECs of a monolayer (25). In both studies, variability in DNA methylation on CpG 80 
dinucleotides at the gene promoters negatively correlated with VWF and VCAM-1 expression. These findings 81 
raise the question as to how many molecular programs exist within ECs of a same tissue or culture, how this 82 
heterogeneity influences response to cellular perturbations, and what factors regulate these cellular states. 83 
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There are notable benefits and limitations for studying heterogeneity using in vitro and in vivo 84 
approaches in atherosclerosis research. In vitro approaches provide unique opportunities for interrogating 85 
consequences of genetic and chemical perturbations in highly controlled environments and are adept at 86 
identifying mechanistic relationships on accelerated timelines. In vivo approaches benefit from the complexity 87 
of the crosstalk among all cell types and tissues of the organism and are adept for identifying how 88 
perturbations manifest in living systems. It reasons that the integration of results from both approaches will 89 
best accelerate discovery. However, comprehensive analysis comparing heterogeneity of vascular ECs 90 
observed in vivo and in vitro remains unexplored. In the current study we performed meta-analysis on four 91 
human in/ex vivo single cell transcriptomic datasets (26-29), containing 17 arterial samples, from mild-to-92 
moderate calcified atherosclerotic plaques to evaluate the ability of the in vitro EC models to recapitulate 93 
molecular signatures observed in human atherosclerosis.  94 

Human aortic endothelial cells (HAECs) are among the most appropriate cell type for in vitro modeling 95 
of the arterial endothelium in atherosclerosis research insofar as they are human cells, they are more readily 96 
available than coronary artery ECs, they are not of venous origin like human umbilical vein ECs, and they can 97 
be isolated from explants of healthy donor hearts during transplantation. We set forth in the current study to 98 
quantify heterogeneity among HAECs using multimodal sequencing that simultaneously measures transcripts 99 
using RNA-seq and accessible chromatin using ATAC-seq from the same barcoded nuclei. To provide 100 
estimates for heterogeneity due to genetic background, we molecularly phenotyped HAECs from six 101 
genetically distinct human donors. We also quantified single cell responses to three perturbations known to 102 
be important in EC biology and atherosclerosis. The first was activation of transforming growth factor beta 103 
(TGFB) signaling, which is a hallmark of phenotypic transition and a regulator of EC heterogeneity (20, 30). 104 
The second was stimulation with the pro-inflammatory cytokine interleukin-1 beta (IL1B), which has been 105 
shown to model inflammation and EndMT in vitro (31-35), and whose inhibition reduced adverse 106 
cardiovascular events in a large clinical trial (36). The third perturbation utilized in our study was knock-down 107 
of the ETS related gene (ERG), which encodes a transcription factor of critical importance for EC fate 108 
specification and homeostasis (37-41).  109 

Lastly, we examine whether epigenetic landscapes among heterogeneous EC subtypes observed in 110 
this study were differentially enriched for coronary artery disease (CAD) genetic risk variants. Taken together, 111 
this study provides evidence that EC heterogeneity is prevalent in vivo and in vitro and that not all ECs respond 112 
similarly to activating perturbations.  113 
 114 
RESULTS 115 
EC Single Cell Transcriptomic Profiles Reveal a Heterogeneous Population 116 

To systematically uncover the heterogeneity of molecular landscapes in ECs at single cell resolution, 117 
we cultured primary HAECs isolated from luminal digests of ascending aortas from six de-identified heart 118 
transplant donors at low passage (passage 3-6) (42) (Figure 1A). Using the 10X Genomics multiome kit (43), 119 
single nucleus mRNA expression (snRNA-seq) and chromatin accessibility (snATAC-seq) data were collected  120 
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simultaneously for a total of 15,220 nuclei after stringent quality control (Methods). RNA and ATAC data were 121 
integrated separately by treatment condition and then with each other as reported previously (Methods) (44).  122 

snRNA-seq libraries were sequenced to a median depth of 29,732-84,476 reads and 2,481-3,938 123 
transcripts per nucleus (Table S1 and Table S2 in the Data Supplement). Five distinct EC subtypes (EC1, 124 
EC2, EC3, EC4, and EC5) were detected from the fully integrated dataset, which included all donors, 125 
treatments, and data types (Figure 1B). Subtypes EC1 and EC3 comprised cells from all donors, whereas 126 
EC2 and EC4 contained cells from most donors, and EC5 was nearly exclusively populated by cells from a 127 
single donor (Figure 1C; Table S3 in the Data Supplement). Because we do not observe EC5 across multiple 128 
individuals, we chose not to focus additional analysis on this subtype. Pathway enrichment of marker genes 129 
revealed EC1 to exhibit an angiogenic phenotype (WP4331, p-value 4.0x10-9; GO:0038084, p-value 1.5x10-130 
9) with enriched transcripts including KDR, GAB1, PGF, and NRP2 (Figure 1D-G, Figure S1A in the Data 131 
Supplement). EC2 was enriched in proliferation (GO:1903047, p-value 7.4x10-35) with characteristic markers 132 
CENPE, CENPF, KIF11, KIF4A and TOP2A (Figure 1D-G, Figure S1A in the Data Supplement). EC3 133 
displayed enrichment in “regulation of smooth muscle cell proliferation” (GO:0048660; p-value 1.1x10-10) 134 
(Figure 1F). From the top 200 differentially expressed genes (DEGs) for EC3 we observed additional 135 
pathways enriched, including NABA CORE MATRISOME (M5884; p-value 1x10-34) and locomotion 136 
(GO:0040011; p-value 1.2x10-15), suggesting an activated mesenchymal-like phenotype (Figure S1B-C in 137 
the Data Supplement). A fourth subset, EC4, demonstrates enrichment in ECM organization (GO:0097435; 138 
p-value 3.2x10-19), a process characteristic of mesenchymal cells, with distinctive expression of collagen 139 
genes, including COL1A1, COL1A2, COL3A1, and COL5A1 (Figure 1D-G, Figure S1A in the Data 140 
Supplement) (45, 46). Top marker genes and pathways for each EC subtype are in Table S4-5 in the Data 141 
Supplement. These observations are in line with previous reports of angiogenic, proliferative, mesenchymal, 142 
and pro-coagulatory EC subtypes within ex vivo models (9, 10, 14, 19, 47) and underscore the heterogeneity 143 
of transcriptomic profiles in cultured HAECs. 144 

 145 

Figure 1 | HAEC transcriptomic profiling discover a heterogenous cell population. (A), Schematic diagram of 
the experimental design. ECs were isolated from six human heart transplant donor’s ascending aortic trimmings and 
treated with IL1B, TGFB2, or siERG (ERG siRNA) for 7 days (B), Weighted Nearest Neighbor UMAP (WNNUMAP) of 
aggregate cells from all perturbations and donors is shown. Each dot represents a cell, and the proximity between 
each cell approximates their similarity of both transcriptional and epigenetic profiles. Colors denote cluster 
membership. (C), The proportion of cells from each donor for each EC subtype. (D), Gene expression across top 
markers for each cluster including pan EC (ERG), EC1 (KDR), EC2 (TOP2A), and EC4 (COL1A1). (E), Top markers 
for pan EC (PECAM1, CDH5, ERG), EC1 (KDR, PGF), EC2 (CENPE, TOP2A), EC3 (SEMA3C, ACKR3), EC4 
(COL1A1, COL6A1), and EC5 (LRRC17, LAMA2). The size of the dot represents the percentage of cells within each 
EC subtype that express the given gene, while the shade of the dot represents the level of average expression (“Avg. 
Expn.” in the legend). (F), Heatmap of pathway enrichment analysis (PEA) results from submitting top 200 differentially 
expressed genes (DEGs; by ascending p-value) between EC subtypes. Rows (pathways) and columns (EC subtypes) 
are clustered based on -Log10(P) (G), Violin plots of top Metascape pathway module scores across EC subtypes. 
Module scores are generated for each cell barcode with the Seurat function AddModuleScore(). 
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EC Subtypes Exhibit Distinct Open Chromatin Profiles and Enriched Motifs 146 
To investigate how different transcriptional signatures across ECs correspond to distinct chromatin 147 

states, we utilized the snATAC-seq portion of the multiome dataset. The snATAC-seq data were sequenced 148 
to a median depth of 22,939-126,122 reads with 3,480-19,259 peaks called per nucleus (Table S2 and S6 in 149 
the Data Supplement). Of 204,904 total identified peaks, 13,731 were differential across subtypes, with 79  150 
to 8,091 peaks uniquely accessible per EC subtype (Table S8 in the Data Supplement). Over 80% of total 151 
peaks were intergenic or intronic (Figure 2A-B) and most unique peaks were from EC2 and EC4. 152 

Transcription factor (TF) motif enrichment analysis using Signac (48) was performed on Differentially 153 
Accessible Regions (DARs) per EC subtype (Figure 2C). It is important to note that TFs within a TF family 154 
may share DNA-binding motifs and may not be distinguished by motifs alone. As a result, TF names from the 155 
Jaspar database (49) indicate the TF family. We find the basic helix-loop-helix (bHLH) motif defined by the 156 
core sequence CANNTG enriched in EC1 peaks, including enrichments for ASCL2 (adjusted p-value 3.9x10-157 
50), TCF12 (adjusted p-value 1.7x10-21), and BHLHE22(var.2) (adjusted p-value 5.7x10-48) (Figure 2C-D).  158 
ETS motifs, including ETV1 (adjusted p-value 3.2x10-42 and 5.3x10-249, for EC1-2, respectively), SPIB 159 
(adjusted p-value 7.9x10-22 and 2.5x10-236, respectively), and GABPA (adjusted p-value 2.7x10-41 and 4.3x10-160 
244, respectively), were also enriched in EC1 as well as in EC2 peaks. These data are consistent with known 161 
roles for ETS TFs, including ERG and FLI1, in governing angiogenic and homeostatic endothelial phenotypes 162 
(50). Given that ERG expression (Figure 1E) correlated with incidence of the ETS motif in open chromatin 163 
(Figure 2D) across the nuclei, ERG is likely driving the EC1-2 sub-phenotypes. The near-exact match in 164 
motifs between the ETV1 motif position weight matrix in Jaspar and the de novo enriched motif from ERG 165 
ChIP-seq in human aortic ECs (41) further supports this conclusion (Figure 2E). In addition to ETS motifs, 166 
EC2 was enriched in ZFX (adjusted p-value 4.2x10-86) and ZNF148 (adjusted p-value 1.1x10-126), which are 167 
C2H2 zinc finger motifs. C2H2 zinc finger motifs, as well as KLF4 (adjusted p-value 5.4x10-32 and 8.4x10-135, 168 
for EC1-2, respectively), also show enrichment in EC1 and EC2. EC3 peaks are enriched for GATA motifs 169 
including GATA4 (adjusted p-value 3.1x10-8), GATA5 (adjusted p-value 8x10-11), GATA1::TAL1 (adjusted p-170 
value 1.8x10-6), and bHLH motif BHLHE22(var.2) (adjusted p-value 0.01). EC4 open regions were uniquely 171 
enriched for TEA domain (TEAD) factors comprised of motifs named TEAD2 (adjusted p-value 1.2x10-238), 172 
TEAD3 (adjusted p-value 2.1x10-306), and TEAD4 (adjusted p-value 6.9x10-252) (Figure 2C-D). Notably, TEAD 173 
factors have been found as enriched in vascular smooth muscle cells (VSMCs) (29, 51), which is consistent 174 
with EC4 having the most mesenchymal phenotype of our EC subtypes.  175 

Taken together, these data demonstrate that EC1 and EC2 are the subtypes most canonically like 176 
‘healthy’ or angiogenic ECs insofar as they exhibit ETS motif enrichments. Additionally, we conclude that EC4 177 
is the most mesenchymal EC insofar as it exhibits TEAD factor enrichments.  178 

 179 
EC activating perturbations modestly shift cells into the EC3 subtype  180 
 Embedded in the dataset of this study were three experimental conditions known to promote EndMT 181 
along with their respective controls. Each experimental condition was administered to between three and five 182 
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genetically distinct HAEC cultures. The conditions included 7-day exposure to IL1B (10 ng/ml), 7-day 183 
exposure to TGFB2 (10 ng/mL), and 7-day siRNA-mediated knock-down of ERG (siERG). The control for 184 

 

Figure 2 | ECs have epigenetically distinct cell states.  
(A), Upset plot of differential peaks across EC subtypes. Intersection size represents the number of genes at each 
intersection, while set size represents the number of genes for each EC subtype. (B), Genomic annotation for the 
complete peak set. (C), Heatmap of top transcription factors (TFs) from motif enrichment analysis for marker peaks in 
each EC subtype. Top TFs for each EC subtype are selected based on ascending p-value. Rows (TFs) and columns 
(EC subtype) are clustered based on enrichment score (ES). (D), Feature plots and position weight matrices (PWMs) 
for top TF binding motifs for EC1 (TCF12), EC2 (ETV1), EC3 (GATA5), and EC4 (TEAD3). Per-cell motif activity scores 
are computed with chromVAR, and motif activities per cell are visualized using the Signac function FeaturePlot. (E), 
PWMs comparing Jaspar 2020 ETV1 motif to ERG motif reported in Hogan et al. 
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IL1B and TGFB2 treatments was 7-day growth in matched media lacking cytokine and the control for the 185 
siERG condition was transfection with scrambled RNA. 186 
 The UMAP presented in Figure 1 includes all the nuclei profiled across donors and conditions. We 187 
hypothesized that EC4, the most mesenchymal cluster, would be enriched for cells exposed to IL1B, TGFB2, 188 
and/or siERG relative to the controls thereby consistent with the hypothesis that the EC4 subtype were a 189 
consequence of EndMT. Detailed in Figure 3A-B are the relative proportions of cells from each experimental 190 
condition and donor by cluster. Contrary to our hypothesis, the EC4 cluster was not enriched for cells that 191 
were treated with cytokine or siERG relative to the controls; in fact, there is a non-statistically significant trend 192 
for decreased numbers of EC4 cells from these conditions relative to controls insofar as all the donors with 193 
cells in EC4 show diminished proportions upon perturbation (Figure 3). The one cluster exhibiting increased 194 
proportions of cells upon perturbations was EC3, with 3 of 4 EC IL1B-exposed donors having increased 195 
proportions in EC3 (p = 0.08 by 2-sided paired t-test; Figure 3A), 4 of 5 TGFB2-exposed donors196 

 197 

 

having increased proportions (p = 0.04 by 2-sided paired t-test; Figure 3A), and 3 of 3 donors having 198 
increased EC3 proportions upon ERG knock-down (Figure 3B).  199 
 

Figure 3 | EC activating perturbations modestly shift cells into the EC3 subtype. (A), The proportion of cells in 
7-day control and 7-day IL1B treatment are shown per HAEC donor and cluster on the top and for 7-day control and 
7-day TGFB2 on the bottom (B), The proportion of cells in 7-day siSCR control and 7-day siERG knock-down are 
shown per HAEC donor and cluster. EC1 was omitted in A due to lack of cells in both conditions. 
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 In addition to heterogeneity across EC clusters, data in Figure 3 underscores that there is 200 
heterogeneity among EC cultures. To quantify this effect, we performed principal component (PC) analysis to 201 
evaluate the overall contributions that donor and experimental conditions have on variance in this dataset. 202 
We found that pro-EndMT perturbations elicited greater variance in RNA expression (38-56% of variance) 203 
than donor (17%-27% variance) (Figures S2A-C in the Data Supplement), supporting that the transcriptional 204 
and epigenetic programs elicited by experimental conditions have a greater overall consequence than donor. 205 
This finding provides the opportunity to elucidate how different EC clusters respond to pro-EndMT exposures 206 
across genetically distinct ECs. 207 
 208 
Pro-EndMT Perturbations In Vitro Elicit EC Subtype-Specific Transcriptional Responses 209 

We next sought to evaluate the similarities and differences among pro-EndMT perturbations and 210 
evaluate the transcriptional response elicited in each EC subtype. Differential gene expression analysis was 211 
performed using pseudo-bulked profiles grouped by donor, subcluster, and experimental groupings (Table 212 
S9 in the Data Supplement). 213 

Overall, we found heterogeneity in transcriptional responses across EC subtypes. While EC1 and EC2 214 
transcripts were predominantly perturbed by siERG, the greatest number of transcripts differentially 215 
expressed in EC3 were those responsive to IL1B, though siERG and TGFB2 also regulated tens to hundreds 216 
of transcripts in EC3. In contrast, transcripts in EC4 were predominantly responsive to TGFB2 (Figure 4A, 217 
Table S9 in the Data Supplement). With respect to EC4, we questioned whether transcripts were 218 
predominantly responsive to TGFB2 due to differences in expression of TGFB receptors. While we observed 219 
increased TGFBR1 expression in EC4, we observed relatively less expression of TGFBR2 and ACVRL1 in 220 
EC4 when compared to EC1, EC2, and EC3 (Figure S3A in the Data Supplement). We next questioned 221 
whether EC3 transcripts were predominantly responsive to IL1B due to differences in IL1B receptor 222 
expression. Notably, we did not observe differences in IL1B receptor expression, suggesting that their 223 
transcription is not responsible for divergent EC responses across EC subtypes (Figure S3B in the Data 224 
Supplement). Interestingly, we did observe differential expression of IL1RL1 in EC2, which may influence 225 
EC2 response to cytokine (Figure S3B in the Data Supplement).       226 

When comparing enriched pathways across perturbations, we observed that over 80% of transcripts 227 
differentially expressed by a treatment in EC4 were in response to TGFB2 (Figure 4A, Table S9 in the Data 228 
Supplement). TGFB2-affected transcripts for EC4 were enriched in invadopodia formation (R-HAS-8941237; 229 
p-value 2.7x10-7) and anchoring fibril formation (R-HAS-2214320; p-value 3.6x10-7) (Figure 4B). Notably, 230 
TGFB2-affected genes for EC3 share several mesenchymal-related enriched pathways with TGFB2-affected 231 
genes for EC4, including actin cytoskeleton organization (GO:0030036; p-value 4.4x10-7), NABA CORE 232 
MATRISOME (M5884; p-value 2.8x10-7), and ECM organization (R-HSA-1474244; p-value 5.4x10-7). TGFB2-233 
attenuated transcripts unique to EC3 were enriched in platelet activation (GO:0030168; p-value 1.4x10-4) 234 
(Figure 4B).  235 
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Figure 4 | EC activating perturbations in vitro elicit EC subtype-specific transcriptional responses. (A), Upset 
plots of up- and down-regulated DEGs across EC subtypes with siERG (grey), IL1B (pink), and TGFB2 (blue). Upset 
plots visualize intersections between sets in a matrix, where the columns of the matrix correspond to the sets, and 
the rows correspond to the intersections. Intersection size represents the number of genes at each intersection. (B), 
PEA for EC3-4 up- and down-regulated DEGs with TGFB2 compared to control media. (C), PEA for EC2-4 up- and 
down-regulated DEGs with IL1B compared to control media. (D), PEA for EC1-4 up- and down-regulated DEGs with 
siERG compared to siSCR. (E), PEA comparing up- and down-regulated DEGs that are mutually exclusive and 
shared between IL1B and siERG in EC3. 
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Most transcripts affected in EC3 were responsive to IL1B (Figure 4A). Importantly, several EC3 genes 236 
differentially expressed with IL1B were also affected with siERG (Figure 4A). IL1B-affected transcripts in EC3 237 
are not enriched in mesenchymal-like pathways (Figure 4C). However, EC3 IL1B-attenuated genes are 238 
enriched in blood vessel development (GO:0032502; p-value 5.1x10-11), indicating that this perturbation still 239 
has anti-endothelial effects (Figure 4C).  240 

Most genes significantly affected by perturbations in EC1 and EC2 were responsive to siERG, likely 241 
due to their more endothelial-like phenotypes compared to EC3 and EC4 (Figure 4A). siERG-affected genes 242 
in EC1 and EC2 were enriched in COVID-19 adverse outcome pathway (52) (WP4891; p-values 5x10-9 and 243 
8.3x10-5, for EC1-2 respectively) and AGE-RAGE signaling in diabetes (53) (hsa04933; p-values 8.9x10-16 244 
and 1.9x10-20, respectively), while EC3 siERG-perturbed genes are enriched with a unique metabolic profile 245 
demonstrated by enrichment in monosaccharide metabolic process (GO:0005996; p-value 1x10-6), 246 
carbohydrate metabolic process (GO:0005975; p-value 6.6x10-7), and aerobic glycolysis (WP4629; p-value 247 
4.1x10-5) (Figure 4D). In contrast, EC4 siERG-induced genes are enriched in positive regulation of 248 
angiogenesis (GO:0045766; p-value 4.5x10-6), a function normally impaired in ERG-depleted endothelial cells 249 
(Figure 4D) (38).  250 

Due to the role that ERG plays in inhibiting NF-KB-dependent inflammation in vitro and in vivo (37), 251 
we set out to characterize mutually exclusive and shared pathways between IL1B and siERG (Figure 4E). 252 
Importantly, siERG, but not IL1B-perturbed genes, involve several previously mentioned metabolic processes 253 
including carbohydrate metabolic process (GO:0005975; p-value 6.6x10-7), aerobic glycolysis (WP4629; p-254 
value 4.1x10-5), and monosaccharide metabolic process (GO:0005996; p-value 1x10-6). This suggests 255 
differences in the ability of ERG and IL1B to modify metabolism. Interestingly, IL1B but not siERG upregulated 256 
interferon signaling and viral responsive pathways (GO:0051607, p-value 1x10-37; R-HSA-913531, p-value 257 
1x10-41). Shared IL1B- and siERG-upregulated genes were enriched in COVID-19 adverse outcome pathway 258 
(WP4891; p-value 1.9x10-9) (52). Shared IL1B- and siERG-attenuated genes are enriched in several 259 
processes involving ribosomal proteins, including ribosome, cytoplasmic (CORUM:306; p-value 3.3x10-7), 260 
cytoplasmic ribosomal proteins (WP477; p-value 5.3x10-7), and peptide chain elongation (R-HSA-156902; p-261 
value 5.9x10-7) (Figure 4E). This finding indicates that the downregulation of ribosomal genes is a hallmark 262 
of inflammatory and ERG-depleted endothelium. Altogether, these data demonstrate the heterogeneity in EC 263 
subtype response to pro-EndMT perturbations. 264 
 265 
In Vitro EC EndMT Models Reorganize Epigenetic Landscapes with Subtype Specificity 266 

To gain insight into gene regulatory mechanisms responsible for EC subtype transcriptional responses 267 
to IL1B, TGFB2, and siERG, we compared the effects of these perturbations on chromatin accessibility. 268 
Across all three treatments, we identified 4,034 differentially accessible regions (DARs, Table S10 in the Data 269 
Supplement, Methods). The majority of DARs for EC1 and EC2 were responsive to siERG, while the majority 270 
of DARs for EC3 were responsive to IL1B (Figure S4A in the Data Supplement, Table S10 in the Data 271 
Supplement). Interestingly, the epigenetic landscape of EC4 differs from its transcriptional response, insofar 272 
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as most peaks were responsive to IL1B (not TGFB2) (Figure S4A in the Data Supplement, Table S10 in the 273 
Data Supplement). To inform the TFs likely bound to differentially accessible regulatory elements, motif 274 
enrichment analysis was performed (Figure S4B-D in the Data Supplement). Several distinct TF motifs were 275 
enriched across EC subtypes. For IL1B, we observed enrichment in KLF15 (adjusted p-value 5x10-10) (kruppel 276 
like factor 15) in EC2 alone (Figure S4B in the Data Supplement). siERG induced peaks showed subtype-277 
specific motif enrichments, including TWIST1 (adjusted p-value 2.5x10-22) (twist family bHLH transcription 278 
factor 1), HAND2 (adjusted p-value 2.3x10-19) (heart and neural crest derivatives expressed 2) for EC1, RELA 279 
(adjusted p-value 9.5x10-20) (RELA proto-oncogene, NF-KB subunit) for EC2, and CEBPD (adjusted p-value 280 
1.6x10-29) for EC3 (Figure S4C in the Data Supplement). Minimal motif enrichment was observed with siERG 281 
for EC4. 282 

We also found several TF motifs enriched across more than one EC subtype upon perturbation. IL1B-283 
affected peaks gained in EC1 and EC2 shared enrichments for TFDP1 (adjusted p-value 1.3x10-4 and 9x10-284 
4 for EC1 and EC2, respectively) (transcription factor Dp1) and ZBTB14 motifs (adjusted p-value 2.2x10-4 and 285 
2x10-8, respectively) (zinc finger and BTB domain containing 14).  IL1B-induced peaks in EC3 and EC4 shared 286 
enrichment for CEBPD (adjusted p-value 4.4x10-73 and 1.6x10-33 for EC3 and EC4, respectively) and CEBPG 287 
motifs (adjusted p-value 5.4x10-45 and 7.1x10-18, respectively) (CCAAT enhancer binding protein delta and 288 
gamma) (Figure S4B in the Data Supplement). TGFB2-affected peaks in EC1, EC2, and EC3 shared 289 
enrichment for ZBTB14 (adjusted p-values 6.8x10-31, 5.1x10-12, and 2x10-8, for EC1, EC2, and EC3, 290 
respectively) while TGFB2-induced peaks in EC3 and EC4 shared enrichment for the SMAD5 motif (adjusted 291 
p-value 7.4x10-6 and 4.2x10-11, for EC3 and EC4, respectively) (SMAD family member 5) (Figure S4D in the 292 
Data Supplement). Taken together, while several enriched motifs are shared across EC subtypes, divergent 293 
epigenetic landscapes are also induced with pro-EndMT perturbations. We therefore conclude that different 294 
transcriptional responses to these perturbations across EC subtypes are elicited by distinct TFs, including 295 
members of families of the KLF, TWIST, HAND, p65, and CEBP families.  296 
 297 
Meta-Analysis of Ex Vivo Human Atherosclerotic Plaque snRNA-seq Datasets 298 

To understand the diversity of ECs in human atherosclerotic plaques and evaluate their relationships 299 
to our in vitro system, we performed a meta-analysis of data from recent publications that utilized scRNA-seq 300 
from human atherosclerotic lesions (26-29) (accessions in Table S11 in the Data Supplement). We identified 301 
24 diverse clusters among 58,129 cells after integration of 17 different coronary and carotid samples (Figure 302 
5A and Table S12 in the Data Supplement). Clusters were annotated using a combinatorial approach 303 
including canonical marker genes, CIPR (54), and the original publications (Figure 5B). Clusters were 304 
annotated as: T-lymphocytes, natural killer T-cells, ECs, macrophages, VSMCs, fibroblasts, B-lymphocytes, 305 
basophils, neurons, and plasmacytoid dendritic cells (PDCs) (Figure 5A). We find the greatest proportion of 306 
cells belonging to each major cell type derive from carotid arteries, except for neurons which derive exclusively 307 
from coronary arteries, and PDCs which derive exclusively from carotid arteries (Figures S5B-C in the Data 308 
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Supplement). Expected pathway enrichments are observed for annotated cell types, including NABA CORE  309 
MATRISOME (M5884; p-value 4.8x10-41) for fibroblasts, blood vessel development (GO:0001568; p-value  310 

Figure 5 | ECs from ex vivo human atherosclerotic plaques show two major populations. (A), scRNA-seq 
UMAP of different cell subtypes across 17 samples of ex vivo human atherosclerotic plaques. (B), Dot plot of top 
markers for each cell type. (C), Heatmap of pathway enrichment analysis (PEA) results generated from submitting 
200 differentially expressed genes (DEGs) between Endothelial Cells 1 (Endo1) and Endothelial Cells 2 (Endo2). 
Rows (pathways) and columns (cell subtypes) are clustered based on -Log10(P). (E), Heatmap displaying expression 
of genes belonging to ribosome cytoplasmic pathway for Endo1 and Endo2. 
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5.6x10-33) for ECs, and actin cytoskeleton organization (GO:0030036; p-value 1.3x10-15) for VSMCs (Figure 311 
S5D-G in the Data Supplement). These observations support the diverse composition of human 312 
atherosclerotic lesions.    313 

We evaluated what pathways distinguished the Endothelial Cells 1 (Endo1) and Endothelial Cells 2 314 
(Endo2) subtypes from our ex vivo meta-analysis (Figure 5C). We found Endo2 has an EndMT-related 315 
phenotype, with enrichment in mesenchymal pathways including NABA MATRISOME ASSOCIATED (M5885; 316 
p-value 1.6x10-14), ECM organization (R-HSA-1474244; p-value 6x10-17), skeletal system development 317 
(GO:0001501; p-value 3.4x10-13), and network map of SARS-CoV-2 signaling pathway (52) (WP5115; p-value 318 
1.3x10-11) (Figure 5C-D). Additionally, we observe enrichment for inflammatory pathways in Endo2 including 319 
prostaglandin synthesis and regulation (WP98; p-value 1.2x10-7), and complement and coagulation cascades 320 
(hsa04610; 1x10-10) (Figure 5C-D) (55, 56). On the contrary, Endo1 was highly enriched in multicellular 321 
organismal homeostasis (GO:0048871; p-value 3.3x10-8) and lowly enriched in mesenchymal pathways 322 
(M5885; p-value 1x10-3; no enrichment for R-HSA-1474244, GO:0001501, or WP5115), indicating a canonical 323 
EC phenotype (Figure 5C-D). Interestingly, Endo1, but not Endo2, is highly enriched in ribosome, cytoplasmic 324 
pathway (CORUM:306; p-value 9.3x10-96), and TRBP containing complex (CORUM:5380; DICER, RPL7A, 325 
EIF6, MOV10 and subunits of the 60S ribosomal particle; p-value 1.5x10-22), suggesting a potential protective 326 
role for this complex along with ribosomal gene expression (57, 58). The depletion of these pathways may 327 
serve as a hallmark of activated endothelium (Figure 5C-E). We interpret these results to suggest that Endo1 328 
is a classical endothelial state, while Endo2 appears to be characterized by ECM production and possibly 329 
indicate EndMT. This interpretation is further corroborated by evidence of upregulation of several classical 330 
EndMT markers in Endo2, including: FN1, BGN, COL8A1, ELN, CCN1, and FBLN5 (Figure S6 in the Data 331 
Supplement) (59-64).  332 
 333 
Ex Vivo-derived Module Score Analysis Reveals Differences among In Vitro EC Subtypes and EndMT 334 
Stimuli  335 

To directly evaluate relationships between the ex vivo and in vitro cell subpopulations, we utilized 336 
module scores. These quantitative scores are based on the sum of ex vivo marker genes across each cluster 337 
and were used to evaluate similarity to each in vitro cell subcluster. Unexpectedly, the ex vivo cluster that  338 
consistently generated the greatest module scores for in vitro ECs is the VSMCs cluster 5 (VSMC5) (Figure 339 
5A; Figure S7A in the Data Supplement). VSMC5 bridges the EC to SMC and fibroblast clusters in the ex 340 
vivo analysis (Figure 5A). Marker genes of VSMC5 are expressed across ex vivo and in vitro clusters (Figure 341 
S8A in the Data Supplement) and include important regulators of ECM, such as BGN, VCAN, FN1, as well 342 
as several collagen genes (COL1A1, COL1A2, COL3A1, COL6A1) (Figure S8A-B in the Data Supplement). 343 
VSMC5 marker transcripts also include several lncRNAs and mitochondrial transcripts (CARMN, MALAT1, 344 
NEAT1; MT-ATP6, MT-ND4, and MT-CYB) (Figure S8A in the Data Supplement). Ex vivo Endo1 and Endo2 345 
module scores are the second highest scoring across in vitro clusters. Cells scoring high for Endo1 are 346 
concentrated in the in vitro EC1 cluster, while cells scoring high in Endo2 are concentrated to the in vitro EC3 347 
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locale (Figure S7B-E in the Data Supplement). This supports that EC3 is a more activated subtype than 348 
EC1. Finally, among in vitro cells, those with highest VSMC5 module scores are concentrated in EC4, 349 
underscoring that EC4 is a more mesenchymal sub-phenotype in vitro (Figure S7B-E in the Data 350 
Supplement).  351 

We stratify these analyses by pro-EndMT treatment and find greater VSMC5 module scores with 352 
TGFB2 treatment versus control for EC3 (adjusted p-value = 0.001) and EC4 (adjusted p-value = 9.9x10-15) 353 
(Figure S9A-C in the Data Supplement). However, there is no difference in VSMC5 module scores for EC1-354 
2 between control and TGFB2 treatment, suggesting these subtypes are resistant to transcriptional changes 355 
by TGFB2 exposure (i.e., EC1-2). This is in contract to the more mesenchymal-like EC (i.e., EC3-4) subtypes 356 
which are more responsive to TGFB2 (Figure S9A-C and Table S12-13 in the Data Supplement). We 357 
observe siERG lowers Endo1 scores across all EC subtypes (adjusted p=9.9x10-15 for EC1-4), indicating ERG 358 
depletion decreases endothelial-likeness across all EC subtypes (Figure S9A-C and Table S13-14 in the 359 
Data Supplement). Moreover, siERG increases VSMC5 scores for EC2 (adjusted p=2.8x10-9) and EC3 360 
(adjusted p-value 0.04), indicating siERG elicits activated and mesenchymal characteristics (Figure S9A-C 361 
and Table S13-14 in the Data Supplement).  362 
 363 
EC Subtype is a Major Determinant in Modeling Cell States Observed in Atherosclerosis 364 

In addition to module score analysis, we applied a complementary approach to quantitatively relate in 365 
vitro EC subtypes and pro-EndMT perturbations to ex vivo cell types. We calculate average expression 366 
profiles for all major cell populations in both ex vivo and in vitro datasets and examine the comprehensive 367 
pairwise relationship among populations with hierarchical clustering using Spearman Correlation (Figure 6A).  368 
All in vitro transcripts significantly regulated across all pro-EndMT perturbations at 5% False Discovery Rate 369 
(FDR) (65) are used in this analysis, although several additional means to select transcripts showed similar 370 
results. This analysis reveals three major observations. First, in vitro EC4 cells are most like mesenchymal 371 
ex vivo cell types including VSMCs and fibroblasts (indicated by the yellow block of correlations in the bottom 372 
left of the heatmap in Figure 6A). Second, in vitro EC1, EC2, and EC3 are most like ex vivo Endo1 and Endo2 373 
populations, especially among the siSCR and 7-day control cells. Moreover, cells in the siSCR condition in 374 
EC1 are most like ex vivo Endo1, reinforcing that these two populations are the most canonically ‘healthy’ 375 
endothelial populations. Third, while pro-EndMT perturbations did elicit variation in how similar in vitro ECs 376 
resembled ex vivo transcriptomic signatures, these effects are secondary to which subtype the cells belonged 377 
(Figure 6A). Taken together, these findings underscore that EC subtype, versus perturbation, is a greater 378 
determinant of similarity to ex vivo cell types. 379 
 380 
CAD-Associated Genetic Variants Are Enriched Across EC Subtype Epigenomes 381 

Genetic predisposition to CAD is approximately 50% heritable with hundreds to thousands of genetic 382 
loci supposed to be involved in shaping an individual’s propensity for disease (66, 67). Most CAD-associated 383 
variants are not protein coding, suggesting they perturb cellular function through gene regulatory functions. 384 
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We therefore asked whether the open chromatin regions in this in vitro dataset coincided with locations of 385 
single nucleotide polymorphisms (SNPs) reported in the latest CAD meta-GWAS analysis from the Millions  386 
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Veterans Project (MVP), which includes datasets from CARDIoGRAMplusC4D 1000G study, UK Biobank 387 
CAD study, and Biobank Japan (6). We found significant enrichment in CAD-associated SNPs for the 388 
complete set of accessible regions across all EC subtypes (termed “panEC”; adjusted p-value 1.5ex10-93; 389 
Odds Ratio (OR)=1.8; Figure 6B, Table S15-16 in the Data Supplement) when comparing CAD SNPs 390 
exceeding the genome-wide significance threshold of p<5x10-8 versus non-significant SNPs (Methods). 391 
Among accessible regions unique to EC subtypes, EC4 shows the greatest enrichment (adjusted p-value 392 
7.85x10-6; OR=1.74). Additionally, EC2 is also enriched for CAD SNPs (adjusted p-value 6.3x10-8; OR=2.15), 393 
supporting a role for proliferative ECs in CAD. Of all accessible regions influenced by pro-EndMT 394 
perturbations, siERG and TGFB2 sets are most enriched for CAD variants (Figure 6B, Table S15-16 in the 395 
Data Supplement).   396 

The measurement of both gene expression and DNA accessibility in the same cell enables testing for 397 
direct correlation, or ‘links’, between accessibility of noncoding DNA elements and gene expression of their 398 
potential regulatory targets (i.e., gene promoters). This is achieved by testing for correlation between DNA 399 
accessibility and the expression of a nearby gene across single cells (48, 68). Focusing on EC4, we search 400 
for EC4-specific sites of correlated chromatin accessibility and linked target gene expression. Upon restricting 401 
linked peaks overlapping CAD SNPs, we identify 81 significant SNP-peak-gene trios (p < 0.05) representing 402 
46 unique genes with specific activity in EC4 (Table S17 in the Data Supplement). We submit the 46 unique 403 
genes to Metascape (69) and observe enrichment in EndMT-related pathways including blood vessel 404 
development (GO:0001568; p-value 2.1x10-10), crosslinking of collagen fibrils (R-HSA-2243919; p-value 405 
1.4x10-8), and canonical and non-canonical TGF-B signaling (WP3874; p-value 2.2x10-6) (Figure S10 in the 406 
Data Supplement). Literature review of this gene list further confirms several linked EC4-restricted genes 407 
associated with cardiovascular disease, including COL4A1, COL4A2, PECAM1, DSP, and BMP6, (Figure 408 
6C-E) (70-72).  409 

Altogether, these data underscore that common genetic variation influences individual propensities 410 
for CAD through ECM-organizing functions evidenced by the EC4 phenotype.  411 

 412 

Figure 6 | EC subtype is a major determinant in the ability to recapitulate ‘omic profiles seen in 
atherosclerosis. (A), Heatmap displaying average expression between in vitro perturbation-subtype combinations 
and ex vivo cell subtypes using all up- and down-regulated genes between IL1B, TGFB2, or siERG versus respective 
controls. Spearman correlation was used as the distance metric. Rows (in vitro EC subtypes) and columns (ex vivo 
cell subtypes) are clustered using all significant genes (adjusted p-value < 0.05) induced and attenuated across all in 
vitro EC subtypes for each perturbation versus its respective control. (B), Heatmap of CAD-associated SNP 
enrichments across in vitro EC subtypes and perturbation-subtype combinations. Rows (EC subtypes and 
perturbation-subtype combinations) are clustered using -Log10(P) for enrichment in significant CAD-associated SNPs 
(p-value < 5x10-8). Note that “diff” represents peaks common to more than one EC subtype; it is found by subtracting 
EC1-5 subtype-specific peaks from the entire in vitro peak set (termed “panEC”). (C), Coverage plots displaying links 
for COL4A1/COL4A2 genes to EC4-specific peaks, including one overlapping with CAD-associated SNP rs9515203. 
(D), Coverage plot showing links for PECAM1 gene to EC4-specific peaks, including one overlapping with CAD-
associated SNP rs1108591. (E), Coverage plot showing links for BMP6 gene to EC4-specific peaks, including one 
overlapping with CAD-associated SNP rs6597292.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2023.04.03.535495doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535495
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

DISCUSSION 413 
The major goals of this study were fourfold: (1) to quantitatively assess molecular heterogeneity of 414 

cultured HAECs in vitro, (2) to evaluate and compare molecular changes elicited by EC activating 415 
perturbations at single cell resolution, (3) to assess similarities between in vitro and ex vivo EC signatures to 416 
inform the extent to which in vitro models recapitulate ex vivo biology, and (4) investigate how heterogeneous 417 
EC populations are enriched for genetic associations to CAD. Findings for each of these goals are discussed 418 
below along with important implications and questions arising from this work.  419 
 The multiomic single cell profiles of 15,220 cells cultured in vitro from six individuals enabled the 420 
discovery of 5 EC subpopulations, named EC1, EC2, EC3, EC4, and EC5. Except for EC5, EC subpopulations 421 
were comprised of cells from multiple donors and perturbations, which lends credence to the reproducibility 422 
of these biological states. The loosely defined phenotypes, based on pathway enrichment analysis, were 423 
healthy/angiogenic for EC1, proliferative for EC2, activated for EC3, and mesenchymal for EC4. Angiogenic 424 
(9, 10, 14), proliferative (19, 73), and mesenchymal (19) ECs have been previously reported in literature. The 425 
three activating perturbations (TGFB2, IL1B, siERG) had markedly unique effects on different EC subclusters, 426 
highlighting the fact that in vitro systems contain populations of discrete cell subtypes, or states, that respond 427 
divergently to even reductionistic experimental conditions. Implications of such heterogeneity include both a 428 
need to elucidate what factors dictate treatment responsiveness, as well as experimental design and data 429 
interpretation that considers heterogeneity of response. The exact origin of EC heterogeneity observed in this 430 
study is unknown. We consider it likely that EC1 EC2, EC3, and EC4 subpopulations, which were populated 431 
by most donors, date back to the original isolation of ECs from aortic trimmings, implying that different states 432 
were preserved across passage in the culture conditions. However, we cannot exclude the possibility that 433 
some of the subpopulations have expanded since seeding of the cultures. If that were the case, EC1, EC2, 434 
EC3, and EC4 represent reproducible cell states consequent to primary culture of arterial cells. In fact, the 435 
limited correlation with ex vivo data supports this interpretation. Future studies will be required to delineate 436 
the exact source of heterogeneity in these systems.  437 

In this study, we set out to elucidate whether the mesenchymal phenotype of EC4 was an end-stage 438 
result of EndMT and whether TGFB2, IL1B, and/or siERG would increase the proportion of cells in EC4. As 439 
shown in Figure 3, this hypothesis was incorrect, and the only cluster with a modest increase in cell 440 
proportions upon stimulation was EC3. Moreover, while the percent of cells in EC3 increased with TGFB or 441 
IL1B, they decreased in EC4, suggesting trans-differentiation from EC4 into EC3 with these perturbations. 442 
We cannot exclude the possibility that EC3 is an EndMT cluster, although we would have expected more 443 
significant deviation from clusters EC1 and EC2. It is also possible that the postmortem state experienced by 444 
aortic explants prioir to EC isolation could induce changes in the ECs, or that the duration and doses of 445 
perturbations chosen were not sufficient to elicit complete EndMT. While the duration and doses employed in 446 
our study were established based on literature reports reporting EndMT phenotypes (33, 50, 74), EndMT was 447 
quantified by expression of only a few marker genes rather than complete transcriptomic analysis. This raises 448 
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an important conclusion of our study, which is that EndMT is not well-defined molecularly and it remains 449 
possible that several different molecular profiles may each represent variant flavors of EndMT.    450 

We found that TGFB2, IL1B, and siERG have many distinct effects on EC molecular profiles (Figures 451 
3-4). In general, TGFB2 elicits a greater transcriptomic and epigenomic response in the mesenchymal EC 452 
subtype, EC4, while siERG and IL1B regulate the greatest numbers of shared transcripts and chromatin 453 
regions in more endothelial clusters EC1, EC2, and EC3. One interpretation for this finding is that IL1B 454 
treatment and depletion of ERG directly affect rewiring transcription in ECs while TGFB2 may affect other cell 455 
types in the vascular wall (or culture plate) that in turn affect ECs through paracrine interactions. Part of the 456 
similarities between IL1B and siERG responses may be explained by the fact that ERG depletion increases 457 
IL1B production (41).  458 

A major question raised by this work is the origin of cells in the mesenchymal cluster EC4. We originally 459 
hypothesized this cluster was the result of EndMT, which led to our investigations as to whether we could 460 
leverage EndMT-promoting exposures (IL1B, TGFB2, siERG) in vitro observe an expansion of treated cells 461 
in the EC4 population. To our surprise, the EC4 population did not expand. If anything, these exposures 462 
reduced the proportion of cells in ECs (Figure 4). Nonetheless, it remains a possibility that EC4 represents 463 
cells that had undergone EndMT in vivo prior to culture and that the exposures we presented in vitro were not 464 
sufficient to elicit a complete EndMT transition. Another viable hypothesis is that cells in EC4 are of SMC 465 
origin and have persisted in culture alongside their EC counterparts. Cells used in this study were isolated by 466 
luminal collagenase digestion of explanted aortic segments and were tested at early passage for EC 467 
phenotypic markers including VWF expression, cobblestone morphology, and uptake of acetylated LDL. 468 
Notably, these rigorous metrics to ensure pure EC isolation occurred prior to our group’s studies. In addition, 469 
if some of the isolated cells had undergone EndMT in vivo prior to isolation, it would be nearly impossible to 470 
distinguish their cell of origin after isolation since their collective molecular phenotypes would appear as an 471 
SMC. Without lineage tracing, which is currently not possible in human tissue explants, it would not be 472 
possible to distinguish cell origin. Nonetheless, this remains an important issue that is the subject of ongoing 473 
investigations. What we can confidently discern from these data is that these distinct cell sub-populations 474 
respond differently to the disease-relevant exposures of IL1B, TGFB2, and ERG depletion.  475 
 The current study sought to evaluate similarities and differences between in vitro primary cultures of 476 
HAECs to ex vivo single cell signatures of cells from human lesions. First, we leveraged transcriptomic profiles 477 
from clusters in the scRNA meta-analysis of human lesions and evaluated each in vitro cluster using a module 478 
score (Figures 5 and Figure S8 in the Data Supplement). The three ex vivo clusters with greatest similarity 479 
to in vitro clusters were Endo1, Endo2, and VSMC5. Pathway enrichment analysis suggested that the ex vivo 480 
Endo1 cluster is close to the classic “healthy” EC state relative to Endo2, which returned pathway enrichments 481 
consistent with activated endothelium (Figure 5C-D). Interestingly, Endo2 is depleted in ribosome transcripts 482 
as well as transcripts in the Dicer complex (Figure 5C-E), which may serve as hallmarks of dysregulated 483 
endothelium in vivo. VSMC5 is an interesting ex vivo cluster insofar as it spans the endothelial, fibroblast, and 484 
VSMC clusters (Figure 5A) and is enriched for genes in actin cytoskeleton, extracellular matrix organization, 485 
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and more (Figure S8 in the Data Supplement). In vitro EC1, EC2, and EC3 score generally greater in Endo1 486 
and Endo2 relative to the more mesenchymal EC4 (Figure S7 in the Data Supplement). Consistent with the 487 
intent of the pro-EndMT treatments, they generally decrease Endo1 and Endo2 scores and increase VSMC5 488 
scores. However, these effects are unexceptional in comparison to effects of EC subtype. In addition to 489 
module scores, we also utilized unsupervised clustering of Spearman correlation coefficients across ex vivo 490 
and in vitro average gene expression profiles, finding again that EC1, EC2, and EC3 are more like Endo1 and 491 
Endo2 and EC4 is more like VSMCs (Figure 6A). As expected, the control (siSCR) cells are most correlated 492 
to healthy Endo1 transcriptomes; however, the correlation coefficient achieved is modest, at rho = 0.56. We 493 
cannot exclude the possibility that the moderate correlation coefficient observed between in vitro and ex vivo 494 
ECs may be explained by anatomic differences (i.e., aortic versus coronary and carotid arteries). While 495 
reinforcing that in vitro cell cultures best resemble ECs isolated ex vivo, regardless of perturbation, this finding 496 
accentuates how different cultured cells are and paves the way for quantitatively evaluating and improving in 497 
vitro models.  498 

Finally, GWAS studies have established that hundreds of independent common genetic variants in 499 
human populations affect risk for CAD, yet discovering the causal mechanisms remains a major challenge 500 
given that most of the risk is in non-coding regions of the genome. One approach to prioritize causal variants 501 
in regulatory elements is through integration of open chromatin regions from the cell type and states of interest 502 
followed by expression quantitative trait loci (eQTL) or other linking evidence to target gene (75, 76). In the 503 
current study, we find significant enrichment for CAD-risk variants in open chromatin regions across the entire 504 
dataset (“panEC”) as well as specifically for EC2 and EC4 subpopulations (Figure 6B; Table S15-17 in the 505 
Data Supplement). While EC3 was found to be more sensitive to perturbations in our in vitro experiments, 506 
we did not expect to see CAD-related SNPs enriched in EC3 because plasticity does not necessarily imply a 507 
pathological process. Moreover, while EC3 and EC4 both have mesenchymal phenotypes, EC3 may 508 
represent a reversible state that is lacking in EC4. This hypothesis would explain the enrichment of EC4, but 509 
not EC3, in CAD-related SNPs.  510 

Taken together, these data emphasize the value in multimodal datasets in human samples for 511 
prioritizing disease-associated SNPs and mechanisms.  512 
 513 
METHODS 514 
Tissue Procurement and Cell Culture 515 

Primary HAECs were isolated from eight de-identified deceased heart donor aortic trimmings 516 
(belonging to three females and five males of Admixed Americans, European, and East Asian ancestries) at 517 
the University of California Los Angeles Hospital as described previously (42) (Table S7 in the Data 518 
Supplement). The only clinically relevant information collected for each donor was their genotype (Methods, 519 
“Genotyping and Multiplexing Cell Barcodes for Donor Identification”). HAECs were isolated from the 520 
luminal surface of the aortic trimmings using collagenase, and identified by Navab et al. using their typical 521 
cobblestone morphology, presence of Factor VIII-related antigen, and uptake of acetylated LDL labeled with 522 
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1,1’-dioctadecyl-1-3,3,3’,3’-tetramethyl-indo-carbocyan-ine perchlorate (Di-acyetl-LD) (42). Cells were grown 523 
in culture in M-199 (ThermoFisher Scientific, Waltham, MA, MT-10-060-CV) supplemented with 1.2% sodium 524 
pyruvate (ThermoFisher Scientific, cat. no. 11360070), 1% 100X Pen Strep Glutamine (ThermoFisher 525 
Scientific, cat. no. 10378016), 20% fetal bovine serum (FBS, GE Healthcare, Hyclone, Pittsburgh, PA), 1.6% 526 
Endothelial Cell Growth Serum (Corning, Corning, NY, cat. no. 356006), 1.6% heparin, and 10µL/50 mL 527 
Amphotericin B (ThermoFisher Scientific, cat. no. 15290018). HAECs at low passage (passage 3-6) were 528 
treated prior to harvest every 2 days for 7 days with either 10 ng/mL TGFB2 (ThermoFisher Scientific, cat. 529 
no. 302B2002CF), IL1B (ThermoFisher Scientific, cat. no. 201LB005CF), or no additional protein, or two 530 
doses of small interfering RNA for ERG locus (siERG; Table S18 in the Data Supplement), or randomized 531 
siRNA (siSCR; Table S18 in the Data Supplement). Donors 7 and 8 were treated prior to harvest for 6 hours 532 
with either 1 ng/mL IL1B, or no additional protein, and included in the dataset during integration to generate 533 
the original UMAP (Figure 1B), but not used for the purposes of downstream analyses in this study (Table 534 
S7 in the Data Supplement). 535 

 536 
siRNA Knock-down, qPCR, and Western Blotting  537 

Knockdown of ERG was performed as previously described (41) using 1 nM siRNA oligonucleotides 538 
in OptiMEM (ThermoFisher Scientific, cat. no. 11058021) with Lipofectamine 2000 (ThermoFisher Scientific, 539 
cat. no. 11668030). Transfections were performed in serum-free media for 4 hours, then cells were grown in 540 
full growth media for 48 hours. All siRNAs and qPCR primers used in this study are listed in Table S18 in the 541 
Data Supplement. Transfection efficiency for the siRNAs utilized in this study was verified using qPCR 7 542 
days after transfection (Figure S11A in the Data Supplement). Protein knockdown is shown 2 days after 543 
transfection using the same siRNAs from a representative experiment (Figure S11B in the Data 544 
Supplement). Antibodies used included 1:1,000 recombinant anti-ERG antibody (ab133264) and 1:5,000 545 
anti-histone H3 antibody (ab1791) (Abcam). Western blots were quantified using ImageJ (77).  546 
 547 
Nuclear Dissociation and Library Preparation  548 

Nuclei from primary cells were isolated according to 10x Genomics Nuclei Isolation for Single Cell 549 
Multiome ATAC + Gene Expression Sequencing Demonstrated Protocol (CG000365, Rev C) (78). Nuclei 550 
were pooled isolated with lysis buffer consisting of 10 mM Tris-HCl (pH 7.5, Invitrogen, cat. no. 15567027), 551 
10 mM NaCl (Invitrogen, cat. no. AM9759), 3 mM MgCl2 (Alfa Aesar, cat. no. J61014), 0.1% Tween-20 552 
(ThermoFisher Scientific, cat. no. 9005-64-5), 0.1% IGEPAL CA-630 (ThermoFisher Scientific, cat. no. 553 
J61055.AP), 0.01% Digitonin (ThermoFisher Scientific, cat. no. BN2006), 1% BSA (Sigma Aldrich, cat. no. 554 
A2153), 1 mM DTT (ThermoFisher Scientific, cat. no. 707265ML), 1 U/μl RNase inhibitor (Sigma Protector 555 
RNase inhibitor; cat. no. 3335402001), and nuclease-free water (Invitrogen, cat. no. 10977015). The seven 556 
pooled samples were incubated on ice for 6.5 minutes with 100 μl lysis buffer and washed three times with 1 557 
mL wash buffer consisting of 10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween-20, 1 mM 558 
DTT, 1U/μl RNase inhibitor, and nuclease-free water. Samples were centrifuged at 500 rcf for 5 minutes at 559 
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4C, and the pellets were resuspended in chilled Diluted Nuclei Buffer consisting of 1X Nuclei Buffer (20X) 560 
(10X Genomics), 1 mM DTT (ThermoFisher Scientific, cat. no. 707265ML), 1 U/μl RNase inhibitor, and 561 
nuclease-free water. The homogenate was filtered through a 40-μm cell strainer (Flowmi, cat. no. 562 
BAH136800040) prior to proceeding immediately to 10X Chromium library preparation according to 563 
manufacturer protocol (CG000338).  564 
 565 
Genotyping and Multiplexing Cell Barcodes for Donor Identification   566 

Genotyping of HAEC donors was performed as described previously (75). Briefly, IMPUTE2 (79) was 567 
used to impute genotypes utilizing all populations from the 1000 Genomes Project reference panel (phase 3) 568 
(80). Genotypes were called for imputed SNPs with allelic R2 values greater than 0.9. Mapping between 569 
genomic coordinates was performed using liftOver (81). VCF files were subset by genotypes for the donors 570 
of interest using VCFtools (82).  571 

To identify donors across the in vitro dataset, snATAC- and snRNA-seq output BAM files from Cell 572 
Ranger ARC (10X Genomics, v.2.0.0) (43) were concatenated, sorted, and indexed using samtools (83). The 573 
concatenated BAM files were input with the genotype VCF file to demuxlet (84) to identify best matched 574 
donors for each cell barcode, using options “–field GT”. Verification of accurate donor identification was 575 
confirmed by visualizing female sex specific XIST for the known donor sexes (Figure S12 in the Data 576 
Supplement). 577 
 578 
snRNA-seq Bioinformatics Workflow  579 

A target of 10,000 nuclei were loaded onto each lane. Libraries were sequenced on NovaSeq6000. 580 
Reads were aligned to the GRCh38 (hg38) reference genome and quantified using Cell Ranger ARC (10X 581 
Genomics, v.2.0.0) (43). Datasets were subsequently preprocessed for RNA individually with Seurat version 582 
4.3.0 (44). Seurat objects were created from each dataset, and cells with < 500 counts were removed. This 583 
is a quality control step, as it is thought that cells with low number of counts are poor data quality. Similarly, 584 
for each cell, the percentage of counts that come from mitochondrial genes was determined. Cells with > 20% 585 
mitochondrial gene percent expression (which are thought to be of low quality, possibly due to membrane 586 
rupture) were excluded. Demuxlet (84) was next used to remove doublets. The filtered library was subset and 587 
merged by pro-EndMT perturbation. Data were normalized with NormalizeData, and cell cycle regression was 588 
performed by generating cell cycle phase scores for each cell using CellCycleScoring, followed by regression 589 
of these using ScaleData (85). Batch effects by treatment were corrected using FindIntegrationAnchors using 590 
10,000 anchors, followed by IntegrateData.  591 
 592 
snATAC-seq Bioinformatics Workflow  593 

A target of 10,000 nuclei were loaded onto each lane. Libraries were sequenced on an NovaSeq 6000 594 
according to manufacturer’s specifications at the University of Chicago. Reads were aligned to the GRCh38 595 
(hg38) reference genome and quantified using Cell Ranger ARC (10X Genomics, v.2.0.0) (43). Datasets were 596 
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subsequently preprocessed for ATAC individually with Seurat v4.3.0 (44) and Signac v1.6.0 (86) to remove 597 
low-quality nuclei (nucleosome signal > 2, transcription start site enrichment < 1, ATAC count < 500, and % 598 
mitochondrial genes > 20) (44). Next, demuxlet (84) was used to remove doublets. A common peak set was 599 
quantified across snATAC-seq libraries using FeatureMatrix, prior to merging each lane. A series of two 600 
iterative peak calling steps were performed. The first step consisted of calling peaks for every EndMT 601 
perturbation, and the second involved calling peaks for every cluster generated from Weighted Nearest 602 
Neighbor Analysis (WNN) (Methods, “Integration and Weighted Nearest Neighbor Analyses”). Latent 603 
semantic indexing (LSI) was computed after each iterative peak calling step using Signac standard workflow 604 
(48). Batch effects by treatment were finally corrected using FindIntegrationAnchors using 10,000 anchors, 605 
followed by IntegrateData.  606 
 607 
Integration and Weighted Nearest Neighbor Analyses 608 

Following snRNA-seq and snATAC-seq quality control filtering, barcodes for each modality were 609 
matched, and both datasets were combined by adding the snATAC-seq assay and integrated LSI to the 610 
snRNA-seq assay. WNN (44) was next calculated on the combined dataset, followed by joint UMAP 611 
(WNNUMAP) visualization using Signac (48) functions FindMultimodalNeighbors, RunUMAP, and 612 
FindClusters, respectively. WNN is an unsupervised framework to learn the relative utility of each data type 613 
in each cell, enabling an integrative analysis of multimodal datasets. This process involves learning cell-614 
specific modality “weights” and constructing a WNNUMAP that integrates the modalities. The subtypes 615 
discovered in the first round of WNN were utilized in an additional peak calling step for snATAC-seq, followed 616 
by latent semantic indexing (LSI) computation, re-integration, and a final round of WNN to achieve optimal 617 
peak predictions (Methods, “Single Nucleus ATAC Sequencing Bioinformatics Workflow”) (87).  618 
 619 
Differential Expression and Accessibility Region Analyses Across EC Subtypes and EndMT 620 
Perturbation-Subtype Combinations 621 

Differential expression between clusters was computed by constructing a logistic regression (LR) 622 
model predicting group membership based on the expression of a given gene in the set of cells being 623 
compared. The LR model included pro-EndMT perturbation as a latent variable and was compared to a null 624 
model using a likelihood ratio test (LRT). This was performed using Seurat FindMarkers, with “test.use = LR” 625 
and “latent.vars” set to perturbation. Differential expression between perturbation and control for each cluster 626 
was performed using pseudobulk method with DESeq2 (88). Raw RNA counts were extracted for each EndMT 627 
perturbation-subtype combination and counts, and metadata were aggregated to the sample level.  628 

Differential accessibility between EC subtypes was performed using FindMarkers, with “test.use = LR” 629 
and latent.vars set to both the number of reads in peaks and perturbation. Finally, differential accessibility 630 
between perturbation and control for each cluster was performed using FindMarkers, with “test.use = LR” and 631 
latent.vars set to the number of reads in peaks.  632 
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Bonferroni-adjusted p-values were used to determine significance at adjusted p-value < 0.05 for 633 
differential expression, and p-value < 0.005 for differential accessibility (65).  634 
 635 
Pathway Enrichment Analysis 636 

Pathway enrichment analysis (PEA) was performed using Metascape (69). Top DEGs for each EC 637 
subtype or subtype-perturbation were sorted based on ascending p-value. Genes listed for each pathway 638 
were pulled from the Metacape results file, “_FINAL_GO.csv”. For heatmaps produced by metascape, top 20 639 
or 100 pathways were pulled from Metascape .png files, “HeatmapSelectedGO.png”, 640 
“HeatmapSelectedGOParent.png”, or “HeatmapSelectedGOTop100.png”.  641 
 642 
Motif Enrichment Analysis  643 

A hypergeometric test was used to test for overrepresentation of each DNA motif in the set of 644 
differentially accessible peaks compared to a background set of peaks. We tested motifs present in the Jaspar 645 
database (2020 release) (49) by first identifying which peaks contained each motif using motifmatchr R 646 
package (https://bioconductor.org/packages/motifmatchr). We computed the GC content (percentage of G 647 
and C nucleotides) for each differentially accessible peak and sampled a background set of 40,000 peaks 648 
matched for GC content (48). Per-cell motif activity scores were computed by running chromVAR (89), and 649 
visualized using Seurat (44) function FeaturePlot.  650 
 651 
Human Atherosclerosis scRNA-seq Public Data Download, Mapping, and Integration Across Samples 652 

Count matrices of 17 samples taken from four different published scRNA-seq datasets were 653 
downloaded from the NCBI Gene Expression Omnibus (accessions listed in Table S11 in the Data 654 
Supplement), processed using Cell Ranger (10x Genomics Cell Ranger 6.0.0) (90) with reference GRCh38 655 
(version refdata-gex-GRCh38-2020-A, 10X Genomics), and analyzed using Seurat version 4.3.0 (44). Seurat 656 
objects were created from each dataset, and cells with < 500 counts and > 20% mitochondrial gene percent 657 
expression were excluded. Additionally, doublets were removed using DoubletFinder (91), which predicts 658 
doublets according to each real cell’s proximity in gene expression space to artificial doublets created by 659 
averaging the transcriptional profile of randomly chosen cell pairs. Next, normalization and variance 660 
stabilization, followed by PC analysis for 30 PCs were performed in Seurat (44) using default parameters. 661 
Batch effects across the 17 samples were corrected using Seurat functions (44) FindIntegrationAnchors using 662 
10,000 anchors, followed by IntegrateData. During the integration step, cell cycle regression was performed 663 
by assigning cell cycle scores with Seurat (44) function CellCycleScoring. The ex vivo dataset was first 664 
visualized, and canonical markers were identified for annotating cell types using FindAllMarkers.  665 
 666 
Module Scoring 667 
 FindAllMarkers was used to identify top DEGs between each ex vivo cell subtype. Cells from the in 668 
vitro dataset were assigned an ex vivo cell subtype module score using Seurat (44) function AddModuleScore. 669 
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The difference in module score between each in vitro EC subtype was established using Wilcoxon rank sum 670 
test with continuity correction and a two-sided alternative hypothesis.   671 
 672 
Comparison of Ex Vivo snRNA-seq Data to In Vitro snRNA-seq Data 673 

Meta-analyzed ex vivo human scRNA-seq data and in vitro snRNA-seq data were compared. Gene 674 
expression values for each ex vivo cell subtype and in vitro EC subtype-perturbation were produced using the 675 
AverageExpression function in Seurat (44) (which exponentiates log data, therefore output is depth 676 
normalized in non-log space). Figure 6A was generated using hclust function in R (92). Spearman correlation 677 
was used as the distance metric. Sample clustering was performed using all significant genes (adjusted p-678 
value < 0.05) induced and attenuated across all in vitro EC subtypes for each pro-EndMT perturbation versus 679 
its respective control. Figure S8A was made using average expression data for marker genes for each ex 680 
vivo cell subtype. Hierarchical clustering across ex vivo cell subtypes was performed using hclust function in 681 
R (92), using average expression as the distance metric for a given gene.  682 
 683 
GWAS SNP Enrichment Analysis  684 

The SNPs associated with CAD were extracted from the most recent available meta-analysis (6). We 685 
utilized a matched background of SNPs pulled from 1000 Genomes Project reference panel (phase 3) (80) 686 
which were filtered using PLINK (93) v1.90b5.3 with the following settings: “--maf 0.01”, “--geno 0.05”. 687 
Mapping between genomic coordinates was performed using liftOver (81). To evaluate for enrichment in CAD-688 
associated SNPs for each EC subtype and perturbation-subtype peak set, traseR package in R (traseR) (94) 689 
was used with the following: ‘test.method’ = “fisher”, ‘alternative’ = “greater”. 690 

 691 
Peak-To-Gene Linkage 692 

We estimated a linkage score for each peak-gene pair using the LinksPeaks function in Signac (48). 693 
For each gene, we computed the Pearson correlation coefficient r between the gene expression and the 694 
accessibility of each peak within 500 kb of the gene TSS. For each peak, we then computed a background 695 
set of expected correlation coefficients given properties of the peak by randomly sampling 200 peaks located 696 
on a different chromosome to the gene, matched for GC content, accessibility, and sequence length 697 
(MatchRegionStats function in Signac). We then computed the Pearson correlation between the expression 698 
of the gene and the set of background peaks. A z score was computed for each peak as z = (r − μ)/σ, where 699 
μ was the background mean correlation coefficient and σ was the s.d. of the background correlation 700 
coefficients for the peak. We computed a P value for each peak using a one-sided z-test and retained peak-701 
gene links with a p-value < 0.05 and a Pearson correlation coefficient. The results were restricted to peak 702 
regions which overlapped with significant CAD-associated SNPs (Methods, “GWAS SNP Enrichment 703 
Analysis”).  704 
 705 
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Data Visualization  706 
Data visualizations were performed using Seurat functions DimPlot, DotPlot, FeaturePlot, and VlnPlot. 707 

Other data visualizations were performed using ggplot2 (for stacked bar graphs) (95), UpSetR (for UpSet 708 
plots) (96), pheatmap (for DEG and DAR analysis heatmaps) and heatmap.2 (for Spearman’s rank correlation 709 
coefficient heatmap and Figure S8A) (97). 710 
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