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Abstract 36 
 37 
Synovial tissue inflammation is the hallmark of rheumatoid arthritis (RA). Recent work has 38 
identified prominent pathogenic cell states in inflamed RA synovial tissue, such as T peripheral 39 
helper cells; however, the epigenetic regulation of these states has yet to be defined. We 40 
measured genome-wide open chromatin at single cell resolution from 30 synovial tissue 41 
samples, including 12 samples with transcriptional data in multimodal experiments. We 42 
identified 24 chromatin classes and predicted their associated transcription factors, including a 43 
CD8+ GZMK+ class associated with EOMES and a lining fibroblast class associated with AP-1. 44 
By integrating an RA tissue transcriptional atlas, we found that the chromatin classes 45 
represented ‘superstates’ corresponding to multiple transcriptional cell states. Finally, we 46 
demonstrated the utility of this RA tissue chromatin atlas through the associations between 47 
disease phenotypes and chromatin class abundance as well as the nomination of classes 48 
mediating the effects of putatively causal RA genetic variants.  49 
  50 
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Introduction 51 

Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects roughly one 52 

percent of the population1. In RA, the synovial joint tissue is infiltrated by immune cells that 53 

interact with stromal cells to sustain a cycle of inflammation. Untreated, RA can lead to joint 54 

destruction, disability, and a reduction in life expectancy2. The heterogeneous clinical features of 55 

RA, including differences in cyclic citrullinated peptide antibody autoreactivity3, underlying 56 

genetics4,5, and response to targeted therapies6–10, render it challenging to construct generic 57 

treatment plans that will be effective for most patients. 58 

Recent studies have taken advantage of single cell technologies to define key cell 59 

populations that are present and expanded in RA tissue inflammation11–14, demonstrating both 60 

the heterogeneous nature of tissue inflammation and the promise to identify novel targeted 61 

therapeutics for RA. Our recent AMP-RA reference study12 comprehensively classified 62 

pathogenic transcriptional cell states within synovial joint tissue using single cell CITE-seq 63 

technology15, which simultaneously measures mRNA and surface protein marker expression in 64 

a single cell. Within 6 broad cell types (B/plasma, T, NK, myeloid, stromal [fibroblasts/mural], 65 

and endothelial), the study defined 77 fine-grain cell states. Many of these cell states have been 66 

previously shown to be associated with RA pathology: for example, CD4+ T peripheral helper 67 

cells (TPH)11,13, HLA-DRhi sublining fibroblasts11, proinflammatory IL1B+ monocytes11, and age-68 

associated B cells (ABC)11,16. However, we have a limited understanding of the chromatin 69 

accessibility profiles that underlie these pathogenic synovial tissue cell states. 70 

 Open chromatin at critical cis-regulatory regions allows essential transcription factors 71 

(TFs) to access DNA and epigenetically regulate gene expression17. Chromatin accessibility is a 72 

necessary, but not sufficient, condition for RNA polymerases to produce transcripts at gene 73 

promoters18. Therefore, one possibility is that each transcriptional cell state has its own unique 74 

chromatin profile19, which we will denote as a chromatin class. Alternatively, multiple 75 

transcriptional cell states could share a chromatin class if the cell states were dynamically 76 
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transitioning from one to another in response to external stimuli without altering the chromatin 77 

landscape19. In RA, those external stimuli could be cytokines that activate TFs to induce 78 

expression of key genes and drive pathogenic cell states20. For example, NOTCH3 signaling 79 

propels transcriptional programs coordinating the transformation from perivascular fibroblasts to 80 

inflammatory sublining fibroblasts21. Similarly, exposure to TNF and interferon gamma 81 

transforms monocytes into inflammatory myeloid cells22.   82 

 Here, we characterized synovial cells with unimodal single cell ATAC-seq (scATAC) and 83 

multimodal single nuclear ATAC-seq (snATAC) and RNA-seq (snRNA) technologies to compare 84 

chromatin classes to transcriptional cell states (Fig. 1a). These results support a model of open 85 

chromatin superstates shared by multiple fine-grain transcriptional cell states. We show these 86 

superstates may be regulated by key TFs and associated with clinical and genetic factors in the 87 

pathology of RA (Fig. 1a).  88 
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 89 

Fig. 1. Study overview and open chromatin broad cell type identification. 90 
a. Study overview. Synovial biopsies from RA and OA patients were utilized for unimodal 91 
scATAC-seq, multimodal snATAC-seq + snRNA-seq experiments. CITE-seq was performed in 92 
the AMP-RA reference study12. We defined chromatin classes using the unimodal and 93 
multimodal ATAC data and compared them with AMP-RA transcriptional cell states12 classified 94 
onto the multiome cells. We further defined transcription factors likely regulating these 95 
chromatin classes and found putative links to RA pathology by associating the classes to RA 96 
clinical metrics, RA subtypes, and putative RA risk variants. 97 
b. Open chromatin broad cell type identification in unimodal scATAC-seq datasets (left) and 98 
multimodal snATAC-seq datasets (right), processed separately. 99 

 100 

Results 101 

Unimodal scATAC and multimodal snATAC synovial tissue datasets 102 

 We obtained synovial biopsies from 25 people with RA and 5 with osteoarthritis (OA) 103 

and disaggregated cells using well-established protocols from the AMP-RA/SLE consortium23 104 
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(Methods). We conducted unimodal scATAC-seq on samples from 14 RA patients and 4 OA 105 

patients and multimodal snATAC-/snRNA-seq on samples from 11 RA patients and 1 OA 106 

patient (Supplementary Table 1). Applying stringent ATAC quality control, we retained cells 107 

with >10,000 reads, >50% of those reads falling in peak neighborhoods, >10% of reads in 108 

promoter regions, <10% of reads in the mitochondrial chromosome, and <10% of reads falling in 109 

the ENCODE blacklisted regions24 (Methods; Supplementary Fig. 1a-b). We further required 110 

that cells from the multimodal data passed stringent quality control for both the snRNA and 111 

snATAC (Supplementary Fig. 1c). After additional QC within individual cell types combining 112 

both technologies, the final dataset contained 86,994 cells from 30 samples (median: 2,990 113 

cells/sample) (Supplementary Fig. 1d-e). For consistency, we called a set of 132,520 114 

consensus peaks from unimodal scATAC data to be used for all analyses (Methods). We 115 

observed that 95% of the called peaks overlapped ENCODE candidate cis-regulatory elements 116 

(cCREs)25 and 17% overlapped promoters26, suggesting highly accurate peak calls 117 

(Supplementary Fig. 1f). 118 

 119 

Defining RA broad cell types by clustering ATAC datasets 120 

To assign each ATAC cell to a broad cell type, we clustered the unimodal scATAC and 121 

multimodal snATAC datasets independently (Methods). In both instances, we defined six cell 122 

types that we annotated based on the chromatin accessibility of “marker peaks,” or peaks in cell 123 

type marker gene promoters (Methods; Fig. 1b). We identified T cells (CD3D and CD3G), NK 124 

cells (NCAM1 and NCR1), B/plasma cells (MS4A1 and TNFRSF17), myeloid cells (CD163 and 125 

C1QA), stromal cells (PDPN and PDGFRB), and vascular endothelial cells (VWF and ERG) 126 

(Supplementary Fig. 1g-j). In the multimodal data, we observed consistent peak accessibility 127 

and RNA expression for marker genes in these cell types (Supplementary Fig. 1k-m).  128 

We combined ATAC cells from multimodal and unimodal technologies and then created 129 

datasets for each of the broad cell types. For cell types with more than 1,500 cells, we applied 130 
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Louvain clustering to a shared nearest neighbor graph based on batch-corrected27 principal 131 

components of chromatin accessibility to define fine-grain chromatin classes (Methods).  132 

 133 

RA T cell chromatin classes 134 

 We first examined the accessible chromatin for 23,168 T cells across unimodal and 135 

multimodal ATAC datasets. Louvain clustering defined 5 T cell chromatin classes, denoted as 136 

TA for T cell ATAC, across 30 samples (Fig. 2a; Supplementary Fig. 2a). In the TA-2: CD4+ 137 

PD-1+ TFH/TPH chromatin class, we observed high promoter accessibility and gene expression 138 

for PD-1 (PDCD1) and CTLA4, known marker genes for T follicular helper (TFH)/T peripheral 139 

helper (TPH) cells (Fig. 2b; Supplementary Fig. 2b). A known expanded pathogenic cell state 140 

in RA, TFH/TPH cells help B cells respond to inflammation11,13. The TA-3: CD4+ IKZF2+ Treg 141 

cluster had high accessibility and expression for IKZF2 (Helios), which is known to stabilize the 142 

inhibitory activity of regulatory T cells28 (Tregs) (Fig. 2b). We also observed open chromatin 143 

regions at both the FOXP3 transcription start site (TSS) as well as the downstream Treg-144 

specific demethylated region29 (TSDR) specifically for TA-3 (Supplementary Fig. 2c); FOXP3 145 

was also expressed exclusively in TA-3 cells (Supplementary Fig. 2b). We found one more 146 

predominantly CD4+ T cell class, TA-1: CD4+ IL7R+, with high expression and accessibility for 147 

IL7R, encoding the CD127 protein. This marker is typically lost with activation, suggesting that 148 

TA-1 is a population of unactivated naive or memory T cells, as further evidenced by SELL and 149 

CCR7 expression (Fig. 2B; Supplementary Fig. 2b). The TA-0: CD8+ GZMK+ cluster was 150 

marked by GZMK and CRTAM peak accessibility and gene expression (Fig. 2b; 151 

Supplementary Fig. 2b); a similar population has been shown to be expanded in RA and a 152 

major producer of inflammatory cytokines11,30. We found another primarily CD8+ group of T 153 

cells, the TA-4: CD8+ PRF1+ cytotoxic cluster, which had high accessibility for the PRF1 154 

promoter and expression for the PRF1, GNLY, and GZMB genes (Fig. 2b; Supplementary Fig. 155 

2b).  156 
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 157 

Fig. 2. RA T cell chromatin classes. 158 
a. UMAP colored by 5 T cell chromatin classes defined from unimodal scATAC and multimodal 159 
snATAC cells. 160 
b. Binned normalized marker peak accessibility (top) and gene expression (bottom) for 161 
multiome snATAC cells on UMAP. 162 
c. UMAP colored by chromVAR31 deviations for the TBX21 motif (left). Most significantly 163 
enriched motifs in marker peaks per T cell chromatin class (right). To be included per class, 164 
motifs had to be enriched in the class above a minimal threshold and corresponding TFs had to 165 
have at least minimal expression in snRNA (Methods). Color scale normalized per motif across 166 
classes with max -log10(padj) value shown in parentheses in motif label. P-values were 167 
calculated via hypergeometric test in ArchR32. 168 
d. UMAP colored by KLRG1 normalized gene expression in multiome cells (left). KLRG1 locus 169 
(chr12:8,987,550-8,990,000) with selected isoforms, motifs, open chromatin peaks, and 170 
chromatin accessibility reads from unimodal and multimodal ATAC cells aggregated by 171 
chromatin class and scaled by read counts per class (Methods) (right). 172 

 173 
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Since T cells are primarily defined by CD4 and CD8 lineages that are not thought to 174 

cross-differentiate33, we next examined whether the chromatin classes strictly segregated by 175 

CD4 or CD8 promoter peak accessibility. We observed that each chromatin class, while largely 176 

showing accessibility for only one lineage’s promoter, also includes some cells with accessibility 177 

for the other lineage’s promoter (Supplementary Table 2). For example, cytotoxic T cells in TA-178 

4 were more likely to have an accessible CD8A promoter, but also included a minority of cells 179 

with accessibility at the CD4 promoter. Therefore, we assessed which promoter peaks were 180 

associated with a specific lineage. While accounting for chromatin class, donor, and read depth, 181 

we ran a logistic regression model over all cells relating each promoter peak’s openness to 182 

CD4/CD8A promoter peak accessibility status: 1 for open CD4 and closed CD8A, -1 for open 183 

CD8A and closed CD4, or 0 otherwise (Methods). We only found 93 out of 16,383 promoter 184 

peaks significantly associated to a lineage’s promoter accessibility, with 29 associating to CD4 185 

and 64 to CD8A, at FDR<0.20 (Supplementary Table 3). This suggested that lineage is 186 

important for a small subset of genes’ local promoter chromatin environment, such as IL6ST in 187 

CD4 T cells and CRTAM in CD8 T cells, and for those lineage-specific loci, they segregate by 188 

chromatin class as expected (Methods; Supplementary Figure 2d). However, the majority of 189 

promoters appeared to be more specifically accessible within their chromatin classes across 190 

lineages. This might suggest that the corresponding gene’s function was critical for the class 191 

definition, as highlighted by functional genes such as PRF1 that is expressed in both cytotoxic 192 

CD4 and CD8 T cells34 as well as the homing gene CCR7 that acts across both lineages35.  193 

 We next determined TFs potentially regulating these T cell chromatin classes by 194 

calculating TF motif enrichments31 per class marker peaks32 whose TFs are at least minimally 195 

expressed within that class (Methods). In the primarily CD8+ classes, TA-0: CD8+ GZMK+ and 196 

TA-4: CD8+ PRF1+ cytotoxic, we found EOMES (padj=7.44e-99, 8.12e-44, respectively) and T-197 

bet (TBX21) (padj=4.92e-90, 2.75e-38, respectively) motifs preferentially enriched (Fig. 2c); the 198 

corresponding TFs are known to drive memory and effector CD8+ cell states36. Furthermore, we 199 
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found both motifs in the promoter of KLRG1, a gene found in CD8+ effector T cells that might 200 

participate in the effector-to-memory transition37 (Fig. 2d). The cytotoxic TA-4 class was also 201 

enriched for RUNX338 motifs (padj=5.81e-13) (Fig. 2c). Within the TA-2: CD4+ PD-1+ TFH/TPH 202 

class, we observed high enrichments for AP-1 motifs, especially BATF (padj=3.31e-103), which 203 

promotes expression of key programs in TFH cells39 (Fig. 2d). We found TCF7 and LEF1 204 

motifs40 within the unactivated TA-1: CD4+ IL7R+ cluster (padj=1.14e-10, 3.97e-13, respectively; 205 

Fig. 2d).  206 

 207 

RA stromal chromatin classes 208 

Next, we analyzed 24,307 stromal cells (Methods). With Louvain clustering, we 209 

partitioned the cells into 4 open chromatin classes: lining fibroblasts (SA-1) along the synovial 210 

membrane, sublining fibroblasts (SA-0, SA-2) filling the interstitial space, and mural cells (SA-3) 211 

adjacent to blood vessels41 (Fig. 3a; Supplementary Fig. 3a). The most abundant sublining 212 

cluster, SA-0: CXCL12+ HLA-DRhi sublining fibroblasts, was a proinflammatory cluster marked 213 

by CXCL12, HLA-DRA, and CD74 accessibility and expression; SA-0 also expressed IL6, which 214 

is an established RA drug target7,8 (Fig. 3b; Supplementary Fig. 3b). The SA-2: CD34+ 215 

MFAP5+ sublining fibroblast class had accessible promoter peaks, where available, for the 216 

expressed CD34, MFAP5, PI16, and DPP4 genes, previously reported to represent a 217 

progenitor-like fibroblast state shared across tissue types42–44 (Fig. 3b; Supplementary Fig. 218 

3b). The SA-1: PRG4+ lining fibroblast chromatin class was characterized with high accessibility 219 

and expression of PRG4 and CRTAC1 (Fig. 3b; Supplementary Fig. 3b). We also observed 220 

high expression of MMP1 and MMP3, matrix metalloproteinases responsible for extracellular 221 

matrix (ECM) destruction45, within SA-1 (Supplementary Fig. 3b). Finally, we found a mural cell 222 

cluster, SA-3: MCAM+ mural, with both gene expression and promoter peak accessibility for 223 

MCAM and NOTCH3 (Fig. 3b; Supplementary Fig. 3b). In RA, NOTCH3 signaling from the 224 

endothelium acts primarily on mural cells, which in turn stimulate sublining fibroblasts along a 225 
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spatial axis21 as seen in the decreasing NOTCH3 gene expression from SA-3, SA-0, SA-2, to SA-226 

1 in the multiome cells (Supplementary Fig. 3b). Knockout of NOTCH3 has been shown to 227 

reduce inflammation and joint destruction in mouse models21. 228 

 229 

Fig. 3. RA stromal chromatin classes. 230 
a. UMAP colored by 4 stromal chromatin classes defined from unimodal scATAC and 231 
multimodal snATAC cells. 232 
b. Binned normalized marker peak accessibility (top) and gene expression (bottom) for 233 
multiome snATAC cells on UMAP. 234 
c. UMAP colored by chromVAR31 deviations for the FOS..JUND motif (left). Most significantly 235 
enriched motifs in marker peaks per stromal chromatin class (right). To be included per class, 236 
motifs had to be enriched in the class above a minimal threshold and corresponding TFs had to 237 
have at least minimal expression in snRNA (Methods). Color scale normalized per motif across 238 
classes with max -log10(padj) value shown in parentheses in motif label. P-values were 239 
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calculated via hypergeometric test in ArchR32. 240 
d. UMAP colored by MMP3 normalized gene expression (left). MMP3 locus 241 
(chr11:102,843,400-102,844,000) with selected isoforms, motifs, open chromatin peaks, and 242 
chromatin accessibility reads from unimodal and multimodal ATAC cells aggregated by 243 
chromatin class and scaled by read counts per class (Methods) (right). 244 

 245 

DNA methylation and chromatin accessibility work in tandem to define cell-type-specific 246 

gene regulation through silencing CpG-dense promoters and repressing methylation-sensitive 247 

TF binding46. Methylation changes have been previously described between cultured fibroblast 248 

cell lines from RA and OA patients47,48. Thus, we wondered if a specific subset of fibroblasts 249 

might be the source of these differentially methylated regions (DMRs). Using a published set of 250 

DMRs for RA versus OA synovial fibroblast cell lines47, we defined a per-cell score of peak 251 

accessibility associated to hypermethylated (positive) or hypomethylated (negative) loci in RA 252 

(Methods). The sublining fibroblasts in SA-0 were enriched for hypomethylated regions 253 

(Wilcoxon SA-0 cells versus rest one-sided p=0), suggesting that the RA synovial fibroblast 254 

DMRs were relatively enriched for putatively functional chromatin accessible regions specifically 255 

in sublining fibroblasts (Supplementary Fig. 3c). These results proposed the possibility of 256 

epigenetic memory retention even after multiple cell line passages49, as sublining fibroblasts, 257 

particularly HLA-DRhi and CD34- fibroblasts, are expanded in RA relative to OA in synovial 258 

tissue samples11.   259 

Next, we investigated which TFs were putatively driving these chromatin classes (Fig. 260 

3c). AP-1 motifs such as FOS::JUND were most significantly enriched in the SA-1 lining class 261 

(padj=9.29e-152; Fig. 3c). These TFs are known to play many roles in RA and specifically 262 

regulate MMP1 and MMP3 promoters49,50 (Fig. 3d). The progenitor-like sublining SA-2 class 263 

harbored NFATC motifs, such as NFATC4 (padj=2.89e-36; Fig. 3c). In the SA-0: CXCL12+ HLA-264 

DRhi sublining chromatin class, we found TEAD151 (padj=2.86e-52; Fig. 3c) and STAT1/3 TF 265 

motif enrichments (padj=3.34e-37, 4.27e-38, respectively; Fig. 3c), the later likely regulating the 266 

JAK/STAT pathway responsible for proinflammatory cytokine activation central to RA clinical 267 
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activity9,52. Finally, SA-3: MCAM+ mural cells were enriched for KLF253,54 and EBF155,56 motifs 268 

(padj=4.94e-119, 1.83e-119, respectively; Fig. 3c). 269 

 270 

RA myeloid chromatin classes 271 

 We classified 25,691 myeloid cells into 5 chromatin classes (Fig. 4a; Supplementary 272 

Fig. 4a). The first cluster, MA-2: LYVE1+ TIMD4+ TRM, is a tissue-resident macrophage (TRM) 273 

cluster that had RNA and ATAC signal at LYVE1, a perivascular localization marker14, and 274 

TIMD4, a scavenger receptor14 (Fig. 4b; Supplementary Fig. 4b). We found another TRM 275 

cluster, MA-0: F13A1+ MARCKS+ TRM, with high accessibility and expression at F13A1 and 276 

MARCKS, both known to be expressed in macrophages57,58 (Fig. 4b; Supplementary Fig. 4b). 277 

The MA-1: FCN1+ SAMSN1+ infiltrating monocytes had accessibility and expression for FCN1, 278 

PLAUR, CCR2, and IL1B, similar to an expanded proinflammatory population in a previous RA 279 

study11 (Fig. 4b; Supplementary Fig. 4b). The MA-4: SPP1+ FABP5+ intermediate class likely 280 

arose from bone-marrow-derived macrophages59 with its high accessibility and expression for 281 

SPP1 (Fig. 4b); bone-marrow-derived macrophages are known be abundant in active RA and 282 

induce proinflammatory cytokines/chemokines14,60. Finally, we found the MA-3: CD1C+ AFF3+ 283 

DC chromatin class with expression markers CD1C, AFF3, CLEC10A, and FCER1A, whose 284 

corresponding promoter peaks generally showed more promiscuity across classes (Fig. 4b; 285 

Supplementary Fig. 4b).  286 
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 287 

Fig. 4. RA myeloid chromatin classes. 288 
a. UMAP colored by 5 myeloid chromatin classes defined from unimodal scATAC and 289 
multimodal snATAC cells. 290 
b. Binned normalized marker peak accessibility (top) and gene expression (bottom) for 291 
multiome snATAC cells on UMAP. 292 
c. UMAP colored by chromVAR31 deviations for the KLF4 motif (left). Most significantly enriched 293 
motifs in marker peaks per myeloid chromatin class (right). To be included per class, motifs had 294 
to be enriched in the class above a minimal threshold and corresponding TFs had to have at 295 
least minimal expression in snRNA (Methods). Color scale normalized per motif across classes 296 
with max -log10(padj) value shown in parentheses in motif label. P-values were calculated via 297 
hypergeometric test in ArchR32. 298 
d. UMAP colored by C1QB normalized gene expression (left). C1QB locus (chr1:22,652,235-299 
22,653,595) with selected isoforms, motifs, open chromatin peaks, and chromatin accessibility 300 
reads from unimodal and multimodal ATAC cells aggregated by chromatin class and scaled by 301 
read counts per class (Methods) (right). 302 

 303 
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 We next investigated the TF motifs enriched in the myeloid chromatin classes. MA-2 was 304 

enriched for KLF motifs (Fig. 4c), with KLF4 (padj=1.34e-6) known to both establish residency of 305 

TRMs and to assist in their phagocytic function61. Furthermore, we found a KLF4 motif in the 306 

promoter of C1QB, whose protein product bridges phagocytes to the apoptotic cells they clear62 307 

(Fig. 4d). Both the intermediate MA-4 and the infiltrating monocyte MA-1 classes had significant 308 

enrichments of AP-1 activation motifs63 (JUN padj=1.77e-153, 3.65e-136, respectively; Fig. 4c). 309 

AP-1 factors have been shown to function in human classical monocytes along with CEBP 310 

factors64, also enriched in MA-1 (CEBPD padj=2.10e-26; Fig. 4c). SPI1 (PU.1) is the master 311 

regulator of myeloid development65, including conventional DCs66. We found PU.1 motifs most 312 

strongly enriched in the DC cluster MA-3 (padj=3.24e-55; Fig. 4c).  313 

 314 

RA B/plasma chromatin classes 315 

 Next, we clustered 8,641 B and plasma cells into 4 MS4A1+ B cell and 2 SDC1+ plasma 316 

cell chromatin classes (Methods; Fig. 5a; Supplementary Fig. 5a). We defined a BA-3: 317 

FCER2+ IGHD+ naive B class with high accessibility and expression of FCER2 encoding naïve 318 

marker CD2367 (Fig. 5b; Supplementary Fig. 5b). We also labeled a BA-4: CD24+ MAST4+ 319 

unswitched memory B class (Supplementary Fig. 5b). IGHD and IGHM expression was lower 320 

in BA-2: TOX+ PDE4D+ switched memory B cells, and the TF TOX had its highest expression 321 

and accessibility within B cells in BA-2 as previously shown in switched memory B cells68,69 (Fig. 322 

5b; Supplementary Fig. 5b). BA-5: ITGAX+ ABC (Age-Associated B cells) had high 323 

accessibility and expression of ITGAX, which encodes for CD11c, a key ABC marker70 (Fig. 5b; 324 

Supplementary Fig. 5b). ABCs were shown to be associated with leukocyte-rich RA11 with a 325 

potential role in antigen presentation71, which was supported here by expression of LAMP1 and 326 

HLA-DRA in BA-5 (Supplementary Fig. 5b). The plasma chromatin class, BA-0: CREB3L2+ 327 

plasma, was marked by the TF CREB3L2, a known factor in the transition between B and 328 

plasma cells72 (Fig. 5B; Supplementary Fig. 5b). These results suggested tissue in situ B cell 329 
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activation and differentiation into plasma cells, as we have previously suggested73. Finally, BA-1: 330 

CD27+ plasma, had the highest accessibility and expression of CD27 (Fig. 5b; Supplementary 331 

Fig. 5b). We note that plasma cells were difficult to define using ATAC data, with many of the 332 

immunoglobulin genes having a paucity of chromatin accessibility (Supplementary Fig. 5b).  333 

 334 

Fig. 5. RA B/plasma chromatin classes. 335 
a. UMAP colored by 6 B/plasma chromatin classes defined from unimodal scATAC and 336 
multimodal snATAC cells. 337 
b. Binned normalized marker peak accessibility (top) and gene expression (bottom) for 338 
multiome snATAC cells on UMAP. 339 
c. UMAP colored by chromVAR31 deviations for the SP3 motif (left). Most significantly enriched 340 
motifs in marker peaks per B/plasma chromatin class (right). To be included per class, motifs 341 
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had to be enriched in the class above a minimal threshold and corresponding TFs had to have 342 
at least minimal expression in snRNA (Methods). Color scale normalized per motif across 343 
classes with max -log10(padj) value shown in parentheses in motif label. P-values were 344 
calculated via hypergeometric test in ArchR32. 345 
d. UMAP colored by PRDM1 normalized gene expression (left). PRDM1 locus 346 
(chr6:106,082,865-106,111,658) with selected isoforms, motifs, open chromatin peaks, and 347 
chromatin accessibility reads from unimodal and multimodal ATAC cells aggregated by 348 
chromatin class and scaled by read counts per class (Methods) (right). 349 

  350 

We then explored the TF motif landscape of B and plasma cells. B cells shared many TF 351 

motifs across clusters, with many ETS factors (e.g., SPIB, SPI1, ETS1) as well as EBF1 and 352 

NFkB1/2 (Fig. 5c). SPIB and SPI1 work together to regulate B cell receptor signaling74, which 353 

starts its dysregulation in RA at the naive B cell level75,76 (padj=0, 0, respectively; Fig. 5c). 354 

Switched memory B cells were enriched for ETS1 motifs (padj=9.51e-19; Fig. 5c), whose TF is 355 

required for IgG2a class switching in mice77. In plasma cells, BA-0 had motifs such as KLF278 356 

and SP379 (padj=8.94e-105, 3.84e-138, respectively; Fig. 5c-d). BA-1 was enriched for AP-1 357 

factor motifs80, namely BATF::JUN (padj=0; Fig. 5c-d, Supplementary Fig. 5c). In the locus of 358 

PRDM1, a known plasma TF79, the more BA-0 accessible peak had an SP3 motif while the more 359 

BA-1 accessible peaks had BATF::JUN motifs (Fig. 5d), suggesting potentially different 360 

regulatory strategies by class. 361 

 362 

RA endothelial chromatin classes 363 

Among the 3,809 endothelial cells, we identified 4 chromatin classes (Fig. 6a; 364 

Supplementary Fig. 6a). The EA-2: SEMA3G+ arteriolar class had gene and peak markers for 365 

signaling-related genes including SEMA3G81, CXCL12, and JAG1 (Fig. 6b; Supplementary 366 

Fig. 6b). The NOTCH3 signaling gradient that causes inflammation and joint destruction in RA 367 

mouse models likely originates through Notch ligand JAG1 in these arteriolar endothelial cells21. 368 

We identified the EA-0: SELP+ venular class with markers for leukocyte trafficking to tissue such 369 

as SELP82 as well as inflammatory genes HLA-DRA and CD74 (Fig. 6b; Supplementary Fig. 370 
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6b). We also found a capillary class, EA-1: RGCC+ capillary marked by RGCC and SPARC83 371 

chromatin accessibility and gene expression (Fig. 6b; Supplementary Fig. 6b). Finally, a small 372 

population of EA-3: PROX1+ lymphatic cells had gene expression of and promoter accessibility 373 

at PROX184 and PARD6G genes (Fig. 6b; Supplementary Fig. 6b).  374 

 We identified SOX motifs85 in EA-2, STAT motifs86 in EA-0, and AP-1 motifs87 in EA-1 375 

(Fig. 6c). Sox17 is a crucial intermediary between Wnt and Notch signaling that specifically 376 

initiates and maintains endothelial arterial identity in mice85. Similarly, we found a SOX17 motif 377 

(padj=3.27e-8) in the promoter of NES88,89 with its highest accessibility and expression in EA-2 378 

cells (Fig. 6d). 379 
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 380 

Fig. 6. RA endothelial chromatin classes. 381 
a. UMAP colored by 4 endothelial chromatin classes defined from unimodal scATAC and 382 
multimodal snATAC cells. 383 
b. Binned normalized marker peak accessibility (top) and gene expression (bottom) for 384 
multiome snATAC cells on UMAP. 385 
c. UMAP colored by chromVAR31 deviations for the SOX17 motif (left). Most significantly 386 
enriched motifs in marker peaks per endothelial chromatin class (right). To be included per 387 
class, motifs had to be enriched in the class above a minimal threshold and corresponding TFs 388 
had to have at least minimal expression in snRNA (Methods). Color scale normalized per motif 389 
across classes with max -log10(padj) value shown in parentheses in motif label. P-values were 390 
calculated via hypergeometric test in ArchR32. EA-3 is not shown because only 1 marker peak 391 
was found, likely due to low cell counts. 392 
d. UMAP colored by NES normalized gene expression (left). NES locus (chr1:156,675,399-393 
156,680,400) with selected isoforms, motifs, open chromatin peaks, and chromatin accessibility 394 
reads from unimodal and multimodal ATAC cells aggregated by chromatin class and scaled by 395 
read counts per class (Methods) (right). 396 
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 397 

Synovial tissue is key to identifying pathogenic RA chromatin classes  398 

To determine if the chromatin classes identified in RA tissue were comparable with the 399 

known peripheral blood chromatin landscape, we clustered the tissue cells with those from a 400 

published healthy PBMC multiome dataset90,91 (Methods; Supplementary Fig. 7). To 401 

determine the similarity between the PBMC and tissue chromatin classes, we calculated the 402 

Odds Ratio (OR) between the newly defined clusters and the previous blood and tissue labels; 403 

overall, there was good concordance. For example, the PBMC Treg cells and TA-3: CD4+ 404 

IKZF2+ Treg cells were grouped in combined cluster 5 (OR: 12 and 85, respectively) 405 

(Supplementary Fig. 7a) and PBMC cDC1, cDC2, and pDCs all associated with MA-3: CD1C+ 406 

AFF3+ DCs in combined cluster 4 (OR: Infinite, 45, 78, and 98, respectively) (Supplementary 407 

Fig. 7b). However, there were some tissue chromatin classes that did not have clear 408 

counterparts in PBMCs, such as TA-2: CD4+ PD-1+ TFH/TPH, MA-2: LYVE1+ TIMD4+ TRM, 409 

MA-4: SPP1+ FABP5+ intermediate, and BA-5: ITGAX+ ABC (Supplementary Fig. 7). 410 

Intriguingly, these chromatin classes only identified in the RA synovial tissue are known to be 411 

important in RA pathogenesis11,13,14,16,60. While this could be a difference between healthy and 412 

disease states beyond the blood and tissue comparison, these populations generally skew 413 

towards tissue populations13,92,93 and suggested the importance of examining cells from 414 

diseased tissue environments. 415 

 416 

Chromatin classes are epigenetic superstates of transcriptional cell states 417 

 To understand how these chromatin classes corresponded to transcriptionally defined 418 

cell states, we used Symphony94 to map the RA multimodal snRNA profiles into the well-419 

annotated AMP-RA cell type references12. After embedding the multimodal snRNA profiles into 420 

the AMP-RA reference data, we annotated each multimodal cell by the most common cell state 421 

of its five nearest reference neighbors (Methods). 70% of T cells (24 states), 96% of stromal 422 
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cells (10 states), 96% of myeloid cells (15 states), 96% of B/plasma cells (9 states), and 99% of 423 

endothelial cells (5 states) mapped well (i.e., 3/5 neighbors had the same cell state annotation). 424 

We also observed that the proportion of each cell state in the AMP-RA reference and the 425 

multimodal query datasets was consistent, suggesting that the reference and query datasets 426 

have comparable cell state distributions despite different technologies (Supplementary Fig. 8a-427 

e). 428 

We then sought to understand the correspondence between the mapped transcriptional 429 

cell states and chromatin classes. We calculated an OR for each combination of state and class 430 

to measure the strength of association and used a Fisher’s exact test to assess significance 431 

(Methods).  432 
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 433 

Fig. 7. A chromatin class encompassed multiple transcriptional cell states in proposed 434 
superstate model. 435 
For (a.) T, (b.) stromal, and (c.) myeloid cells, UMAP colored by classified AMP-RA reference 436 
transcriptional cell states for multiome cells (left) and natural log of Odds Ratio between 437 
chromatin classes and transcriptional cell states (right). Non-significant values (FDR<0.05) are 438 
white. In c., M-13: pDC transcriptional cell state was excluded as fewer than 10 cells were 439 
classified into it. 440 

 441 
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We observed that each transcriptional cell state generally corresponded to a single 442 

chromatin class (Fig. 7; Supplementary Figure S8g-h). In contrast, a single chromatin class 443 

represents a superstate encompassing multiple transcriptionally defined cell states. For 444 

example, cells in the TA-0: CD8+ GZMK+ chromatin class were more likely to be labelled in the 445 

T-5: CD4+ GZMK+ memory, T-13: CD8+ GZMK/B+ memory, and T-14: CD8+ GZMK+ 446 

transcriptional cell states across CD4/CD8 lineages (OR=11, 12, 11, respectively; Fig. 7a); the 447 

high GZMK promoter accessibility and expression shared by these states may contribute to this 448 

categorization (Supplementary Fig. 8f). We saw examples of this model in every cell type: SA-1 449 

linked to F-0/F-1 and SA-0 to F-6/F-5/F-3/F-8 in stromal cells; MA-1 to M-7/M-11 and MA-4 to M-450 

3/M-4 in myeloid cells; BA-4 to B-1/B-3 in B/plasma cells; and EA-0 to E-1/E-2 in endothelial cells 451 

as more examples (Fig. 7b-c; Supplementary Figure S8g-h; Supplementary Table 4). 452 

Indeed, when we aggregated the snATAC reads by states, we observed shared openness 453 

between transcriptional cell states within the same class (i.e., superstate), as seen with the 454 

cytotoxic TA-4 grouped cell states T-12/T-15 at the cytotoxicity-associated34 FGFBP2 gene, 455 

lining fibroblast SA-1 grouped cell states F-0/F-1 at the lining-associated11 CLIC5 gene, and 456 

intermediary myeloid MA-4 grouped cell states M-3/M-4 at bone marrow macrophage-457 

associated59 SPP1 gene (Supplementary Fig. 9).  458 

We next asked if evidence for chromatin superstates was sensitive to clustering 459 

resolution. We observed that the class and state relationships largely replicated when we 460 

increased the open chromatin clustering resolution (Supplementary Fig. 10). To further support 461 

the superstate hypothesis, we trained a linear discriminant analysis (LDA) model to predict the 462 

transcriptional cell state between each pair of states from the ATAC principal components 463 

(PCs), upon which the chromatin classes were defined (Methods). Generally, transcriptional 464 

cell states belonging to the same chromatin class were difficult to distinguish using ATAC data 465 

alone (Supplementary Fig. 11). For example, transcriptional states T-14 and T-13 both 466 

belonged to chromatin class TA-0, and thus ATAC PCs could not easily discriminate between 467 
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them (AUROC=0.61); on the other hand, T-14 and T-3 belonged to classes TA-0 and TA-2, 468 

respectively, and LDA nearly perfectly distinguished them (AUROC=0.98) (Supplementary Fig. 469 

11a). In all cell types, the mean AUROC between states within the same chromatin class was 470 

less than that of states across different chromatin classes. For example in T cells, the mean 471 

AUROC was 0.77 within the same classes and 0.88 across different chromatin classes, 472 

suggesting that there was a limit to how well the ATAC data could differentiate between 473 

transcriptional cell states. 474 

 475 

Cell neighborhood associations with histological metrics and cell state proportions 476 

 Next, we sought to investigate associations between the RA chromatin classes and RA 477 

clinical metrics using the larger AMP-RA reference dataset with clinical measurements for 79 478 

RA or OA patients. Per cell type, we classified94 each cell from the AMP-RA reference dataset, 479 

now the query, into the RA chromatin classes based on the five nearest multiome snRNA 480 

neighbors, now the reference (Methods). To validate this annotation, we compared the relative 481 

proportions of chromatin classes between the unimodal scATAC cells and the projected AMP-482 

RA scRNA cells for donors in both studies (Methods). We observed generally high correlation 483 

between the two technologies (Fig. 8a; Supplementary Fig. 12a). We then investigated RA 484 

clinical associations calculated via Co-varying Neighborhood Analysis (CNA)95. In brief, CNA 485 

tests associations between sample-level attributes, such as clinical metrics, and cellular 486 

neighborhoods, which are small groups of cells that reflect granular cell states. We used the 487 

previously described CNA associations defined in the AMP-RA reference cells and re-488 

aggregated them by their chromatin classes (Methods). For example, we found an association 489 

between myeloid cells and histology characterized by lymphoid infiltration density (p=0.005). 490 

Specifically, the increase in lymphocyte populations was positively associated with MA-4: SPP1+ 491 

FABP5+ intermediate class, whose inflammatory cytokines/chemokines production may be 492 

responsible for lymphocyte homing96, and negatively associated with MA-2: LYVE1+ TIMD4+ 493 
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TRM, whose gene markers were found more often on synovial TRMs from healthy and 494 

remission RA than active RA patients14 (Fig. 8b). Additionally, we observed an association 495 

between T cells and histological Krenn inflammation score (p=0.02), with TA-2: CD4+ PD-1+ 496 

TFH/TPH positively97 and TA-4: CD8+ PRF1+ cytotoxic negatively correlated (Supplementary 497 

Fig. 12b). These results were consistent with the original transcriptional cell state findings12 and 498 

suggested that the connections between RA pathology and cell state may begin before 499 

transcription. 500 
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 501 

Fig. 8. Linking RA chromatin classes to RA pathology. 502 
a. For each donor shared between the unimodal ATAC and AMP-RA reference studies with at 503 
least 200 T cells, the Pearson correlation between the relative proportions of T cell chromatin 504 
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classes defined in the unimodal ATAC datasets (x-axis) and classified into in the CITE datasets 505 
through the multiome cells (y-axis). Pearson Correlation Coefficients (R) and p-values (pval) 506 
noted. 507 
b. CNA correlations between myeloid cell neighborhoods and lymphoid density in AMP-RA 508 
reference myeloid cells visualized on UMAP (top) and aggregated by classified myeloid 509 
chromatin classes (bottom). On the top, cells not passing the FDR threshold were colored grey. 510 
On the bottom, FDR thresholds shown in dotted black lines. 511 
c. CNA correlations between T cell neighborhoods and CTAP-TB in AMP-RA reference T cells 512 
visualized on UMAP (top) and aggregated by classified T cell chromatin classes (bottom). On 513 
the top, cells not passing the FDR threshold were colored grey. On the bottom, FDR thresholds 514 
shown in dotted black lines. 515 
d. Scaled mean normalized chromatin accessibility for peaks that overlap putatively causal RA 516 
risk variants across chromatin classes. Additional information in Supplementary Table 5. 517 
e. rs798000 locus, zoomed in (chr1:116,735,799-116,740,800) (top) and zoomed out 518 
(chr1:116,658,581-116,775,106) (bottom) with isoforms, SNPs, open chromatin peaks, and 519 
chromatin accessibility reads aggregated by chromatin class and scaled by read counts per 520 
class (Methods). STAT1/2 motif was downloaded from JASPAR98 ID MA0517.1 and is not to 521 
scale, but it is aligned to the SNP-breaking motif position. 522 

 523 

One of the key findings from the AMP-RA study was the identification of six Cell Type 524 

Abundance Phenotypes (CTAPs), which characterized RA patients into subtypes based on the 525 

relative proportions of their broad cell type abundances in synovial tissue12. For example, 526 

CTAP-TB has primarily T and B/plasma cells. Specific cell neighborhoods within cell types were 527 

expanded or depleted in these CTAPs as defined by CNA associations in the AMP-RA 528 

reference cells. We recapitulated some of these transcriptional associations by re-aggregating 529 

the CNA results within the chromatin classes; for example, the RA T cell class TA-2 was 530 

positively associated with CTAP-TB compared to other T cell states, likely reflecting the role of 531 

TFH/TPH cells in B cell inflammation response11,13, while TA-4 was negatively associated 532 

(p=0.046; Fig. 8c). Furthermore, in stromal cells, we saw the SA-1: PRG4+ lining class positively 533 

associated with CTAP-F, a primarily fibroblast CTAP (p=0.0027; Supplementary Fig. 12c). This 534 

suggested that the most expanded type of fibroblasts in CTAP-F individuals was predominantly 535 

from the synovial lining layer, which was consistent with lining marker CLIC5 protein having high 536 

staining in the lining fibroblasts and being expressed in the highest proportion of cells from high 537 

density fragments of CTAP-F samples (ANOVA padj<0.001 between CTAPs)12. Therefore, we 538 
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could meaningfully replicate the RA pathological associations of both clinical metrics and 539 

phenotypic subtypes to transcriptional cell states using their related chromatin class superstate, 540 

suggesting that the epigenetic regulation underlying the transcriptional cell states may be mined 541 

for further pathological insights into RA. 542 

 543 

Chromatin classes prioritize RA-associated SNPs 544 

 We next asked whether RA risk variants overlap the chromatin classes to help define 545 

function for putatively causal variants, genes, and pathways at play in RA pathology99–103. Using 546 

an RA multi-ancestry genome-wide association meta-analysis study104, we overlapped fine-547 

mapped non-coding variants with posterior inclusion probability (PIP) greater than 0.1 with the 548 

200 bp open chromatin peaks and assessed peak accessibility across the 24 chromatin classes 549 

(Methods; Fig. 8D; Supplementary Table 5). For six loci, putatively causal variants overlapped 550 

a peak accessible in predominantly one cell type, such as rs11209051 in peak chr1:67333106-551 

67333306 in T cells (Wilcoxon T versus non-T class one-sided p=4.17e-04; Methods) near the 552 

IL12RB2 gene and rs4840568 in peak chr8:11493501-11493701 in B/plasma cells (Wilcoxon 553 

p=1.49e-05) near the BLK gene. In the other loci, variants overlapped with chromatin classes 554 

from 2 cell types, with most combinations involving T cells. Moreover, there were 4 SNPs 555 

overlapping peaks accessible in the TA-2: CD4+ PD-1+ TFH/TPH class, which is the most 556 

targeted class within T cells and important for RA pathogenesis11,13.  557 

As an example, we observed putatively causal SNP rs798000 (PIP=1.00) overlap peak 558 

chr1:116737968-116738168, accessible primarily in T cells (Wilcoxon p=2.35e-05) with TA-2 as 559 

its most accessible class (z=3.03) (Fig. 8d-e, top). In a previous study91, we linked active 560 

chromatin regions to their target genes, which suggested CD2 is a causal gene in this locus. 561 

CD2 is a co-stimulatory receptor primarily expressed on T and NK cells105, which likely explains 562 

why it was only accessible in our T cell chromatin classes among the five cell types investigated 563 

(Fig. 8e, bottom). Intriguingly, rs798000 overlaps a STAT1/2 binding site at a high information 564 
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content half site position (Fig. 8e, top, position 8 in JASPAR98 motif MA0517.1), suggesting a 565 

potential direct link to TF regulation of the JAK/STAT pathway commonly upregulated in RA52. 566 

We also discovered SNP rs9927316 (PIP=0.54) in myeloid-specific peak 567 

chr16:85982638-85982838 (Wilcoxon p=4.165e-04), downstream of IRF8, one of the master 568 

regulator TFs of myeloid and B cell fates106–108 (Supplementary Fig. 13a). The SNP disrupts a 569 

KLF4 motif61, one of the TRM TFs highlighted earlier (Supplementary Fig. 13a; Fig. 4c-d). 570 

Furthermore, we observed SNP rs734094 (PIP=0.41) overlapping peak chr11:2301916-571 

2302116, with its most accessible classes in T and myeloid cells: TA-4: CD8+ PRF1+ cytotoxic 572 

and MA-3: CD1C+ AFF3+ DC (z=1.94, 1.65, respectively) (Fig. 8d; Supplementary Fig. 13b). 573 

While existing in the promoters of both TSPAN32 and C11orf21 gene isoforms (Supplementary 574 

Fig. 13b), we91 proposed the causal gene as Lymphocyte-specific Protein 1 (LSP1), shown to 575 

negatively regulate T cell migration and T cell-dependent inflammation in arthritic mouse 576 

models109. For each of these loci, we also aggregated chromatin accessibility by classified 577 

transcriptional cell state and saw that the multiple states underlying each class had similar 578 

patterns, such as rs734094 having some of the strongest signal in TA-4 associated classes T-579 

12, T-21 and MA-3 associated classes M-10, M-14 (Supplementary Fig. 14). This both 580 

reaffirmed our chromatin class superstate model and suggested that the classes are useful 581 

functional units that may help simplify mapping risk loci to affected cell states. The RA tissue 582 

chromatin classes can help prioritize putative cell states of action for non-coding RA risk 583 

variants that may help assist in their functional characterization within disease etiology. 584 

 585 

Discussion 586 

 In this study, we described 24 chromatin classes across 5 broad cell types in 30 synovial 587 

tissue samples assayed with unimodal scATAC and multimodal snATAC along with TFs 588 

potentially regulating them. Based on our observation that cells from the same chromatin class 589 

corresponded to multiple transcriptional cell states, we proposed that these chromatin classes 590 
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are putative superstates of related transcriptional cell states. Finally, we assessed these 591 

chromatin classes’ relationship to RA clinical metrics, subtypes, and genetic risk variants.  592 

 Simultaneous chromatin accessibility and gene expression measurements in the 593 

multiome cells were essential to test the relationship between chromatin classes and 594 

transcriptional cell states. Biologically, open chromatin is necessary but not sufficient for gene 595 

expression18, so it is reasonable to expect related cell states to have similar open chromatin 596 

landscapes with poised enhancers activated by specific TFs in the required state. The 597 

robustness of the observed class-state relationships across multiple clustering resolutions 598 

mitigated concerns that this proposed model was a technical artifact. Moreover, even in the 599 

absence of clusters, classifiers based on continuous ATAC PCs also demonstrated the similarity 600 

of transcriptional states within the same chromatin class.   601 

Defining the relationship between transcriptional cell state and chromatin class may 602 

have important therapeutic implications. One effective RA treatment strategy is the deletion of 603 

the pathogenic cell state: the use of B-cell depleting antibodies (e.g., rituximab10) is an example. 604 

However, if one chromatin class corresponds to multiple transcriptional cell states, then deleting 605 

very specific pathogenic populations may be ineffective as other non-pathogenic transcriptional 606 

cell states may transition into the specific pathogenic cell state in response to the same 607 

pathogenic tissue environment. In that case, altering the environment or removing exogenous 608 

factors (e.g., TFs, cytokines) might be a more effective treatment. SA-0: CXCL12+ HLA-DRhi 609 

sublining fibroblasts, with its four related transcriptional states in our superstate model, may be 610 

an interesting class to study in this regard. SA-0 accessible peaks were enriched for STAT 611 

motifs, suggesting potential regulation by the JAK/STAT signaling pathway. Indeed, JAK 612 

inhibition via tofacitinib and upadacitinib has been shown to prevent HLA-DR induction in RA 613 

synovial fibroblasts110. 614 

More broadly, the results presented here suggest some interesting next steps. First, our 615 

chromatin class superstate model indicated that certain transcriptional cell states were more 616 
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closely linked, but further experimentation would be required to ascertain whether these related 617 

cell states have a plastic enough chromatin landscape that they can potentially cross-618 

differentiate within a cell type or whether they are more broadly grouped by function. Second, to 619 

better understand whether the more pathogenic chromatin classes such as TA-2: CD4+ PD-1+ 620 

TFH/TPH and MA-1: FCN1+ SAMSN1+ infiltrating monocytes are indeed only in tissue, a RA 621 

PBMC scATAC-seq study may be warranted. If we see more of a consensus between the 622 

chromatin landscapes of RA blood and tissue, we may be able to determine if the chromatin 623 

environment is permissible for some of these pathogenic transcriptional populations to arise 624 

before they do. If not, then we confirm the need to investigate tissue inflammation directly at the 625 

tissue level. Third, the chromatin classes could prioritize where to look for functional effects of 626 

putatively causal RA genetic variants. For example, further study could investigate whether 627 

STAT signaling upon CD2 stimulation111,112 is affected by the STAT1/2-motif breaking SNP 628 

rs798000 in TFH/TPH cells, in particular from donors with a subtype of RA characterized by 629 

primarily T and B/plasma cells, as in CTAP-TB, where TFH/TPH cells are most positively 630 

correlated. Our study underscores the value for larger tissue-specific genetic studies examining 631 

the role of genetic variation on open chromatin. 632 

In conclusion, we presented an atlas for RA tissue chromatin classes that will be a useful 633 

resource for linking chromatin accessibility to gene expression and the interpretation of genetic 634 

information. 635 

 636 

Accelerating Medicines Partnership Program: Rheumatoid Arthritis and Systemic Lupus 637 

Erythematosus (AMP RA/SLE) Network includes: 638 

Jennifer Albrecht7, William Apruzzese11, Nirmal Banda18, Jennifer L. Barnas7, Joan M. Bathon12, 639 

Ami Ben-Artzi13, Brendan F. Boyce14, David L. Boyle15, S. Louis Bridges Jr.8,9, Vivian P. 640 

Bykerk8,9, Debbie Campbell7, Hayley L. Carr16, Arnold Ceponis15, Adam Chicoine1, Andrew 641 

Cordle17, Michelle Curtis1,2,3,4,5, Kevin D. Deane18, Edward DiCarlo19, Patrick Dunn20,21, Andrew 642 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2023. ; https://doi.org/10.1101/2023.04.07.536026doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.07.536026
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Filer16, Gary S. Firestein15, Lindsy Forbess16, Laura Geraldino-Pardilla12, Susan M. Goodman8,9, 643 

Ellen M. Gravallese1, Peter K. Gregersen22, Joel M. Guthridge23, Maria Gutierrez-644 

Arcelus1,2,3,4,5,24, Siddarth Gurajala1,2,3,4,5, V. Michael Holers18, Diane Horowitz22, Laura B. 645 

Hughes25, Kazuyoshi Ishigaki1,2,3,4,5,26, Lionel B. Ivashkiv8,9, Judith A. James23, Joyce B. 646 

Kang1,2,3,4,5, Gregory Keras1, Ilya Korsunsky1,2,3,4,5, Amit Lakhanpal8,9, James A. Lederer27, 647 

Zhihan J. Li1, Yuhong Li1, Katherine P. Liao1,4, Arthur M. Mandelin II28, Ian Mantel8,9, Mark 648 

Maybury16, Andrew McDavid29, Joseph Mears1,2,3,4,5, Nida Meednu7, Nghia Millard1,2,3,4,5, Larry 649 

W. Moreland18,30, Alessandra Nerviani31, Dana E. Orange8,32, Harris Perlman28, Costantino 650 

Pitzalis31, Javier Rangel-Moreno7, Karim Raza16, Yakir Reshef1,2,3,4,5, Christopher Ritchlin7, 651 

Felice Rivellese31, William H. Robinson33, Laurie Rumker1,2,3,4,5, Ilfita Sahbudin16, Jennifer A. 652 

Seifert18, Kamil Slowikowski4,5,34,35, Melanie H. Smith8, Darren Tabechian7, Dagmar Scheel-653 

Toellner16, Paul J. Utz33, Dana Weisenfeld1, Michael H. Weisman13,33, Qian Xiao1,2,3,4,5 654 

 655 

11 Accelerating Medicines Partnership® Program: Rheumatoid Arthritis and Systemic Lupus 656 

Erythematosus (AMP® RA/SLE) Network 657 

12 Division of Rheumatology, Columbia University College of Physicians and Surgeons, New 658 

York, NY, USA. 659 

13 Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA. 660 

14 Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 661 

Rochester, NY, USA 662 

15 Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La 663 

Jolla, CA, USA. 664 

16 Rheumatology Research Group, Institute for Inflammation and Ageing, University of 665 

Birmingham, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, 666 

University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK. 667 

17 Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA. 668 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2023. ; https://doi.org/10.1101/2023.04.07.536026doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.07.536026
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA. 669 

19 Department of Pathology and Laboratory Medicine, Hospital for Special Surgery; New York, 670 

NY, USA. 671 

20 Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and 672 

Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. 673 

21 Northrop Grumman Health Solutions, Rockville, MD, USA. 674 

22 Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, NY, USA. 675 

23 Department of Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, 676 

Oklahoma City, OK, USA. 677 

24 Division of Immunology, Department of Pediatrics, Boston Children’s Hospital and Harvard 678 

Medical School, Boston, MA. US. 679 

25 Division of Clinical Immunology and Rheumatology, Department of Medicine, University of 680 

Alabama at Birmingham, Birmingham, AL, USA. 681 

26 Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, 682 

Yokohama, Japan. 683 

27 Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, 684 

MA, USA. 685 

28 Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School 686 

of Medicine, Chicago, IL, USA. 687 

29 Department of Biostatistics and Computational Biology, University of Rochester School of 688 

Medicine and Dentistry; Rochester, NY, USA. 689 

30 Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of 690 

Medicine; Pittsburgh, PA, USA. 691 

31 Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, 692 

Queen Mary University of London; London, UK. 693 

32 Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, NY, USA. 694 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2023. ; https://doi.org/10.1101/2023.04.07.536026doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.07.536026
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 Division of Immunology and Rheumatology, Institute for Immunity, Transplantation and 695 

Infection, Stanford University School of Medicine, Stanford, CA, USA. 696 
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 700 

Methods 701 

Patient recruitment. Fourteen RA and 4 OA patients were recruited by the Accelerating 702 

Medicines Partnership (AMP) Network for RA and SLE to provide samples for use in the 703 

unimodal scATAC-seq experiments. Separately, synovial tissue samples from 11 RA patients 704 

and 1 OA patient were collected from Brigham and Women’s Hospital (BWH) and the Hospital 705 

for Special Surgery (HSS) for use in the multimodal ATAC + Gene Expression experiments. 706 

Histologic sections of RA synovial tissue were examined, and samples with inflammatory 707 

features were selected in both cases.  708 

All clinical and experimental sites that recruited patients obtained approval for this study from 709 

their Institutional Review Boards. All patients gave informed consent. We have complied with all 710 

relevant ethical regulations. 711 

 712 

Synovial tissue collection and preparation. Synovial tissue samples from 14 RA patients and 713 

4 OA patients were collected and cryopreserved as part of a larger study cohort by the AMP 714 

Network for RA and SLE, as previously described12. Synovial tissue samples were thawed and 715 

disaggregated as previously described12,23. The resulting single-cell suspensions were stained 716 

with anti-CD235a antibodies (clone 11E4B-7-6 (KC16), Beckman Coulter) and Fixable Viability 717 

Dye (FVD) eFlour 780 (eBioscience/ThermoFisher). Live non-erythrocyte (i.e., FVD- CD235-) 718 

cells were collected by fluorescence-activated cell sorting (BD FACSAria Fusion). The sorted 719 

live cells were then re-frozen in Cryostor and stored in liquid nitrogen. The cells were later 720 
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thawed and processed as described above for droplet-based scATAC-seq according to 721 

manufacturer’s protocols (10X Genomics). For the multimodal experiments, the 11 RA and 1 OA 722 

synovial tissue samples were collected and cryopreserved before being thawed, disaggregated, 723 

and FACS-sorted as described above. 724 

 725 

Unimodal scATAC-seq experimental protocol. Unimodal scATAC-seq experiments were 726 

performed by the BWH Center for Cellular Profiling. Each sample was processed separately in 727 

the cell capture step. Nuclei were isolated using an adaptation of the manufacturer’s protocol 728 

(10X Genomics). Approximately ten thousand nuclei were incubated with Tn5 Transposase. The 729 

transposed nuclei were then loaded on a Chromium Next GEM Chip H and partitioned into Gel 730 

Beads in-emulsion (GEMs), followed by GEM incubation and library generation. The ATAC 731 

libraries were sequenced to an average of 30,000 reads per cell with recommended number of 732 

cycles according to the manufacturer’s protocol (Single Cell ATAC V1.1, 10X Genomics) using 733 

Illumina Novaseq. Samples were initially processed using 10x Genomics Cell Ranger ATAC 734 

1.1.0, which includes barcode processing and read alignment. 735 

 736 

Multiome experimental protocol. Multiome experiments were performed by the BWH Center 737 

for Cellular Profiling. Each sample was processed separately in the cell capture step. Nuclei 738 

were isolated as above. Approximately ten thousand nuclei transposed nuclei were loaded on 739 

Chromium Next GEM Chip J followed by GEM generation. 10x Barcoded DNA from the 740 

transposed DNA (for ATAC) and 10x Barcoded, full-length cDNA from poly-adenylated mRNA 741 

(for Gene Expression) were produced during GEM incubation. The ATAC libraries and Gene 742 

Expression libraries were then generated separately. Both library types were sequenced to an 743 

average of 30,000 reads per cell on different flowcells with recommended sequencing cycles 744 

according to the manufacturer’s protocol (Chromium Next GEM Single Cell Multiome ATAC + 745 

Gene Expression, 10X Genomics) using Illumina Novaseq. Samples were initially processed 746 
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using 10x Genomics Cell Ranger ARC 2.0.0, which includes barcode processing and read 747 

alignment, for both ATAC and GEX information. 748 

 749 

ATAC quality control. The unimodal scATAC and multimodal snATAC datasets were 750 

processed separately, but in the same manner unless otherwise stated. Reads were quality 751 

controlled from the Cell Ranger BAM files via a new cell-aware strategy that removes likely 752 

duplicate reads from PCR amplification bias within a cell while keeping reads originating from 753 

the same positions but from different cells. For unimodal scATAC-seq data, duplicate reads 754 

from the same cell were called based on read and mate start positions and CIGAR scores, but 755 

the multimodal snATAC-seq data only used start positions since Cell Ranger ARC did not 756 

provide a mate CIGAR score (MC:Z flag). Reads that were not properly mapped within a pair, 757 

had a MAPQ < 60, did not have a cell barcode, or were overlapping the ENCODE blacklisted 758 

regions24 of ‘sticky DNA’ were also removed. BAM read files were converted to fragment BED 759 

files using BEDOPS113 bam2bed while accounting for the 9-bp Tn5 binding site. We kept cells 760 

with more than 10,000 reads with at least 50% of those reads falling in peak neighborhoods (5x 761 

full peak size), at least 10% of reads in promoter regions, not more than 10% of reads calling in 762 

the mitochondrial chromosome, and not more than 10% of pre-deduplication reads falling in the 763 

ENCODE backlisted regions24. The genome annotation we used to define promoters was 764 

GENCODE v28 basic26 as was done for Cell Ranger ATAC read mapping; we defined promoter 765 

regions for the QC step as 2kb upstream of HAVANA protein coding transcripts that we 766 

subsequently merged to avoid double counting. The fragments from the post QC cells were 767 

quantified within the 200bp trimmed consensus peaks (see ATAC peak calling) via 768 

GenomicRanges::findOverlaps114 into a peaks x cells matrix. We then did an initial round of 769 

broad cell type clustering: binarize peaks x cells matrix, log(TFxIDF) normalization using 770 

Seurat::TF.IDF115, most variable peak feature selection using Symphony::vargenes_vst94, 771 

center/scale features to mean 0 and variance 1 across cells using base::scale, PCA 772 
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dimensionality reduction to 20 PCs using irlba::prcomp_irlba, batch correction by sample using 773 

Harmony::HarmonyMatrix27, shared nearest neighbor creation using RANN::nn2 and 774 

Seurat::ComputeSNN115, and Louvain clustering using Seurat::RunModulatrityClustering115. For 775 

the unimodal scATAC-seq broad cell type processing, we chose peaks that had at least one 776 

fragment in at least five percent of cells, TFxIDF normalization using Seurat::TF.IDF115, and 777 

PCA to 20 PCs using irlba::prcomp_irlba with centering and scaling internally before continuing 778 

in the above steps. We visualized clusters using UMAP coordinates via umap::umap. We 779 

removed doublet clusters with multiple cell-type-specific marker peaks (see Broad cell type 780 

clustering), intermediate placement between broad cell type clusters in principal component 781 

space, high fragment counts, and high doublet scores determined per cell per donor by ArchR32. 782 

Note that this does not necessarily preclude doublets of the same cell type. 783 

 784 

ATAC peak calling. For consistent analysis, we used trimmed consensus peaks across all 785 

ATAC cells for all analyses unless otherwise stated. Peaks were called twice, before and after 786 

ATAC cell QC, to first provide general peak information to be used in cell QC step and then 787 

afterwards on the post QC cells to provide the final, refined peak set. Individual scATAC-seq 788 

donor BAM files were converted to MACS2116 BEDPE files using macs2 randsample, 789 

concatenated across donors, and then used to call peaks with macs2 callpeak --call-summits 790 

using a control file117 where ATAC-seq was done on free DNA to account for Tn5's inherent 791 

cutting bias. The best sub-peak, as determined by signal value and q-value, was trimmed to 200 792 

bp (summit ± 100bp) to localize the signal and avoid confounding any statistical analysis with 793 

peak length. Any overlapping peaks were removed iteratively, keeping the best sub-peak, to 794 

avoid double counting. We confirmed these scATAC-seq peaks were reasonable to use for the 795 

multiome snATAC-seq datasets, beyond just that the datasets were done on the same tissue 796 

type, as there was an average of 75% (n=12 datasets; range: 66%-83%) of the 200bp trimmed 797 

snATAC-seq donor-specific peaks overlapping the scATAC-seq consensus peaks; we used the 798 
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5x full consensus peak neighborhoods in the cell QC step for multiome datasets as an added 799 

safeguard. We also confirmed our peaks’ quality by seeing good overlap with ENCODE 800 

SCREEN v3 candidate cis-regulatory elements (cCREs)25 and the GENCODE v2826 promoter 801 

annotations via bedtools118 intersectBed (Supplementary Fig. 1f). 802 

 803 

RNA quality control. snRNA cells had to pass Cell Ranger ARC cell filtering and have at least 804 

500 genes and less than 20% of mitochondrial reads. The Cell Ranger ARC genes x cells 805 

matrix was subsetted to only these cells passing cell QC. We did an initial round of broad cell 806 

type clustering: log normalization to 10,000 reads using Seurat::NormalizeData115, most variable 807 

gene feature selection using a variance stabilizing transformation (VST)115, center/scale features 808 

to mean 0 and variance 1 across cells using base::scale, PCA dimensionality reduction to 20 809 

PCs using irlba::prcomp_irlba, batch correction by sample via Harmony::HarmonyMatrix27, 810 

shared nearest neighbor creation using RANN::nn2 and Seurat::ComputeSNN115, and Louvain 811 

clustering using Seurat::RunModulatrityClustering115. We visualized clusters using UMAP 812 

coordinates using umap::umap. We removed doublet clusters with multiple cell-type-specific 813 

genes (see Broad cell type clustering), intermediate placement between broad cell type 814 

clusters in principal component space, high UMI counts, and high doublet scores determined 815 

per cell per donor by Scrublet119. Note that this does not necessarily preclude doublets of the 816 

same cell type. 817 

 818 

Broad cell type clustering. The unimodal scATAC and multimodal snATAC datasets were 819 

processed separately, but in the same manner unless otherwise stated. For cells passing QC, 820 

we subsetted the feature x cells matrices and preformed broad cell type clustering within 821 

modalities as described above. Marker peaks/genes denoting cell types were used as follows: 822 

CD3D and CD3E in T cells; NCAM1 and NCR1 in NK cells; MS4A1 and TNFRSF17 in B/plasma 823 

cells; CD163 and C1QA in myeloid cells; PDPN and PDGFRB in fibroblasts; and VWF and ERG 824 
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in endothelial cells. Marker peaks were defined as peaks overlapping the promoters of marker 825 

genes; if there were multiple peaks overlapping a gene’s promoter or multiple isoforms of a 826 

gene, the peak that best tracked with the gene’s expression in the multiome cells was chosen. 827 

We also classified the multiome snRNA cells into the AMP-RA CITE-seq study12 broad cell 828 

types using Symphony94 (see Symphony classification of transcriptional cell state). The 829 

small minority of cells (2%) with discordant cell types defined in the snATAC, snRNA, and CITE-830 

seq modalities for the multiome datasets were removed. Here, as in all analyses, we included 831 

OA samples to increase cell counts, but we did not make any OA versus RA comparisons due 832 

to low power. 833 

 834 

Fine-grain chromatin class clustering. To define chromatin classes within broad cell types, 835 

we made peaks x cells matrices for each broad cell type combining unimodal scATAC-seq and 836 

multimodal snATAC-seq cells. Since peaks were called on all scATAC-seq cells regardless of 837 

cell type, we first subset each peaks x broad cell type cells matrix by “peaks with minimal 838 

accessibility” (PMA). We defined minimal accessibility as peaks that had a fragment in at least 839 

0.5% of cells, except for endothelial cells which we increased to a minimum of 50 cells. After 840 

subsetting the matrix by PMA peaks, we ran the same clustering pipeline detailed in the broad 841 

cell type clustering section with 10 PCs requested. For T, stromal, myeloid, and B/plasma cell 842 

types, we used Harmony27 for batch-correction by sample with all other default parameters. For 843 

endothelial cells, due to small cell counts, we batch-corrected on both sample and assay and 844 

updated Harmony’s sigma parameter to 0.2. We did another round of QC to exclude cells that 845 

clustered primarily due to relatively fewer total fragments per cell and fewer peaks with at least 846 

one 1 fragment per cell, and then re-clustered. We tried a number of clustering resolutions (see 847 

Supplementary Fig. 10 for a subset) and chose the resolution at which we could define 848 

clusters biologically with known markers that tracked in both chromatin accessibility and gene 849 

expression spaces.   850 
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 851 

T cell lineage analysis. We used a logistic model to investigate how promoter peaks align with 852 

the CD4 and CD8 lineage distinction (‘lineage’) across cells beyond their chromatin class 853 

identity (‘class’), sample’s donor (‘donor’), and overall fragment counts (‘nFragments’). The 854 

lineage variable was defined as the cell’s chromatin accessibility at the promoter peaks of: 855 

CD4+ CD8A- (+1), CD4+ CD8A+ or CD4- CD8A- (0), CD4- CD8A+ (-1); cell counts by lineage 856 

and class are in Supplementary Table 2. Genome-wide T cell promoter peaks were defined as 857 

those T cell PMA peaks that overlapped an ENCODE promoter-like cCRE25, whose proposed 858 

target gene was assessed via overlapping ENSEMBL120 hg38 release 92 transcript annotations. 859 

For each of these binarized promoter peaks (‘peak’), we calculated two logistic regressions 860 

using lme4::glmer121: 861 

Full model: peak ~ lineage + class + (1|donor) + scale(log10(nFragments)) 862 

Null model: peak ~ class + (1|donor) + scale(log10(nFragments)) 863 

A lineage beta in the model is positive if the peak is associated to CD4 and negative if 864 

associated to CD8. We calculated significance as a likelihood ratio test (LRT) between the full 865 

and null models with multiple hypothesis test correction using FDR<0.20; significant results are 866 

shown in Supplementary Table 3. Furthermore, we defined a lineage score by cell via: 1) 867 

subsetting the normalized chromatin accessibility matrix by the lineage-significant peaks; 2) 868 

dividing CD4-associated peaks by the number of CD4-associated peaks to normalize; 3) 869 

dividing CD8A-associated peaks by the number of CD8A-associated peaks to normalize; 4) 870 

multiplying CD8A-associated peaks by -1 to differentiate lineage; 5) summing over peaks by cell 871 

to get a cell score. Thus, if a cell’s lineage score is positive, that cell is more associated to CD4 872 

and CD8 if otherwise. We aggregated these cell scores by chromatin class in Supplementary 873 

Fig. 2d. 874 

 875 
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Transcription Factor motif analysis. We used ArchR32 version 1.0.2 for our TF motif analysis. 876 

For each cell type’s final QC cells, we subsetted each donor’s fragments using awk122, bgzip123, 877 

and tabix124 before creating arrow files from them using createArrowFiles with all additional QC 878 

flags nullified. ArchR removed samples with two or fewer cells, so one sample with only two 879 

B/plasma cells was removed in that cell type. From the arrow files, we created an ArchR project 880 

via ArchRProject. We added our peak set into the project by addPeakSet and recreated a peaks 881 

by cells matrix via addPeakMatrix. We added our chromatin classes to the project’s cell 882 

metadata with addCellColData. Then, we added motif annotations to our peaks using 883 

addMotifAnnotations with the JASPAR2020 motif set version 2, a 4 bp motif search window 884 

width, and motif p-value of 5e-05. We added chromVAR background peaks via addBgdPeaks 885 

and then calculated chromVAR deviations using addDeviationsMatrix. Next, we found marker 886 

peaks for each chromatin class using getMarkerFeatures via a Wilcoxon test and accounting for 887 

TSS Enrichment and log10(nFragments). Within those marker peaks, we found motif 888 

enrichment via peakAnnoEnrichment with cutoffs FDR <= 0.1 and Log2FC >= 0.5. We modeled 889 

our heatmap of motif enrichment on plotEnrichHeatmap, but we added some filters. As in the 890 

default plotEnrichHeatmap method, we used the -log10(padj), where the p-value is calculated 891 

via a hypergeometric test, as the motif enrichment value. For each chromatin class sorted by 892 

maximum motif enrichment value, we chose the top motifs not already chosen that had at least 893 

an enrichment value of 5 for that class, had the maximal or within 95% of the maximal 894 

enrichment for that class, and whose corresponding TF had at least 0.05 mean-aggregated 895 

normalized gene expression for that class. For myeloid cells, the enrichment cutoff was set to 2 896 

to show some motifs for MA-0. In endothelial cells, there were so few EA-3 cells that only 1 897 

marker peak was called for that class, resulting in no useful motif information to be shown; we 898 

also added a SOX17 motif (JASPAR98 ID MA0078.1), a prominent arteriolar endothelial TF85, to 899 

the JASPAR2020 motif set for endothelial cells. For the chosen motifs, we plotted the 900 
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percentage of the max enrichment value across classes with the max value in parentheses in 901 

the motif label as in plotEnrichHeatmap.  902 

 903 

Loci visualization. To visualize the ATAC read buildups by chromatin class or transcriptional 904 

cell state (class/state), we first subsetted the deduplicated BAM files for each donor by the cells 905 

in the specific state/class using an awk122 command looking for the samtools CB:Z (i.e., cell 906 

barcode) flag; a BAM index file was made for each BAM file for region subsetting purposes 907 

later. Then for each class/state at each locus, we subsetted each donor’s BAM file for that 908 

region using samtools view, merged the BAM files across donors using samtools merge, 909 

converted the BAM files to bedgraph files using bedtools118 genomecov, and then divided the 910 

bedgraph counts by the total read count (by 1e7 reads) in that class/state to allow for 911 

comparison between classes/states. The bedgraph files were then imported to IGV125 and the 912 

data range for each class/state was set to the maximum value across classes/states. Tracks 913 

were colored by their class/state. We did not always show all classes/states for space reasons, 914 

but we picked representatives that were similar in the locus shown. Peaks (see ATAC peak 915 

calling), motifs (see Transcription Factor motif analysis), and SNPs (see Genetic variant 916 

analysis) were imported into IGV as BED files. We could not label all motifs found in these loci 917 

for space reasons, so we picked the enriched motif we were highlighting and a few other motifs 918 

enriched in the highlighted class. We also could not always show all the gene isoforms for all 919 

loci for space reasons, but we did always show a representative isoform for those that looked 920 

similar in the locus shown.  921 

 922 

Stromal DNA methylation analysis. We downloaded 1859 differentially methylated (DM) loci 923 

for RA versus OA synovial fibroblast cell lines from Nakano et al., 201347. We converted the 1 924 

bp DM regions from hg19 to hg38 reference genomes using liftOver126; 1 region did not map. 925 

Next, we overlapped these DM loci with our 200 bp stromal PMA peaks using intersectBed118 to 926 
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get 152 DM loci, 67 associated to hypermethylation and 85 to hypomethylation. We defined a 927 

per-cell score as in the T cell lineage analysis section, but with positive scores corresponding 928 

to hypermethylation and negative scores to hypomethylation. We calculated a Wilcoxon Rank 929 

Sum Test p-value of DNA methylation cell scores between the 11,733 cells in SA-0 and the 930 

12,574 cells not in SA-0 to get significance. 931 

 932 

Tissue and blood analysis. We downloaded a publicly available 10x Single Cell Multiome 933 

ATAC + Gene Expression dataset90 of healthy donor (female, age 25) PBMCs with granulocytes 934 

removed through cell sorting as part of our sister study91 (‘Public PBMC’ dataset). The PBMC 935 

cell labels were generated using the processing defined in that study. No further quality control 936 

was done on the fragment file downloaded from the 10x website 937 

(https://cf.10xgenomics.com/samples/cell-938 

arc/2.0.0/pbmc_granulocyte_sorted_10k/pbmc_granulocyte_sorted_10k_atac_fragments.tsv.gz)939 

. For each cell type (B, T, and myeloid), we subset the fragment file by that cell type’s cells and 940 

then overlapped them with our peaks to get a peaks x cells matrix as done in ATAC quality 941 

control. We concatenated this matrix to our RA tissue’s peaks x cells matrix for each 942 

corresponding cell type and then re-clustered using the same PMA and variable peaks chosen 943 

for tissue and harmonizing by sample. We chose the resolution that best mirrored the RA tissue 944 

chromatin classes. The odds ratio for each individual biological source’s cell label and the 945 

combined tissue and blood cluster label was calculated as in Class/state odds ratio. 946 

 947 

Symphony classification of transcriptional cell state. To determine the RA transcriptional 948 

cell states within our multimodal data, we used Symphony94 to map the multimodal snRNA 949 

profiles into the AMP-RA reference synovial tissue transcriptional cell states12. We used a 950 

Symphony reference object from that study for each broad cell type we tested (T cell, stromal, 951 

myeloid, B/plasma, and endothelial); the lymphocyte states were defined using both gene and 952 
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surface protein expression while the others were defined using gene expression only. For each 953 

cell type, we mapped each multimodal snRNA gene x cells matrix into the appropriate 954 

Symphony reference object using the mapQuery function, accounting for donor as a batch 955 

variable. Using the knnPredict function with k=5, each multiome cell was classified into a 956 

reference transcriptional cell state by the most common annotation of its five nearest AMP-RA 957 

reference neighbors in the harmonized embedding. We considered it a high confidence 958 

mapping if at least 3 out of the 5 nearest reference neighbors were the same cell state, though 959 

the number of cell states will affect this as more cell states means more boundary regions 960 

between cell states.  961 

 962 

Class/state odds ratio. For each combination of chromatin class and transcriptional cell state 963 

within a cell type, we constructed a 2x2 contingency table of the number of cells belonging or 964 

not to the class and/or state. For cell states that had more than 10 classified cells, we then 965 

calculated the odds ratio (OR) and p-value via stats::fisher.test. We did multiple hypothesis test 966 

correction via stats::p.adjust using FDR<0.05. We displayed the natural log of the OR via 967 

base::log, and if the value was infinite, we capped it at 1 plus the ceiling of the non-infinite max 968 

absolute value of logged OR for display purposes; negative infinity was the negative capped 969 

number. All the ORs and p-values for all class/state combinations from Fig. 7 and 970 

Supplementary Fig. 8g-h are in Supplementary Table 4. 971 

 972 

Linear discriminant analysis. We used linear discriminant analysis (LDA) to determine how 973 

well knowing the ATAC harmonized principal component (hPC) information helped predict the 974 

mRNA fine-grain cell states for each pairwise combination of states. We specifically use 975 

pairwise combinations instead of 1 versus all comparisons to assess the chromatin accessibility 976 

data’s ability to give rise to one or multiple transcriptional cell states. For each pair of 977 

transcriptional cell states within a broad cell type, we subset all data structures by those cells 978 
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and remade the cell state vector into a 1-hot encoding. If either cell state of the pair has less 979 

than 50 cells, we excluded it from further analysis. We used the ten ATAC hPCs from the fine-980 

grain chromatin class clustering (see Fine-grain chromatin class clustering). Covariates of 981 

donor (1-hot encoded for 12 donors) and scaled logged number of fragments (nFragments) 982 

were used since both can affect cell type identity. We trained an LDA model using MASS::lda on 983 

75% of cells across the pair of states, verifying that the training and testing sets had cells from 984 

both states: 985 

LDA model: cell state ~ ATAC hPCs + donors + scale(log10(nFragments)) 986 

We tested the model using stats::predict for the 25% of held-out data and quantified the 987 

discriminative value of the model using an area under the curve AUC metric from ROCR127 988 

library functions ROCR::prediction and ROCR::performance. Pairs of distinct clusters were only 989 

calculated once; the square matrices of results have the triangles mirrored. If the cell states 990 

were the same and a model was not run (identity line) or the model between pairs of clusters 991 

had a constant variable due to donors with too few cells (non-identity line), the box is greyed 992 

out.  993 

 994 

Symphony classification of chromatin class. To utilize the richer clinical information in the 995 

more abundant AMP-RA reference datasets, we classified each AMP-RA reference cell into a 996 

chromatin class. We used the same shared transcriptional spaces by cell type defined in 997 

Symphony classification of transcriptional cell state, but we reversed the reference and 998 

query objects in the knnPredict function, such that the multiome cells were in the ‘reference’ and 999 

the AMP-RA reference cells were in the ‘query’. We used the most common annotation of the 5 1000 

nearest multiome neighbors to classify the chromatin class in the AMP-RA reference cells. We 1001 

averaged the 5 nearest multiome neighbors’ UMAP dimensions to visualize the classified 1002 

chromatin classes in the AMP-RA reference cells on the ATAC-defined UMAPs. 1003 

 1004 
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scATAC-seq and CITE-seq shared donor analysis. There were different samples that came 1005 

from the same donors in the unimodal scATAC-seq and AMP-RA reference CITE-seq datasets. 1006 

We expected similar, but not the same, chromatin class proportions for samples coming from 1007 

the same donor’s tissue but put through different experimental protocols and class assignment 1008 

methods. First, we filtered out any donors that did not have at least 200 scATAC or CITE cells in 1009 

all cell types except endothelial in which we lowered the threshold to 100 cells. We then 1010 

calculated the proportion of each sample’s cells coming from each chromatin class for each 1011 

technology and plotted the CITE proportion by scATAC proportion for each donor, faceted by 1012 

chromatin class in Fig. 8a and Supplementary Fig. 12a. We calculated the Pearson correlation 1013 

and p-value for each chromatin class by stats::cor.test. 1014 

 1015 

Co-varying neighborhood analysis (CNA). We used the significant CNA95 correlations 1016 

between AMP-RA reference cell neighborhoods and sample-level covariates from our AMP-RA 1017 

reference study12. We re-plotted the AMP-RA reference cell CNA correlations on the ATAC-1018 

defined UMAPs and re-aggregated them by classified chromatin class calculated in Symphony 1019 

classification of chromatin class. 1020 

 1021 

Genetic variant analysis. We used the set of RA-associated non-coding SNP locations and 1022 

statistically fine-mapped post-inclusion probabilities (PIPs) from our previously published RA 1023 

multi-ancestry genome-wide association meta-analysis study104. We subsetted the SNPs by 1024 

PIP>0.1 and overlapped their locations with our peaks using intersectBed118. For the 1025 

overlapping peaks, we plotted their normalized chromatin accessibility mean-aggregated by 1026 

chromatin class and scaled in Fig. 8d with more description in Supplementary Table 5. To 1027 

determine broad cell type specificity of a peak’s accessibility, we calculated a Wilcoxon Rank 1028 

Sum Test 1-sided “greater” p value between the normalized, aggregated, scaled peak 1029 

accessibility in the broad cell type’s classes versus those classes in the other broad cell types. 1030 
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Classes were considered accessible for that peak if the scaled mean normalized peak 1031 

accessibility over 24 classes and 11 peaks, z, > 1. We plotted example loci in Fig. 8e and 1032 

Supplementary Fig. 13 as described in Loci visualization; we excluded some chromatin 1033 

classes for space, but we kept the most accessible chromatin classes and at least one 1034 

chromatin class from each cell type at each locus. The TF motif logos in Fig. 8e and 1035 

Supplementary Fig. 13 were downloaded from JASPAR motif database98 for accession IDs 1036 

MA0517.1 (STAT1::STAT2), MA0039.4 (KLF4), and MA1483.1 (ELF2); they were not to scale, 1037 

but the motif position the SNP disrupts is aligned to the SNP. We further aggregated ATAC 1038 

reads by transcriptional cell state for visualization purposes in Supplementary Fig. 14. 1039 

 1040 

Data Availability 1041 

Raw and processed data will be available on public repositories upon acceptance. 1042 

 1043 

Code Availability 1044 

The code used to generate the results presented herein can be found on GitHub 1045 

(https://github.com/immunogenomics/RA_ATAC_multiome/). 1046 
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