
MutaGAN: A sequence-to-sequence GAN framework to
predict mutations of evolving protein populations

Daniel S. Berman,*,** Craig Howser,† Thomas Mehoke,‡,†† Amanda W. Ernlund, and Jared D. Evans§

Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723, USA
†Present address: Craig Howser, Nyla Technology Solutions; howsercw@gmail.com.
‡Present address: Thomas Mehoke, NexLeaf Analytics; tmehoke@gmail.com.
§Present address: Jared D. Evans, PhD, Department of Pathology and Microbiology, University of Nebraska Medical Center; email: jarevans@unmc.edu;
phone: 402-552-2846.
**https://orcid.org/0000-0002-9176-7535
††https://orcid.org/0000-0001-6607-8925
*Corresponding author: E-mail: Daniel.Berman@jhuapl.edu

Abstract

The ability to predict the evolution of a pathogen would significantly improve the ability to control, prevent, and treat disease. Machine
learning, however, is yet to be used to predict the evolutionary progeny of a virus. To address this gap, we developed a novel machine
learning framework, named MutaGAN, using generative adversarial networks with sequence-to-sequence, recurrent neural networks
generator to accurately predict genetic mutations and evolution of future biological populations. MutaGAN was trained using a gen-
eralized time-reversible phylogenetic model of protein evolution with maximum likelihood tree estimation. MutaGAN was applied to
influenza virus sequences because influenza evolves quickly and there is a large amount of publicly available data from the National
Center for Biotechnology Information’s Influenza Virus Resource. MutaGAN generated ‘child’ sequences from a given ‘parent’ protein
sequence with a median Levenshtein distance of 4.00 amino acids. Additionally, the generator was able to generate sequences that
contained at least one known mutation identified within the global influenza virus population for 72.8 per cent of parent sequences.
These results demonstrate the power of the MutaGAN framework to aid in pathogen forecasting with implications for broad utility in
evolutionary prediction for any protein population.

Keywords: generative adversarial networks; sequence generation; Influenza virus; deep learning; evolution.

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Biological evolution mainly manifests itself through seemingly
random mutations that occur during genome replication. When
this change improves organismal fitness, the probability the muta-
tion is passed on to future generations is increased. Virus replica-
tion is inherently error-prone, and only mutations that maintain
the ability to infect hosts and evade the host immune system
are inherited by subsequent generations. Because these mutations
occur seemingly randomly in the genetic sequence that codes for
these proteins, it is difficult to predict which strains will emerge
and become predominant.

Although it is not currently possible to capture all variables
that give rise to traits across a population, modeling the appear-
ance and persistence of different mutations over time can serve
as a proxy for understanding environmental pressures (Frank and
Slatkin 1990; Kussell and Leibler 2005; Wolf, Vazirani, and Arkin
2005; Mustonen and Lässig 2009). Subsequently, if an accurate
model can be created, changes that occur in future populations
can be predicted (Bedford, Rambaut, and Pascual 2012; Neher,
Russell, and Shraiman 2014; Neher et al. 2016). Tools to predict

the evolution of a biological organism would significantly improve
our ability to prevent and treat disease. The knowledge of how
an organism will evolve would allow us to develop more precise
interventions and preventive measures in advance and to pre-
vent outbreaks or combat invasive species. Deep learning has
led to performance breakthroughs in a number of applications
but is yet to contribute to predicting mutations and evolution
of biological populations. We viewed this problem of predict-
ing mutations as analogous to some natural language process-
ing (NLP) tasks, like translation and text generation, for which
deep learning has proven successful, making it a great model
candidate.

Deep learning and biological sequences
New methods in data science have been applied to biolog-
ical sequences for purposes of unsupervised characterization
and supervised classification tasks. Deep learning is a natu-
ral candidate for these efforts due to an exceptional ability to
abstract higher-order structures from high-resolution and com-
plex datasets. Previous work has applied NLP techniques to

mailto:Daniel.Berman@jhuapl.edu
https://creativecommons.org/licenses/by/4.0/

2 Virus Evolution

genomic sequence sets (Bengio et al. 2003; Bengio, Courville, and
Vincent 2013; Mikolov, Yih, and Zweig 2013; Mikolov et al. 2013a,b;
Levy and Goldberg 2014). Ng created a word embeddings process
for DNA, called dna2vec, which creates vector representations for
short substrings of DNA sequences (Ng 2017). The extension of
deep neural network architectures such as convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and stacked
autoencoders onto biological sequence data has proven useful
for DNA sequence classification (Rizzo et al. 2015; Zhou and
Troyanskaya 2015; Quang and Xie 2016) as well as prediction of
RNA binding sites (Alipanahi et al. 2015), protein–protein inter-
actions (Sun et al. 2017), and DNA–protein binding (Zeng et al.
2016). Furthermore, deep learning methods have been extended
to the problem of protein-folding (Spencer, Eickholt, and Cheng
2014; Asgari and Mofrad 2015) to predict molecular characteris-
tics like secondary structure (Wang et al. 2016), backbone angle
and solvent accessibility surface areas (Heffernan et al. 2015), and
other details about proteins (Bepler and Berger 2019).

In 2014, Goodfellow et al. developed a technique for training
generative models called generative adversarial networks (GANs)
(Goodfellow et al. 2020), followed by the development of condi-
tional GANs in the same year (Mirza and Osindero 2014). GANs
have seen the greatest success in image generation (Reed et al.
2016; Isola et al. 2017; Ledig et al. 2017; Ma et al. 2017) and have
also been used to generate text (Yu et al. 2017; Zhang et al. 2018;
Keneshloo et al. 2019; Tuan and Lee 2019). GANs have also been
extended to bioengineering applications, where they were imple-
mented in conjunction with CNNs to optimize DNA for microarray
probe design (Killoran et al. 2017), protein sequences for discovery
of novel enzymes (Repecka et al. 2021), as well as implemented
with an RNN for gene sequence optimization for antimicrobial
peptide production (Gupta and Zou 2018), all from random noise.
Additionally, a CNN-based GAN was used to predict the most prob-
able folding of protein sequences given amino acid sequence and
pairwise distances between α-carbons on the protein backbone
(Anand and Huang 2018). In all of these cases, sequence length
ranged between 50 and 300 amino acids. However, none of these
used an RNN conditional GAN to model the natural evolution of a
biological sequence.

Sequence-to-sequence model
The specific deep learning architecture used to enable high-
performance encoded representations of sequences is known
as a sequence-to-sequence (seq2seq) model (Hochreiter and
Schmidhuber 1997). A seq2seq model is a type of neural machine
translation algorithm that uses at least two RNNs, like long short-
term memory (LSTMs) (Sutskever, Vinyals, and Le 2014), that
take as input a sequence with the goal of constructing a new

sequence (Sutskever, Vinyals, and Le 2014). There are two parts
to this model: an encoder and a decoder, shown in Fig. 1. The
encoder E, with encoding dimension f, takes as input a sequence
and converts it into a vector of real numbers. This vector is then
used as the initial state of the decoder, which constructs the
goal sequence. seq2seq models have shown success in translation
tasks (Bahdanau, Cho, and Bengio 2014; Luong et al. 2015) and
text summarization tasks (Nallapati et al. 2016). For this reason,
we viewed the problem of modeling protein evolution from parent
to child as a translation problem. The seq2seq model in MutaGAN
uses a bidirectional encoder (Schuster and Paliwal 1997), simulta-
neously evaluating the input sequence forward and backward to
produce the optimally encoded vector.

GANs
A GAN consists of two neural networks, a generator G and a dis-
criminator D, that compete in a zero-sum game of the generator
trying to fool the discriminator and the discriminator trying to dis-
tinguish real examples from generated examples. The traditional
methodology for training a GAN alternates between training the
discriminator and freezing the weights in the discriminator and
training the GAN to generate sequences that the discriminator
thinks are real. Typically, a GAN is trained to turn random noise
into an output matching a known distribution. However, by con-
ditioning the output of a GAN on a partially structured input,
in addition to random noise, we can implement a conditional
GAN (Mirza and Osindero 2014). The conditional GAN used in this
paper is shown in Fig. 2. In the context of this work, our partially
structured input was the parent protein sequence, which, once
encoded, was combined with a random vector of noise. Because
mutations are inherently stochastic, we identified a conditional
GAN framework as the ideal model candidate for the use of a
seq2seq model to generate numerous mutations given a single
parent protein.

Influenza
Influenza virus is an important human pathogen, causing signifi-
cant annual morbidity and economic burden globally. In the USA,
influenza contributes to over 30,000 deaths each year (Thomp-
son et al. 2003, 2004; O’Brien et al. 2004). Human influenza A
viruses are named based on the geographic location where the
virus was isolated, the date of the isolate, and the identity of
the two major surface proteins, hemagglutinin (HA) and neu-
raminidase (NA) (WHO 1980). There are eighteen distinct antigenic
subtypes of HA (H1–18) and eleven distinct antigenic subtypes of
NA (N1–11), with only H1N1 and H3N2 currently circulating in the
human population (Kosik and Yewdell 2019; CDC 2022). While few
influenza subtypes are circulating within the human population,

Figure 1. A seq2seq model using two bidirectional LSTM encoder and a unidirectional LSTM decoder and embedding layers.

D. S. Berman et al. 3

Figure 2. The MutaGAN framework’s architecture. The generator of the MutaGAN is a seq2seq translation deep neural network using LSTMs and
embedding layers. The encoding layer uses a bidirectional LSTM. The output of the encoder is combined with a vector of random noise from a normal
distribution N(0,1). The output of the decoder LSTM feeds into a softmax dense layer. An argmax function is then applied to select a single amino acid
at each position, rather than a probability distribution. The discriminator uses an encoder with a slightly different structure from the encoder in the
generator, but it uses the same weights. This is because an argmax function is not differentiable. Therefore, the first layer of the encoder in the
discriminator is a linear dense layer with the same output size as the term embedding layer in the generator. This allows it to take as input, the output
of the dense layer of the decoder in the generator. The weights of this dense layer are the same as those of the embedding layer, meaning that it
produces a linear combination of the embeddings from the embedding layer of encoder. The discriminator takes in two sequences and determines
whether the input sequences are a real parent–child pair or if they are not. The sequences that are not real parent–child pairs are a parent and
generated sequences and two real sequences that are not parent–child pairs.

4 Virus Evolution

a major concern has been the introduction of new, more infec-
tious subtypes from animals, e.g. avian or porcine species. This
so-called ‘species jumping’ has caused great concern due to the
potential for a global spread, similar to the 1918 Influenza Pan-
demic (Webster 1999; Palese and Shaw 2007). A recent example
highlighting this is the introduction of a new H1N1 strain in 2009
that was introduced from pigs in Mexico (World Health Organiza-
tion (WHO) 2010; Hensley and Yewdell 2009; Michaelis, Doerr, and
Cinatl 2009).

Current vaccine sequence selection is an inexact process based
on recent field surveillance data to produce the seed stock for
the next year. This approach has resulted in frequent mismatch
between vaccine antigens and circulating virus. Another delay
in vaccine production is caused by testing candidate vaccine
sera against circulating strains. This antigenic characterization of
influenza virus through serological interrogation with antibody-
containing sera is crucial for virus titration, identifying new anti-
genic variants, vaccine strain selection, and epidemiologic studies.
However, they are slow and costly and only address a small subset
of potential variant viruses. Influenza virus presents significant
challenges due to high virus polymerase error rate and reas-
sortment of the segmented genome that result in a constantly
changing protein landscape with antigenic drift and antigenic
shift, respectively (Kawaoka, Krauss, and Webster 1989; Hensley
et al. 2009; Medina and García-Sastre 2011; Imai et al. 2012; de
Vries et al. 2013; Harding and Heaton 2018).

The small changes that occur from antigenic drift usually pro-
duce viruses that are closely related genotypically and antigeni-
cally, which can be illustrated on a phylogenetic tree. These close
relations and similar antigenic properties often enable immune
cross-protection (Tenforde et al. 2021). However, it has been shown
that a single change in a particularly important antigenic loca-
tion on the HA can also lead to the immune system unable to
recognize the virus (Laver et al. 1979; Yewdell, Webster, and
Gerhard 1979; Webster and Laver 1980; DeDiego et al. 2016; Li
et al. 2016a; Lee et al. 2019). Antigenic drift results in influenza
viruses existing as populations with a major genotype and multi-
ple quasi-species (Kuroda et al. 2010; Lauring and Andino 2010).
This mixed diversity can lead to vaccine mismatch and reduced
protection (Tricco et al. 2013). Furthermore, antigenic drift over
time leads to accumulation of changes and results in new anti-
genic characteristics that can evade the immune system or trans-
mit between species. Current vaccine sequence selection is an
inexact process based on recent field surveillance data to pro-
duce the seed stock for the next year (Perofsky and Nelson 2020).
This approach has resulted in frequent mismatch between vac-
cine antigens and circulating virus. Further exacerbating vaccine
failure is the process employed to evaluate immune response
elicited by vaccination. Specifically, vaccinated animal sera are
tested against the selected virus stock only, which limits the
understanding of the breadth of immune response to other virus
variants.

While deep learning has successfully been applied to genomics
and biological sequence–related tasks, to date, there is no testable
evolutionary forecasting model that predicts with high confidence
which virus genotypes will emerge and circulate annually. There
has been work studying the mutation of viruses and viral escape
using deep learning (Neher, Russell, and Shraiman 2014; Hie et al.
2021) or using statistical methods to model fitness (Bush et al.
1999; Luksza and Lässig 2014, Morris et al. 2018). However, these
do not identify direct parent to child relationships of all sequences
nor predict future progeny sequences of all parent sequences.
Furthermore, other models developed to predict virus evolution

from training data focused on identifying a single, most likely
clade emerging (Neher, Russell, and Shraiman 2014; Neher et al.
2016). This method is not capable of projecting mutations at multi-
ple locations. While understanding clade emergence is important,
this approach does not provide insight into the likelihoods of
individual site mutations and, importantly, cannot be applied to
intrahost evolution. To provide a clearer picture of the different
possible evolutionary trajectories, we developed a novel machine
learning framework that uses broad historical training data to pre-
dict all likely mutations in an influenza virus genome segment
sequence.

Contributions
In this paper, we present MutaGAN, a novel deep learning frame-
work that utilizes GANs and seq2seq models to learn a general-
ized time-reversible evolutionary model. We do this by building
a model capable of generating mutations for a given input par-
ent sequence, replicating key aspects of the phylogenetic tree.
We then demonstrate its capability of accurately modeling the
mutations observed in phylogenetic data of the H3N2 influenza
A virus HA protein. This process is the first deep learning model
that attempts to model and predict the evolution of a protein with
minimal human input and no human supervision.

Material and methods
MutaGAN
The core of our model was a seq2seq translation deep neural
network, which formed the generator in the GAN. The seq2seq
encoder E takes as input a sequence of length N, with a dictionary
size d, and converts it into a vector of length m, 𝐸 ∶ ℝ𝑁x𝑑 → ℝ1x𝑚,
analogous to the embedding layer. The embedding layer of this
network was created using a biological language of 3-mers of
amino acids with a sliding window with step size of 1. For example,
the sequence of amino acids MKTIIALSY is transformed into MKT
KTI TIL ILA…. The output of the decoder LSTM is fed into a soft-
max dense layer (Fig. 2). To achieve our goal of a model that can
generate different sequences for a given parent, the element-wise
random noise vector sampled from a standard normal distribution
was combined with the output of the encoder.

The structure of the encoder in the discriminator is slightly dif-
ferent from that of the encoder in the generator, but it uses the
same weights. An embedding layer requires the input to be in the
form of a single integer, representing a discrete input. However,
the output of the generator at each time step is a probability vector
with dimension ℝ𝑑x1. This cannot be transformed into an integer
with the argmax function because the argmax function is not dif-
ferentiable, meaning that it does not allow for backpropagation to
train the generator. Therefore, a modified encoder takes as input
a vector with dimensions ℝ𝑑x1, with the first layer of the modi-
fied encoder being a linear dense layer with an output of 𝑚and no
bias term. The weights of this dense layer are the same as those of
the embedding layer, meaning that it produces a linear combina-
tion of the embeddings from the embedding layer of the encoder
for parent sequences in the discriminator and the encoder in the
generator. The generated sequences were fed into this encoder as
softmax outputs of the generator, and the real sequences were fed
in as one-hot encoded sequences.

The architecture of the discriminator was built using code
available on https://github.com/DanBAPL/MutaGAN, with the
final layer of the discriminator being a sigmoid function. This
includes the loading of the pretrained autoencoder weights.
Because the two encoders used the same bidirectional LSTM,

https://github.com/DanBAPL/MutaGAN

D. S. Berman et al. 5

the weights for that in the two encoders were automatically
shared once they were loaded into the parent encoder.

The embedding layer in the model had a dimension of 250 and
allowed for 4,500 tokens. Unknown tokens are given the value
‘[UNK]’. We did not have a problem in generating sequences that
had unknown tokens on input, as the sliding window with an over-
lap provided cover. The bidirectional LSTM encoder had 128 units,
making the encoding dimension 𝑓 = 512 (both cell and hidden
states for forward and backward LSTMs), and the LSTM decoder
had 256 units. The discriminator consisted of concatenated hid-
den and cell states of the LSTM encoder and modified LSTM
encoder, as described earlier. This was fed into fully connected
layers of three sets of dropout (20 per cent), batch normaliza-
tion, and a dense layer. The first two dense layers had 128 and
64 dimensions and used a leaky ReLU activation function with
𝛼 = 0.1. The final dense layer was a linear activation function with
Dimension 1.

Dataset
For this work, the influenza virus was chosen as an ideal test
case for this deep learning framework because it is a signifi-
cant human pathogen that changes rapidly, with new strains
emerging annually, and global surveillance efforts have generated
large amounts of publicly available genomic data (Wohlbold and
Krammer 2014). The surface proteins HA and NA of influenza virus
enable virus entry into cells and are the primary immune epi-
topes that elicit antibodies, making them of particular interest for
vaccine development (Wohlbold and Krammer 2014).

Database curation
Influenza virus HA sequences were downloaded from the National
Center for Biotechnology Information’s (NCBI) Influenza Virus
Resource (IVR) (Bao et al. 2008). Utilizing Bash text parsing meth-
ods including awk and sed, the dataset was curated to gene
sequences from the influenza A type and H3N2 subtype that were
obtained from human hosts between 1968 and 2017 and valida-
tion data included strains from 2018–19. Only sequences dated
between 1 January 2018 and 31 December 2019 were used for
the validation dataset. Duplicate records were removed using
the ‘isolate_name’ and ‘isolation_date’ metadata attributes as a
unique identifier. When a duplicate identifier was encountered,
the first record within the IVR database was kept and the remain-
ing records were discarded. Additionally, only isolates that had
full-length HA segments present in the dataset were kept. Of
note, during curation, twenty-two isolates from swine or avian
hosts remained in this dataset (Supplementary Table S1). When
completed, the curated sequence dataset contained 6,840 unique
records of H3N2 influenza virus unique sequences.

Phylogenetic tree generation
For input into the seq2seq GAN framework, phylogenetic recon-
struction was performed using the nucleic acid sequences of the
6,840 HA sequences. All DNA sequences were aligned using Mul-
tiple Alignment using Fast Fourier Transform (v.7.471) (Katoh and
Standley 2013) and trimmed to the coding region. The final max-
imum likelihood (ML) tree was made using RAxML (v.8.1.1) (Sta-
matakis 2014) with a generalized time reversible model, gamma
model of rate heterogeneity, and ML estimate of the alpha param-
eter. The final tree, as shown in Fig. 3, was visualized using FigTree
(v.1.4.4) (Rambaut 2017) with some custom post-processing.

Dataset creation
After rooting the final ML tree to isolate ‘influenza A virus A/Hong
Kong/1/68(H3N2)’, Marginal ancestral sequence reconstruction
was performed with RAxML using the General Time Reversible
model of nucleotide substitution with the gamma model of rate
heterogeneity. Parent–child relationships were generated using
the Bio.Phylo package in BioPython (Cock et al. 2009) and were
limited to single steps between phylogenetic tree levels such that
each parent had exactly two children. One parent–child pair was
generated for each of the 13,678 edges within the final binary
tree. Because phylogenetic tree generation requires removal of
duplicate nucleotide sequences prior to evolutionary modeling,
there was a concern of providing an information bias of evolution
towards the ancestral sequences (i.e. internal nodes) and away
from sequences acquired through genomic surveillance (i.e. leaf
nodes). To mitigate this bias, leaf nodes that had a nucleotide
sequence matching to multiple records within the IVR database
were inserted back into the dataset as duplicate parent–child
pairs. As an example, if a leaf node’s sequence was observed
four times in IVR, there would be four identical parent–child
pairs inserted into the dataset. Upon completion, the number of
parent–child pairs was increased to 17,218 within the formatted
dataset. Each nucleotide sequence was translated to amino acids
for representation learning of the HA protein by the MutaGAN
framework.

The training and test datasets were formed by splitting a list of
the compiled unique parent sequences in a random 90/10 split.
The result was 1,451 unique parent sequences in the training
dataset and 156 unique parents in the test dataset. There were a
total of 15,699 parent–child pairs in the training dataset and 1,519
parent–child pairs in the test dataset. A total of 150 sequence pairs
(0.96 per cent) were removed from the training dataset, and 11
sequence pairs (0.72 per cent) were removed from the test dataset
in which the amino acid Levenshtein distance (see the Generator
evaluation section for description) was ten or greater to prevent
parent–child pairs that were excessively unrelated, either from
sampling bias or mistaken sequence inclusion. This removal had
the effect of isolating an outlier group identified within our phy-
logenetic tree that appeared as a result of a small number of
sequences not being removed during the pre-phylogenetic filter-
ing process. Because the phylogenetic tree was created using the
virus gene sequences and synonymous mutations do not lead to
amino acid mutations in proteins, the corresponding parent–child
protein pairs could be identical. Of the 1,451 unique parents in
the training dataset, 103 parents (7.10 per cent) only had child
sequences that were identical to the parents, while 567 (39.08 per
cent) had only one unique child. For a measure of parent–child
diversity, the training set contained 5,048 parent–child pairs where
the child’s sequence differed from its parent. Matching parent–
child pairs were removed from the training dataset. In the test
set, all instances of matching parents and children were removed,
leaving 433 parent–child pairs with 141 unique parent sequences.
The test dataset only contained pairs in which the parent and child
sequences were different.

The validation dataset was built using the same phylogenetic
tree construction process as the training and test datasets, but
using only data from 2018 and 2019. As a result, it is a temporally
distinct dataset from the training and test dataset, separated by a
full year. This dataset had 3,260 parent–child pairs. Of these 3,260
pairs, ten (0.3 per cent) were removed for having a Levenshtein
distance greater than 10. The remaining 3,250 pairs contained

6 Virus Evolution

Figure 3. Topology of RAxML tree used to build parent–child pairs. The topology of the maximum likelihood tree created from 6,840 H3N2 sequences is
shown in (A). The ancestral sequences of each internal node in this tree were used to form the 13,768 parent–child pairs used to train the seq2seq
generator of the GAN framework. An outlying group, containing twenty-two sequences, was identified as coming from swine or avian hosts, and those
sequences are indicated in blue and with *. One of these twenty-two sequences was from the group of 155 parent-child pairs with a Levenshtein
distance >10 and is indicated in yellow and with **. The region surrounding that outlying group (gray box) is expanded in the inset (B) and further
expanded in the insert (C), where it can be seen that the majority of the parent–child pairs removed for high Levenshtein distance in non-human
hosts come directly off the backbone of the phylogenetic tree leading to the outlying group in blue. This trend continues back to the root of the tree.

1,807 (55.6 per cent) of sequences where the parent and child were
not the same. There were 561 unique parent sequences, and 287
(51.2 per cent) had only one child sequence.

Generator evaluation
The most important metric for assessing quality of the generated
sequences is whether they were able to produce the mutations
observed in the data. However, missing an observed mutation does
not necessarily mean that the generator did not correctly predict
possible mutations and only that it did not correctly predict all
observed mutations. It is possible that predicted mutations would
have likely occurred but just were not included in our subset.

We identified mutations in our sequences by measuring the
Levenshtein distance between parent and child sequences. By
using the Levenshtein distance, we were able to account for inser-
tions and deletions as well as mutations (Levenshtein 1966), and
by using the diff-match package from Google, we were able to
identify where changes were made between two sequences (Fraser
et al. 2018). The diff_cleanupSemantic function in the diff-match-
patch package was used to identify where changes were made
between parents, real children, and generated children. A list of
all child mutations was created for each parent and compared to
each parent’s generated children. A mutation was counted as cor-
rect if change occurred in the generated child that was identical in
amino acid and location as observed in the parent’s real children.
A partially correct mutation was defined as an amino acid change
in the generated child that was identical in location to any muta-
tion in a real child of that parent but differed in amino acid type.
False mutations were defined as mutations that were predicted
but non-existent in the real children, and missed mutations were
defined as mutations observed in at least one of the real children
of the parent but not in the generated child.

In addition to the Levenshtein distance, we use four metrics
for evaluating the performance of the generator: known mutation
location rate, amino acid mutation frequency, true-positive rate,
and weighted true-positive rate.

Known mutation location rate
The first and our primary evaluation metric is the percent of
parent sequences for which MutaGAN was able to generate at

least one known mutation. This mutation must be a known
mutation for that parent sequence, not any random parent. We
refer to this as the known mutation generation rate. This can be
extended to mutations that are in the correct location but incor-
rect change. This is the known mutation location rate. This is
calculated as follows: for the 𝑖th parent sequence with known
child sequences, 𝐶𝑖 = {𝑐0, 𝑐1,…} and set of known mutations ℳ𝑖 =
{𝑚0,𝑚1,…}. For a given input parent sequence used to generate
𝑘 potential sequences, we can create a set of potential mutations
ℳ′

𝑖 = {𝑚′
0, 𝑚′

1,…}

where 𝑁 is the total number of parent sequences.

Amino acid mutation frequency
Frequency of amino acid mutations was calculated to evaluate
the similarity of the mutation profiles between MutaGAN and the
ground truth data (Equation 2). For each mutation within a given
set of mutations, 𝑎(𝑝) is the amino acid of the parent, 𝑎(𝑐) is the
amino acid of the child, and 𝑥𝑎(𝑝)𝑎(𝑐) is the count of all mutations
observed from one amino acid to another. The amino acid muta-
tion frequency is the value 𝑥𝑎(𝑝)𝑎(𝑐) divided by the total number of
recorded mutations. This provides information on the frequency
of mutating one amino acid to another:

True-positive rate
There are two ways of evaluating whether the generated
sequences contain the known mutations. The first is to consider
all the mutations for a known parent and determine whether the
generated sequences contain those mutations. This can be mea-
sured similar to the standard true-positive rate formula, and thus,
we will refer to it as the standard true-positive rate,

D. S. Berman et al. 7

This is useful in determining how well the variety of mutations
are reflected in the generated sequences. However, it does penalize
sequences with multiple known mutations unless those gener-
ated sequences contain all known mutations, which is not some-
thing we want, as we want these mutations distributed across
sequences to be proportional to how they would appear in the
sequencing data. Take, for example, a parent sequence ACFKLM
has two children, ACFHLM and ACFHIM. If MutaGAN generates 100
sequences, fifty of them are exact matches to Child 1 and fifty of
them are exact matches to Child 2, the true-positive rate would be
50.0 per cent because only half of known mutations appear across
all generated sequences. If all generated sequences were ACFHIM,
the true-positive rate would be 100.0 per cent because all known
mutations appear in all children. However, we want our gener-
ated sequences to be more similar to the former scenario than
the latter.

Therefore, we will also use a variation on the standard true-
positive rate in which the number of times a mutation was made
or missed is ignored, paying attention only to whether it hap-
pened across a given parent. We refer to this as the sequence
true-positive rate because it focuses on the presence of mutations
across a given parent sequence. The sequence true-positive rate
is calculated the same way as the standard true-positive rate is
calculated, with one additional step: a unique list of all the muta-
tions is made for sequences generated for each parent, rather than
using the mutations made for each generated sequence.

Weighted true-positive rate
To account for different levels of similarity between any two
amino acids when evaluating mutational errors, Sneath’s index
(Sneath 1966), a percentage representation of the number of
dissimilar comparisons of amino acids along 134 categories of
activity and structure, was incorporated into a calculation for
weighted accuracy. For this analysis, we removed the prediction
of the ambiguous amino acid designation (X). Additionally, we set
the lower limit on the allowable similarity to 0.85 to prevent over
rewarding when calculating weighted averages. Only eighteen dif-
ferent amino acid pairings with Sneath’s Index have similarities
≥0.85 and were included, while all other comparisons were set
to 0. This means there are only eighteen different types of mis-
takes for which partial credit can be awarded. To calculate the
weighted accuracy, each mutation found in the set of generated
children was weighted using thresholded Sneath’s index, 𝑆, and
averaged across the entire table of predicted mutations, 𝐴, where
the columns are the predicted amino acid and the rows are the
expected amino acid, as calculated in Equation 3,

where ⊗ is an element-wise multiplication of two matrices with
the same dimensions.

Experiment
In this section, we present the experiment we designed to train
and test MutaGAN.

Setup
The phylogenetic tree reconstruction took place on a 16 processor
64 GB RAM compute node running Ubuntu. RAxML tree opti-
mization and ancestral reconstruction took roughly 14 days to
complete. The models were built, and training and testing was
implemented in Python version 3.8.8 using the libraries Tensorflow
version 2.6.0 (Abadi et al. 2016) and Keras version 2.6.0 (Chollet

2015) on four GeForce GTX 1080 Ti graphical processing units.
Additionally, metrics were calculated using the functions in the
package scikit-learn version 0.24.1(Pedregosa et al. 2011), the diff-
match-patch package (Fraser et al. 2018), and the natural language
toolkit package (Bird, Klein, and Loper 2009).

Model training
The maximum number of words included in the embedding layer
was 4,500, which was selected by rounding up the number of
unique 3-mers found in our dataset. Additionally, we selected an
embedding size of 250. The encoder portion was a bidirectional
LSTM with 128 nodes, resulting in a state vector of 512 being
passed to the decoder, which was a unidirectional LSTM. Gener-
ator pretraining was performed on the training dataset and tested
on the test dataset. This was performed using the Adam opti-
mizer (Kingma and Ba 2014) with a learning rate of 0.01 until the
model reached a stable state. It was set to train for 72 epochs, but
converged far before that.

GAN training occurred in two stages based on batch size, for
a total of 350 epochs. In both stages, we selected the Adam opti-
mization algorithm and the learning rate for the generator was
1 × 10− 3 and the discriminator was 3 × 10−5. The learning rate for
the discriminator was chosen to avoid mode collapse. The first 200
epochs of the model were trained on a batch size of 32 with the
discriminator for five epochs and the generator training for five
epochs. The last 150 epochs of the model were trained on a batch
size of 45 with the discriminator and the generator training for five
epochs each.

Typically, the discriminator is only meant to help the genera-
tor create realistic data, but the MutaGAN discriminator has the
added goal of making sure that the generated sequence is a pos-
sible child of the parent. Therefore, we modeled our approach
after Reed et al. (Reed et al. 2016) and created three types of
sequence pairs to train the discriminator. The first pair type is
real parents and real children, as determined from the phyloge-
netic model. The second is real parents and generated children.
The third is real parents and real non-children. The purpose of
the third pair is to ensure that the model learns to differentiate
between related and unrelated sequences in the context of evolu-
tion. Ten thousand training records of the third type were gener-
ated by randomly pairing unrelated parent and child sequences
with a Levenshtein distance >15. A lower bound of fifteen was
selected because we wanted to avoid unrelated parent child pairs
that could be too close, as those could be parent–child pairs that
were not sequenced and therefore not observed. As a result, we
could model sequences that were similar and real, but not directly
related.

To optimize performance of the model, our framework devi-
ated from previously published methods in a number of ways.
The MutaGAN seq2seq model was pretrained prior to input into
the GAN using teacher forcing (Williams and Zipser 1989), so the
generator’s decoder also contained a similar embedding layer with
4,500 words and an embedding size of 250. The loss function was
the standard sparse categorical cross entropy loss function.

The initial version of the GAN used a binary cross-entropy loss
function (Equation 4),

However, early iterations of our model using this loss function
were characterized by mode collapse, where the generator pro-
duces an unvarying child sequence given a single parent sequence.

8 Virus Evolution

Table 1. The results and metrics of the MutaGAN model and the
baseline model on the validation data.

Metric

MutGAN perfor-
mance on the
validation dataset

Baseline model
on the validation
dataset

Known mutation
generation rate

72.8% 44.1%

Known mutation location
rate

77.8% 77.1%

Median Levenshtein
distance

Generated vs child 4.00 (𝜇 = 4.83,
𝜎 = 4.12)

1.00 (𝜇 = 1.62,
𝜎 = 1.10)1.00

Generated vs parent 4.00 (𝜇 = 5.10,
𝜎 = 4.14)

(𝜇 = 1.69,
𝜎 = 1.14)

Average difference in
amino acid mutation
frequency

Generated vs training 3.2 × 10−3 9.1 × 10−4

Generated vs validation 2.0 × 10−3 1.1 × 10−3

True-positive rate
Standard (weighted) 23.6% (60.5%) 0.1% (32.3%)
Sequence level (weighted) 25.3% (67.0%) 3.1% (79.2%)

To resolve this problem, the loss function was switched from
binary cross-entropy to Wasserstein loss

where 𝑦𝑛 is the ground truth value, either 1 or −1, and ̂𝑦𝑛is the
predicted value, and the final layer of the discriminator into a
linear activation function (Arjovsky, Chintala, and Bottou 2017).
The loss of the generator is the sum of the Wasserstein loss
and the sparse categorical cross-entropy of generating the child
sequence.

In a variation from Reed et al. (2016), we used sequences gener-
ated by the initial GAN as additional negative examples in training
the discriminator of the final model to prevent the model from
drifting too far off course as a form of experience replay, similar
to an approach used in deep reinforcement learning (Lin 1992).
The initial GAN created a high proportion of generated children
with a Levenshtein distance >300 (Supplementary Fig. S1). Using
this model to generate 10,000 children from randomly selected
parents, with replacement, and removing pairs where the Lev-
enshtein distance was <15, we were left with 8,550 parent–child
pairs. These sequences were used for experience replay. The dis-
tribution of the Levenshtein distances of the sequences for both
the fake parent–child pairs and the experience–replay pairs is
shown in Supplementary Fig. S1 in a stacked histogram, with
the real parent and real non-child sequences in blue and the
real parent and generated sequences from the failed model in
orange.

As a baseline comparison model, we used a Monte Carlo sim-
ulation with the training data acting as our source of the histor-
ical statistics to create a fixed probability model. For this Monte
Carlo simulation, we create three distributions from the training
data: number of mutations, location of mutation, and amino acid
change. For the distribution of the number of mutations, 𝑝num, we
used the number of mutations in the training data and sampled
from that. For the distribution of the location of the mutation, 𝑝loc,
we sampled from the distribution of the locations of known muta-
tions in the training data and then randomly sampled from a set

of {−2, −1, 0, 1, 2} to perturb that location to provide some addi-
tional variability. For the distribution of the amino acid change,
𝑝aa, we used the distribution of amino acid changes in the set
of known mutations in the training data. Therefore, the process
of generating a new sequence using the baseline method is as
follows:

1. 𝑛 ∼ 𝑝num

2. 𝑙 ∼ 𝑝loc until there are 𝑛 unique 𝑙𝑠
3. ̂𝑦𝑖 ∼ 𝑝𝑎𝑎 (𝑥𝑖) for the amino acid 𝑥𝑖 at location 𝑙𝑖 for 𝑖 = 1,…,𝑛.

As with MutaGAN, 100 sequences were generated for each par-
ent in the validation dataset. The results for the baseline model
are shown in Table 1.

Results
After the model was trained, we generated 100 child sequences
for each of the 562 unique parent sequences in the validation
set. After removing overlap between parents from the training
and validation set, there were 536 unique parents. The process
of generating the 53,600 sequences took approximately 30 min.
We then discarded 1,032 sequences with >sixty amino acid dif-
ferences from their parent sequences, a non-biological artifact
that we are treating as noise. A change of this magnitude corre-
sponds to 10 per cent of the overall protein structure and is highly
improbable to have occurred by chance within a single evolu-
tionary step on the timescale with which the phylogenetic model
was created. There were two parent sequences we were unable
to generate viable children for, corresponding to a 0.36 per cent
failure rate. MutaGAN’s performance is summarized in Table 1.
The median Levenshtein distance between parent and observed
child amino acid sequences within the validation dataset was
1.00 (𝜎 = 1.06). The median Levenshtein distance between the
generated sequence and the closest child sequence of the input
parent in the validation dataset is 4.00 (𝜇 = 4.83, 𝜎 = 4.12), com-
pared to 4.00 (𝜇 = 5.10, 𝜎 = 4.14) between the generated and parent
sequence (Supplementary Fig. S2). The generated sequences were
marginally closer to the child sequences, but still very close, to the
parent sequences. This indicates that the model is augmenting its
input to account for the learned model of protein evolution.

The known mutation generation rate was 72.8 per cent, as 390
of the 536 parent sequences had at least one observed muta-
tion augmented onto it within its generated child sequences.
Of the parent sequences that MutaGAN did not correctly iden-
tify a mutation as observed in the ground truth, there were
twenty-seven(5 per cent) sequences for which MutaGAN pro-
duced a mutation in the correct location but with the incor-
rect amino acid. Therefore, the known mutation location rate is
77.8 per cent.

Because amino acids range in biochemical and physical sim-
ilarities, it is important to look closer at the actual mutations
that are made or missed, especially because many of the extra
mutations correspond to common biological mutations between
functionally similar amino acids. Mutation profiles by amino acid
are provided in Fig. 4. A side-by-side comparison of the mutational
profiles is made across the training, validation, and MutaGAN-
generated amino acid sequences with respect to the parent input
sequences. MutaGAN’s amino acid mutational profile is strik-
ingly similar to that of both the training and validation datasets,
indicating that the model has learned a measure of biological
significance in the biophysical and chemical properties of amino

D. S. Berman et al. 9

Figure 4. Amino acid mutation profiles with respect to amino acid types. For the training, validation, and generated child sequences, total counts for
each amino acid mutation from parent to child are displayed in (A). Amino acid ordering was determined using R’s hclust function on the training
data and kept consistent throughout both (A) and (B). Differences in amino acid mutation frequency between the training, validation, and generated
datasets were calculated and are visualized in (B) using Equation 2

acids. To assess if MutaGAN’s generated amino acid mutation pro-
file more closely resembles the training set over the validation
set or vice versa, the average difference in amino acid muta-
tion frequency was calculated for the ‘Generated vs Training’ and
‘Generated vs Validation’ delta mutation profiles (Fig. 4B). This
measure of distance was calculated to be 3.2 × 10−3 and 2.0 × 10−3,
respectively. Importantly, the MutaGAN generated mutation pro-
file shows changes in mutation frequency for specific amino acids
that more closely resembles the validation set when compared
to the training set (Fig. 4A). In particular, it is observed that
there are higher proportions of threonine (T)→lysine (K), threonine
(T)→isoleucine (I), arginine (R)→lysine (K), and glycine (G)→aspar-
tic acid (D) mutations and lower proportions of alanine (A)→valine
(V), glycine (G)→arginine (R), and alanine (A)→threonine (T) within
the ground truth validation data as compared to the ground truth
training data. For these same amino acids, MutaGAN’s mutational
profile shows the same trends.

The results in Table 1 indicate that the MutaGAN model and
the baseline model were able to comparably generate mutations
at sites known for mutations in the validation data, with the
known mutation generation rate of models being 77.8 per cent and
77.1 per cent, respectively. However, the known mutation genera-
tion rate for MutaGAN was 72.8 per cent vs the baseline rate of
44.1 per cent. Additionally, the true positive rate (TPR) scores are
significantly higher for MutaGAN. While the median Levenshtein
distance and the average difference in amino acid mutation fre-
quency were lower for the baseline model, this is expected. Addi-
tionally, this indicates that MutaGAN, while capable of capturing
a similar profile of mutation locations, is capable of making muta-
tions outside the historical distributions that match the validation
data.

The most prominent amino acid mutations that were made
by MutaGAN that were not seen frequently in either the train-
ing or validation data are glutamine (Q)→arginine (R), asparagine
(N)→aspartate (D), asparagine (N)→serine (S), and histidine

(H)→asparagine (N) (Fig. 4B). Interestingly, Arginine is the second
most favorable amino acid mutation from glutamine behind glu-
tamate (Barnes and Gray 2003). Aspartate and serine are the most
favorable amino acid mutations from asparagine alongside histi-
dine, and asparagine is the second most favorable mutation from
histidine behind tyrosine. Another frequently incorrect MutaGAN
mutation of note is serine (S)→proline (P). Serine, when present
on a protein’s surface, often forms hydrogen bonds with the pro-
tein’s backbone and effectively mimics proline (Barnes and Gray
2003). In accordance, the four locations that MutaGAN incorrectly
mutated the HA protein from a serine to a proline were at amino
acid positions 143, 198, 199, and 227 within the HA1 chain, all of
which are located on protein’s surface.

As an artifact of the phylogenetic analysis, a small but notice-
able portion of child sequences within the training, test, and
validation datasets contained the ambiguous amino acid symbol
‘X’ at some location within its sequence. The appearance of ‘X’ in
a child sequence created the appearance that a parent amino acid
could mutate to ambiguity. However, MutaGAN never mutated
a parent amino acid to ambiguity (Fig. 4A). This is likely due to
the fact that of all the amino acids in the training dataset, only
3.35 × 10−3 per cent were ‘X’, meaning that there were too few
examples of ‘X’ for it to learn it.

The overall mutation location profile of historical H3N2
influenza virus HA proteins was well reproduced by Muta-
GAN (Fig. 5). Supplementary Figure S3 shows the same plot on
the test data for comparison purposes. The most highly variable
regions identified in the training and validation datasets (HA1
amino acid indices 120–160 and 185–228) were also the most
mutated regions by MutaGAN. Regions of lesser, but still signifi-
cant, variability were also identified by MutaGAN in accordance
with the historical H3N2 data observed in the training and vali-
dation sets of Fig. 5 such as HA1 residue regions (i.e. amino acid
indices) of 45–59, 259–262, and 273–278. Regions of historical con-
servation were accurately preserved by MutaGAN, most notably

10 Virus Evolution

the HA1 residue region of 11–24 and the HA2 residue region 1–16.
Of the top ten most frequently mutating positions in the training
dataset, MutaGAN’s only had one within its own top ten (Position
121). Between the validation set and MutaGAN-generated set,
there were no overlaps in the top ten most frequently mutated
positions. However, for many of the most frequently mutating
amino acid locations within the training and validation sets, the
location was one or two positions away from a commonly mutated
position in the MutaGAN-generated sequences. For instance, HA1
residues 142, 160, and 193 were in the top ten most frequently
mutated positions in the training and validation sets. HA1 residues
145, 159, and 192 were in the top ten most frequently mutated
positions by MutaGAN. This phenomenon is worth noting because
of the closeness, but the biological significance is not readily
apparent without a deeper analysis of the HA protein structure.
In looking at the structure of the HA protein more closely (Fig. 5B),
it is clear that the concentration of the most frequently mutated
position for both the training and validation data sets occurs out-
side of the protein structure, principally on the outer surface of the
HA1 domain toward the host-recognition regions. It is well under-
stood that the frequent mutation of amino acids at these locations

increases the influenza virus’s likelihood of evading host anti-
bodies during infection. The majority of the MutaGAN-generated
mutations also occur in these same regions but across a notably
larger number of residues on the protein surface. This finding
alludes to the ability of this framework to illuminate localized
function across varying regions of the overall protein structure,
but further simulations must be performed to investigate the
functional effects of the MutaGAN-generated mutations.

We can also examine whether the model is simply repeating
the same mutations or whether it is selecting mutations based
on the input sequence. We can determine this by comparing the
counts of mutations for generated sequences, shown in the bot-
tom graph of Fig. 5, which uses sequences from 2018 to 2019 and
Supplementary Fig. S3, which uses data similar to the training
dataset from 1965 to 2017. These figures appear substantially dif-
ferent, especially in all seven areas of interest. This indicates that
the model is not simply generating the same mutations regardless
of the training data, but generating new mutations based on the
input.

While recognizing that the phylogenetic tree does not cap-
ture the entire breadth of mutations that occurred during the

Figure 5. Amino acid mutation profiles with respect to HA protein locations. For the training, validation, and generated child sequences, total counts
of mutations observed across the entire length of the HA protein segment are displayed in (A), indicating the signal peptide, HA1 (head), and HA2
(stalk) regions of the full HA protein. The most highly variable regions are highlighted in salmon, the third and fourth highlighted regions. Regions of
lesser, but still significant variability, are highlighted in yellow, the second, fifth and sixth highlighted regions. Particularly conserved regions are
highlighted in blue, the first and last highlighted regions. In (B), a diagram of the H3 HA structure (PDB: 4GMS) is colored by this mutation frequency,
with the positions with the fewest mutations in yellow to the positions with the most mutations in brown. Positions with zero observed mutations
across each dataset are colored gray. Residues are displayed as spheres for positions with mutation frequencies above 30 per cent of the maximum
position for each of the three datasets. These 30 per cent threshold lines are also plotted in (A).

D. S. Berman et al. 11

Figure 6. Histograms showing the distribution of correct mutations as
both total counts (A) and percentage of total recorded mutations (B).

entire evolution of the influenza virus, MutaGAN’s performance
was evaluated with respect to this tree as our closest proxy of its
ability to mimic the virus’s evolutionary landscape. The number
of observed mutations reproduced for each parent is visualized
in Fig. 6 and shows that most generated children contained at least
one observed mutation, while a smaller number contained more.

As a measure of the standard true-positive rate, each generated
child’s sequence contained 23.6 per cent of observed mutations
between its parent and real children (the standard true-positive
rate comparing the generated and real child sequences). Using
Sneath’s index (Sneath 1966) to get a deeper assessment of the
closeness of MutaGAN’s predictions, we find that it has a weighted
true-positive rate of 60.5 per cent, calculated using Equation 3,
to compare the generated and real child sequences. This large
increase from an unweighted standard true-positive rate of
23.6 per cent to 60.5 per cent indicates that a majority of the
mutations found within the real child sequences are similar in
biochemical and physical properties to the amino acids MutaGAN
used in those locations. When we use the sequence true-positive
rate, we find that the unweighted sequence true-positive rate
is 25.3 per cent and the weighted sequence true-positive rate is
67.0 per cent.

For 300 parent sequences (53.6 per cent), our model generated
the same child sequence in each of the 100 iterations, regardless
of the noise, using the distribution N(0,1) (Supplementary Fig. S4).
While this behavior might appear to be mode collapse, in the
ground truth validation data, the phylogenetic tree had only one
child for 397 (71 per cent) of the parent sequences as a direct result
of using the amino acid rather than nucleotide sequences and
masking synonymous mutations. Of these 560 parent sequences
whose generated children exhibited mode collapse–like behavior,
287 (51.25 per cent) also had only one child in the ground truth
phylogenetic tree data. Since these proportions of parents with
only one child are similar in both the generated results and the
validation dataset, and notably larger than the 39.1 per cent in the
training dataset, and there is a large overlap in sequences with
only one child in the generated results and validation dataset, it
appears that the mode collapse is only partially responsible. This
is further supported by the standard and sequence level true-
positive rates, which indicate a defaulting to one type of known
mutation, rather than generating a variety of them. Future work,
such as operating directly on nucleotide sequences, could help
reduce the impact of mode collapse on the sequence generation.

Discussion
Accurate mutation forecasting from protein
sequences
The MutaGAN framework presented here is the first method to
utilize a GAN to accurately reproduce and optimize full-length
proteins above 300 amino acids in length with no structural infor-
mation provided to the model beyond amino acid sequence. The
accurate reproduction of the mutation profiles of the HA protein
with specificity of both the types of amino acids changed (Fig. 4)
and locations most likely for persistence (Fig. 5) demonstrates
the potential of this method to be used as a tool for forecasting
the genetic drift or shift that occurs during the outbreak of the
influenza virus. Our findings indicate that the sequence augmen-
tation strategies deployed by MutaGAN optimize its input toward
the most successful patterns observed during the evolutionary
history of a protein. Because this framework is agnostic to the type
of phylogenetic tree and protein type used to generate parent–
child pairs, the extension of these methods to new proteins and
organisms (e.g. the NA protein for influenza and the dengue virus)
is ripe for exploration.

The ability of MutaGAN to learn and optimize mutations for
persistence within a population lends itself well to protein engi-
neering applications. As demonstrated in Figs 4 and 5, the unique
nuances of change within a protein population are capable of
being captured without any additional expert knowledge being
provided to the model beyond a list of parent–child pairs for train-
ing tailored to a specific protein. The observation that MutaGAN
inserts mutations that are biologically relevant, even when not
observed in the ground truth data, poses the question of whether
these mutations produce energetically favorable protein confor-
mations with increased fitness within the evolutionary landscape.
Future work could pair computational protein modeling with
this framework for a deeper analysis of the MutaGAN-generated
sequences for improved forecasting of population-level mutation
propagation. With direct ties to the public health domain, by
measuring the conformational protein favorability of MutaGAN-
generated sequences and analyzing their similarity to currently
circulating pathogenic sequences, public health officials could
assess the threat of potential mutations against vaccine evasion
and improve the design of future treatments or vaccines.

In addition to identification of persistent mutations in a pop-
ulation, MutaGAN has potential to predict novel mutations. Pre-
vious models utilizing evolutionary information are able to iden-
tify historical sequences that may give rise to future clades
(Neher, Russell, and Shraiman 2014) or may provide insight into
mutations that potentially affect fitness and therefore persist in
future populations (Obermeyer et al. 2022). These models can only
provide insight into historical sequences. In contrast, MutaGAN
can utilize evolutionary information to make accurate predictions
regarding persistence of mutation as well as identify potential
new mutations of descendant sequences. Furthermore, MutaGAN
predicts future generations at the sequence level, thus provid-
ing a mechanism to identify amino acid changes of descendant
sequences that can be incorporated into fitness models to inform
forecasting of seasonal influenza variants.

Model reproducibility
Although the mutation profiles are well-reproduced with respect
to amino acid and location, MutaGAN’s performance, when eval-
uated at the single-nucleotide resolution, has a significant room
for improvement. The 23.6 per cent and 25.3 per cent capture of
standard and sequence true-positive rates and 81.2 per cent and

12 Virus Evolution

88.4 per cent prediction of false positives highlight shortcomings
of the current trained model. We hypothesized that the model
could be improved solely by improving the dataset. There is a
high likelihood that the inclusion of swine and avian influenza
sequences into the phylogenetic model inhibited the MutaGAN’s
ability to fit itself on patterns of HA protein evolution specific to
human infection. In addition to a more comprehensive curation
of outliers, a larger population of HA protein sequences could be
utilized to provide additional diversity to the model. The small
number of database records (6,840) used to generate the phy-
logenetic model was unlikely to capture the full breadth and
depth of the true evolutionary landscape of the human H3N2
influenza virus HA protein. By leveraging a larger database of
influenza virus surveillance, such as Global Initiative on Shar-
ing All Influenza Data’s EpiFlu (Shu and McCauley 2017), a more
complete evolutionary model could be generated and provided
to MutaGAN for training, testing, and validation. In addition to
the diversity of sequences provided to the phylogenetic tree, con-
structing this phylogenetic model using time-based Bayesian tree
estimation methods could improve the ability of MutaGAN to
learn time-related aspects of evolution as well as enable a deeper
characterization of the model’s ability to forecast into the future.
This approach could also provide us the opportunity to compare
our model predictions to those of the experts’ predictions in a
given year’s influenza vaccine, as well as look into explainable
artificial intelligence techniques to understand why the model
made the mutations it did. Future studies will also explore non-
deterministic methods of ancestral sequence reconstruction uti-
lizing the simulated nucleotide probabilities per position rather
than strictly including the most probable sequence of the internal
node for inclusion in the parent–child pair. This would allow us to
include in our training data evolutionary pathways that are not
part of the ML pathway, but are still probable.

There are also plans to further improve upon the MutaGAN
framework’s architecture. There are a number of recent advances
in NLP and sequence generation that can be leveraged to fur-
ther improve this algorithm. These advancements include models
like attention (Wu et al. 2016; Vaswani et al. 2017; Zhang et
al. 2019), bidirectional encoder representation from transform-
ers (Devlin et al. 2018), and reinforcement learning (Li et al.
2016b; Yu et al. 2017; Keneshloo et al. 2019; Tuan and Lee 2019).
These models have shown significant improvement over mod-
els relying on LSTMs alone for NLP tasks. When paired with the
larger dataset provided by a larger influenza database and non-
deterministic methods for ancestral sequence reconstruction, we
believe that the fidelity of sequence reconstruction and optimiza-
tion can be improved. Because operating directly on nucleotide
data increases the length of the sequence data from amino acids
by a factor of three and further inhibits the recurrent neural net-
work (RNN) identification of long-range structural relationships,
it was avoided in this study. However, with the implementa-
tion of more robust encoder–decoder architecture, future research
could evaluate the feasibility of MutaGAN to operate directly on
nucleotide sequences. Doing so would align MutaGAN with the
industry standard in phylogenetic analysis and potentially enable
improved learning of evolutionary landscapes through the added
information of synonymous mutations observed within protein
lineages.

Conclusion
Taken together, we have developed a first-of-its-kind deep learn-
ing framework to predict genetic evolution in dynamic biological

populations. As a result, we see the potential for this research to
play a significant role in public health, particularly in disease mit-
igation and prevention. With the improvements outlined earlier, if
MutaGAN was implemented to simulate how currently circulating
pathogens could evolve over time, targeted measures of quaran-
tine and treatment could be more effectively deployed. MutaGAN’s
ability to produce full-length protein sequences while simultane-
ously learning the nuances of evolution lends itself well to the
extension to other protein types, creating potential for impact
within the domain of multiple diseases.

Data availability
Influenza virus HA sequences were downloaded from the NCBI
IVR. The parent–child pairs used for the training, test, and vali-
dation datasets, extracted from the phylogenetic tree, are avail-
able at https://github.com/DanBAPL/MutaGAN. Additionally, we
have provided the parent–non-child pairs and the bad generated
sequences (and models), along with the tokenizer. Code for train-
ing the MutaGAN model, performing analysis, and generating
figures is available at https://github.com/DanBAPL/MutaGAN.

Supplementary data
Supplementary data are available at Virus Evolution online.

Acknowledgements
We are grateful to Jason Fayer, Ben Baugher, Kyle Klarup, and
Logan Hauenstein for their support, comments, corrections, and
feedback.

Funding
This work was supported by the Johns Hopkins University Applied
Physics Laboratory (JHUAPL) Janney Program and the National
Institute of Allergy and Infectious Diseases Centers of Excellence
in Influenza Research and Surveillance [HHSN272201400007C].

Conflict of interest: The authors declare no conflicts of interest.

References
Abadi, M. et al. (2016) ‘Tensorflow: A system for large-scale machine

learning’, in 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), pp. 265–83.

Alipanahi, B. et al. (2015) ‘Predicting the Sequence Specificities of
DNA- and RNA-Binding Proteins by Deep Learning’, Nature Biotech-
nology, 33: 831–8.

Anand, N., and Huang, P. (2018) ‘Generative Modeling for Protein
Structures’, Advances in Neural Information Processing Systems, 31:
7504–15.

Arjovsky, M., Chintala, S., and Bottou, L. (2017) ‘Wasserstein Gener-
ative Adversarial Networks’, in International Conference on Machine
Learning, pp. 214–23.

Asgari, E., and Mofrad, M. R. K. (2015) ‘Continuous Distributed Rep-
resentation of Biological Sequences for Deep Proteomics and
Genomics’, PLoS One, 10: e0141287.

Bahdanau, D., Cho, K., and Bengio, Y. (2014) ‘Neural Machine Trans-
lation by Jointly Learning to Align and Translate’, arXiv preprint
arXiv:1409.0473.

Bao, Y. et al. (2008) ‘The Influenza Virus Resource at the National Cen-
ter for Biotechnology Information’, Journal of Virology, 82: 596–601.

Barnes, M. R., and Gray, I. C. (2003) Bioinformatics for Geneticists. John
Wiley & Sons.

https://github.com/DanBAPL/MutaGAN
https://github.com/DanBAPL/MutaGAN
https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vead022#supplementary-data

D. S. Berman et al. 13

Bedford, T., Rambaut, A., and Pascual, M. (2012) ‘Canalization of
the Evolutionary Trajectory of the Human Influenza Virus’, BMC
Biology, 10: 1–12.

Bengio, Y. et al. (2003) ‘A Neural Probabilistic Language Model’, Journal
of Machine Learning Research, 3: 1137–55.

Bengio, Y., Courville, A., and Vincent, P. (2013) ‘Representation Learn-
ing: A Review and New Perspectives’, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35: 1798–828.

Bepler, T., and Berger, B. (2019) ‘Learning Protein Sequence
Embeddings Using Information from Structure’, arXiv preprint
arXiv:1902.08661.

Bird, S., Klein, E., and Loper, E. (2009) Natural Language Processing
with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly
Media, Inc.

Bush, R. M. et al. (1999) ‘Predicting the Evolution of Human Influenza
A’, Science, 286: 1921–5.

CDC (2022), Types of Influenza Virus. <https://www.cdc.gov/flu/about/
viruses/types.htm> accessed 5 Jan 2022.

Chollet, F. et al. (2015), Keras. <https://keras.io>.
Cock, P. J. A. et al. (2009) ‘Biopython: Freely Available Python Tools

for Computational Molecular Biology and Bioinformatics’, Bioin-
formatics, 25: 1422–3.

DeDiego, M. L. et al. (2016) ‘Directed Selection of Influenza Virus Pro-
duces Antigenic Variants that Match Circulating Human Virus
Isolates and Escape from Vaccine-Mediated Immune Protection’,
Immunology, 148: 160–73.

Devlin, J. et al. (2018) ‘Bert: Pre-Training of Deep Bidirec-
tional Transformers for Language Understanding’, arXiv preprint
arXiv:1810.04805.

de Vries, R. P. et al. (2013) ‘Evolution of the Hemagglutinin Protein
of the New Pandemic H1N1 Influenza Virus: Maintaining Opti-
mal Receptor Binding by Compensatory Substitutions’, Journal of
Virology, 87: 13868–77.

Frank, S. A., and Slatkin, M. (1990) ‘Evolution in a Variable Environ-
ment’, The American Naturalist, 136: 244–60.

Fraser, N. et al. (2018), Google-diff-match-patch. <www.google-diff-
match-patchhttp://code.google.com/p/google-diff-match-patch>
accessed 3 Jan 2019.

Goodfellow, I. et al. (2020) ‘Generative Adversarial Networks’, Commu-
nications of the ACM, 63: 139–44.

Gupta, A., and Zou, J. (2018) ‘Feedback GAN (FBGAN) for DNA: A Novel
Feedback-Loop Architecture for Optimizing Protein Functions’,
arXiv preprint arXiv:1804.01694.

Harding, A. T., and Heaton, N. S. (2018) ‘Efforts to Improve the
Seasonal Influenza Vaccine’, Vaccines, 6: 19.

Heffernan, R. et al. (2015) ‘Improving Prediction of Secondary Struc-
ture, Local Backbone Angles and Solvent Accessible Surface Area
of Proteins by Iterative Deep Learning’, Scientific Reports, 5: 1–11.

Hensley, S. E. et al. (2009) ‘Hemagglutinin Receptor Binding Avidity
Drives Influenza A Virus Antigenic Drift’, Science, 326: 734–6.

Hensley, S. E., and Yewdell, J. W. (2009) ‘Que Sera, Sera: Evolution of
the Swine H1N1 Influenza A Virus’, Expert Review of Anti-infective
Therapy, 7: 763–8.

Hie, B. et al. (2021) ‘Learning the Language of Viral Evolution and
Escape’, Science, 371: 284–8.

Hochreiter, S., and Schmidhuber, J. (1997) ‘Long Short-Term Memory’,
Neural Computation, 9: 1735–80.

Imai, M. et al. (2012) ‘Experimental Adaptation of an Influenza H5
HA Confers Respiratory Droplet Transmission to a Reassortant H5
HA/H1N1 Virus in Ferrets’, Nature, 486: 420–8.

Isola, P. et al. (2017) ‘Image-to-image translation with conditional
adversarial networks’ in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1125–34.

Katoh, K., and Standley, D. M. (2013) ‘MAFFT Multiple Sequence
Alignment Software Version 7: Improvements in Performance and
Usability’, Molecular Biology and Evolution, 30: 772–80.

Kawaoka, Y., Krauss, S., and Webster, R. G. (1989) ‘Avian-to-Human
Transmission of the PB1 Gene of Influenza A Viruses in the 1957
and 1968 Pandemics’, Journal of Virology, 63: 4603–8.

Keneshloo, Y. et al. (2019) ‘Deep Reinforcement Learning for
Sequence-to-Sequence Models’, IEEE Transactions on Neural Net-
works and Learning Systems, 31: 2469–89.

Killoran, N. et al. (2017) ‘Generating and Designing DNA with Deep
Generative Models’, arXiv preprint arXiv:1712.06148.

Kingma, D. P., and Ba, J. (2014) ‘Adam: A Method for Stochastic
Optimization’, arXiv preprint arXiv:1412.6980.

Kosik, I., and Yewdell, J. W. (2019) ‘Influenza Hemagglutinin and Neu-
raminidase: Yin–Yang Proteins Coevolving to Thwart Immunity’,
Viruses, 11: 346.

Kuroda, M. et al. (2010) ‘Characterization of Quasispecies of Pan-
demic 2009 Influenza A Virus (A/H1N1/2009) by de Novo Sequenc-
ing Using A Next-generation DNA Sequencer’, PloS One, 5:
e10256.

Kussell, E., and Leibler, S. (2005) ‘Phenotypic Diversity, Population
Growth, and Information in Fluctuating Environments’, Science,
309: 2075–8.

Lauring, A. S., and Andino, R. (2010) ‘Quasispecies Theory and the
Behavior of RNA Viruses’, PLoS Pathogens, 6: e1001005.

Laver, W. et al. (1979) ‘Antigenic Drift in Type A Influenza Virus:
Sequence Differences in the Hemagglutinin of Hong Kong (H3N2)
Variants Selected with Monoclonal Hybridoma Antibodies’, Virol-
ogy, 98: 226–37.

Ledig, C. et al. (2017) ‘Photo-realistic single image super-resolution
using a generative adversarial network’ in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4681–90.

Lee, J. M. et al. (2019) ‘Mapping Person-to-person Variation in Viral
Mutations that Escape Polyclonal Serum Targeting Influenza
Hemagglutinin’, Elife, 8: e49324.

Levenshtein, V. I. (1966) ‘Binary Codes Capable of Correcting Dele-
tions, Insertions, and Reversals’, Soviet Physics Doklady, 10:
707–10.

Levy, O., and Goldberg, Y. (2014) ‘Linguistic regularities in sparse
and explicit word representations’ in Proceedings of the Eighteenth
Conference on Computational Natural Language Learning, pp. 171–80.

Li, C. et al. (2016a) ‘Selection of Antigenically Advanced Variants of
Seasonal Influenza Viruses’, Nature Microbiology, 1: 1–10.

Li, J. et al. (2016b) ‘Deep Reinforcement Learning for Dialogue Gener-
ation’, arXiv preprint arXiv:1606.01541.

Lin, L.-J. (1992) ‘Self-Improving Reactive Agents Based on Reinforce-
ment Learning, Planning and Teaching’, Machine Learning, 8:
293–321.

Luksza, M., and Lässig, M. (2014) ‘A Predictive Fitness Model for
Influenza’, Nature, 507: 57–61.

Luong, M.-T. et al. (2015) ‘Multi-task Sequence to Sequence Learning’,
arXiv preprint arXiv:1511.06114.

Ma, L. et al. (2017) ‘Pose Guided Person Image Generation’, Advances
in Neural Information Processing Systems, 30.

Medina, R. A., and García-Sastre, A. (2011) ‘Influenza A Viruses: New
Research Developments’, Nature Reviews. Microbiology, 9: 590–603.

Michaelis, M., Doerr, H. W., and Cinatl, J. (2009) ‘An Influenza A H1N1
Virus Revival—Pandemic H1N1/09 Virus’, Infection, 37: 381–9.

Mikolov, T. et al. (2013a) ‘Efficient Estimation of Word Representations
in Vector Space’, arXiv preprint arXiv:1301.3781.

Mikolov, T. et al. (2013b) ‘Distributed Representations of Words and
Phrases and Their Compositionality’, Advances in Neural Informa-
tion Processing Systems, 26.

https://www.cdc.gov/flu/about/viruses/types.htm
https://www.cdc.gov/flu/about/viruses/types.htm
https://keras.io
https://www.google-diff-match-patchhttp://code.google.com/p/google-diff-match-patch
https://www.google-diff-match-patchhttp://code.google.com/p/google-diff-match-patch

14 Virus Evolution

Mikolov, T., Yih, W., and Zweig, G. (2013) ‘Linguistic regularities
in continuous space word representations’ in Proceedings of the
2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 746–51.

Mirza, M., and Osindero, S. (2014) ‘Conditional Generative Adversarial
Nets’, arXiv preprint arXiv:1411.1784.

Morris, D. H. et al. (2018) ‘Predictive Modeling of Influenza Shows the
Promise of Applied Evolutionary Biology’, Trends in Microbiology, 26:
102–18.

Mustonen, V., and Lässig, M. (2009) ‘From Fitness Landscapes to
Seascapes: Non-Equilibrium Dynamics of Selection and Adapta-
tion’, Trends in Genetics, 25: 111–9.

Nallapati, R. et al. (2016) ‘Abstractive Text Summarization Using
Sequence-to-Sequence Rnns and Beyond’, arXiv preprint
arXiv:1602.06023.

Neher, R. A. et al. (2016) ‘Prediction, Dynamics, and Visualization of
Antigenic Phenotypes of Seasonal Influenza Viruses’, Proceedings
of the National Academy of Sciences, 113: E1701–9.

Neher, R. A., Russell, C. A., and Shraiman, B. I. (2014) ‘Predicting
Evolution from the Shape of Genealogical Trees’, Elife, 3: e03568.

Ng, P. (2017) ‘Dna2vec: Consistent Vector Representations of Variable-
Length K-mers’, arXiv preprint arXiv:1701.06279.

Obermeyer, F. et al. (2022) ‘Analysis of 6.4 Million SARS-CoV-2
Genomes Identifies Mutations Associated with Fitness’, Science,
376: 1327–32.

O’Brien, M. A. et al. (2004) ‘Incidence of Outpatient Visits and Hos-
pitalizations Related to Influenza in Infants and Young Children’,
Pediatrics, 113: 585–93.

Palese, P., and Shaw, M. L. (2007) ‘Orthomyxoviridae: The Virus and
Their Replication’, in Fields Virology, pp. 1647–89. Williams, &
Wilkins: Lippincott.

Pedregosa, F. et al. (2011) ‘Scikit-learn: Machine Learning in Python’,
Journal of Machine Learning Research, 12: 2825–30.

Perofsky, A. C., and Nelson, M. I. (2020) ‘Seasonal Influenza: The
Challenges of Vaccine Strain Selection’, Elife, 9: e62955.

Quang, D., and Xie, X. (2016) ‘DanQ: A Hybrid Convolutional and
Recurrent Deep Neural Network for Quantifying the Function of
DNA Sequences’, Nucleic Acids Research, 44: e107.

Rambaut, A. (2017), FigTree-version 1.4. 3, a Graphical Viewer of Phylo-
genetic Trees Computer program distributed by the author <http://tree.
bio.ed.ac.uk/software/figtree> accessed 3 Jan 2019.

Reed, S. et al. (2016) ‘Generative Adversarial Text to Image Synthesis’,
in International conference on machine learning, pp. 1060–9.

Repecka, D. et al. (2021) ‘Expanding Functional Protein Sequence
Space Using Generative Adversarial Networks’, Nature Machine
Intelligence bioRxiv, 3: 324–33.

Rizzo, R. et al. (2016) ‘A Deep Learning Approach to DNA Sequence
Classification’, in Computational Intelligence Methods for Bioinformat-
ics and Biostatistics: 12th International Meeting, CIBB 2015, September
10-12, 2015, Revised Selected Papers 12, pp. 129–40. Naples, Italy:
Springer International Publishing.

Schuster, M., and Paliwal, K. K. (1997) ‘Bidirectional Recurrent Neural
Networks’, IEEE Transactions on Signal Processing, 45: 2673–81.

Shu, Y., and McCauley, J. (2017) ‘GISAID: Global Initiative on Shar-
ing All Influenza Data–from Vision to Reality’, Eurosurveillance, 22:
30494.

Sneath, P. H. A. (1966) ‘Relations between Chemical Structure and
Biological Activity in Peptides’, Journal of Theoretical Biology, 12:
157–95.

Spencer, M., Eickholt, J., and Cheng, J. (2014) ‘A Deep Learning Network
Approach to Ab Initio Protein Secondary Structure Prediction’,

IEEE/ACM Transactions on Computational Biology and Bioinformatics,
12: 103–12.

Stamatakis, A. (2014) ‘RAxML Version 8: A Tool for Phylogenetic Anal-
ysis and Post-Analysis of Large Phylogenies’, Bioinformatics, 30:
1312–3.

Sun, T. et al. (2017) ‘Sequence-Based Prediction of Protein Protein
Interaction Using a Deep-Learning Algorithm’, BMC Bioinformatics,
18: 1–8.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014) ‘Sequence to Sequence
Learning with Neural Networks’, Advances in Neural Information
Processing Systems, 27: 3104–12.

Tenforde, M. W. et al. (2021) ‘Effect of Antigenic Drift on Influenza
Vaccine Effectiveness in the United States—2019–2020’, Clinical
Infectious Diseases, 73: e4244–50.

Thompson, W. W. et al. (2003) ‘Mortality Associated with Influenza
and Respiratory Syncytial Virus in the United States’, JAMA, 289:
179–86.

Thompson, W. W. et al. (2004) ‘Influenza-Associated Hospitalizations
in the United States’, Jama, 292: 1333–40.

Tricco, A. C. et al. (2013) ‘Comparing Influenza Vaccine Efficacy
against Mismatched and Matched Strains: A Systematic Review
and Meta-analysis’, BMC Medicine, 11: 1–19.

Tuan, Y.-L., and Lee, H.-Y. (2019) ‘Improving Conditional Sequence
Generative Adversarial Networks by Stepwise Evaluation’,
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27:
788–98.

Vaswani, A. et al. (2017) ‘Attention Is All You Need’, Advances in Neural
Information Processing Systems, 30.

Wang, S. et al. (2016) ‘Protein Secondary Structure Prediction Using
Deep Convolutional Neural Fields’, Scientific Reports, 6: 1–11.

Webster, R. G. (1999) ‘1918 Spanish Influenza: The Secrets Remain
Elusive’, Proceedings of the National Academy of Sciences, 96: 1164–6.

Webster, R., and Laver, W. (1980) ‘Determination of the Number of
Nonoverlapping Antigenic Areas on Hong Kong (H3N2) Influenza
Virus Hemagglutinin with Monoclonal Antibodies and the Selec-
tion of Variants with Potential Epidemiological Significance’, Virol-
ogy, 104: 139–48.

WHO. (1980) ‘A Revision of the System of Nomenclature for Influenza
Viruses: A WHO Memorandum’, Bulletin of the World Health Organi-
zation, 58: 585–91.

World Health Organization (WHO). (2010) Pandemic (H1N1)
2009 - Update 109. <https://www.who.int/emergencies/disease-
outbreak-news/item/2010_07_16-en> accessed 4 Mar 2020.

Williams, R. J., and Zipser, D. (1989) ‘A Learning Algorithm for
Continually Running Fully Recurrent Neural Networks’, Neural
Computation, 1: 270–80.

Wohlbold, T. J., and Krammer, F. (2014) ‘In the Shadow of Hemagglu-
tinin: A Growing Interest in Influenza Viral Neuraminidase and Its
Role as a Vaccine Antigen’, Viruses, 6: 2465–94.

Wolf, D. M., Vazirani, V. V., and Arkin, A. P. (2005) ‘Diversity in Times
of Adversity: Probabilistic Strategies in Microbial Survival Games’,
Journal of Theoretical Biology, 234: 227–53.

Wu, Y. et al. (2016) ‘Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation’, arXiv
preprint arXiv:1609.08144.

Yewdell, J., Webster, R., and Gerhard, W. (1979) ‘Antigenic Variation in
Three Distinct Determinants of an Influenza Type A Haemagglu-
tinin Molecule’, Nature, 279: 246–8.

Yu, L. et al. (2017) ‘Seqgan: Sequence Generative Adversarial Nets
with Policy Gradient’, Proceedings of the AAAI Conference on Artificial
Intelligence, 31.

http://tree.bio.ed.ac.uk/software/figtree
http://tree.bio.ed.ac.uk/software/figtree
https://www.who.int/emergencies/disease-outbreak-news/item/2010_07_16-en
https://www.who.int/emergencies/disease-outbreak-news/item/2010_07_16-en

D. S. Berman et al. 15

Zeng, H. et al. (2016) ‘Convolutional Neural Network Architectures for
Predicting DNA–Protein Binding’, Bioinformatics, 32: i121–7.

Zhang, Z. et al. (2018) ‘Bidirectional generative adversarial networks
for neural machine translation’ in Proceedings of the 22nd Conference
on Computational Natural Language Learning, pp. 190–9.

Zhang, H. et al. (2019) ‘Self-attention Generative Adversarial Net-
works’, in International conference on machine learning, pp. 7354–63.

Zhou, J., and Troyanskaya, O. G. (2015) ‘Predicting Effects of Noncod-
ing Variants with Deep Learning–based Sequence Model’, Nature
Methods, 12: 931–4.

	MutaGAN: A sequence-to-sequence GAN framework to predict mutations of evolving protein populations
	 Introduction
	 Deep learning and biological sequences
	 Sequence-to-sequence model
	 GANs
	 Influenza
	 Contributions

	 Material and methods
	 MutaGAN
	 Dataset
	 Database curation
	 Phylogenetic tree generation
	 Dataset creation
	 Generator evaluation
	 Known mutation location rate
	 Amino acid mutation frequency
	 True-positive rate
	 Weighted true-positive rate

	 Experiment
	 Setup
	 Model training

	 Results
	 Discussion
	 Accurate mutation forecasting from protein sequences
	 Model reproducibility

	 Conclusion
	 Data availability
	Supplementary data
	Acknowledgements
	Funding
	Conflict of interest:
	References

