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Abstract
Study Objectives: To determine the minimum number of nights required to reliably estimate weekly and monthly mean 
sleep duration and sleep variability measures from a consumer sleep technology (CST) device (Fitbit).

Methods: Data comprised 107 144 nights from 1041 working adults aged 21–40 years. Intraclass correlation (ICC) analyses 
were conducted on both weekly and monthly time windows to determine the number of nights required to achieve ICC 
values of 0.60 and 0.80, corresponding to “good” and “very good” reliability thresholds. These minimum numbers were then 
validated on data collected 1-month and 1-year later.

Results: Minimally, 3 and 5 nights were required to obtain “good” and “very good” mean weekly total sleep time (TST) 
estimates, while 5 and 10 nights were required for monthly TST estimates. For weekday-only estimates, 2 and 3 nights were 
sufficient for weekly time windows while 3 and 7 nights sufficed for monthly time windows. Weekend-only estimates of 
monthly TST required 3 and 5 nights. TST variability required 5 and 6 nights for weekly time windows, and 11 and 18 nights 
for monthly time windows. Weekday-only weekly variability required 4 nights for both “good” and “very good” estimates 
while monthly variability required 9 and 14 nights. Weekend-only estimates of monthly variability required 5 and 7 nights. 
Error estimates made using data collected 1-month and 1-year later with these parameters were comparable to those 
associated with the original dataset.

Conclusions: Studies should consider the metric, measurement window of interest, and desired reliability threshold to 
decide on the minimum number of nights required to assess habitual sleep using CST devices.
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Introduction

Sleep duration and variability [1, 2] are increasingly recog-
nized as lifestyle factors that can be modified to avert adverse 
long-term health outcomes [3–7]. The past decade has seen a 
rapid rise in the adoption of consumer sleep technologies (CSTs) 
that could facilitate this goal. In 2020 alone, worldwide spending 
on these devices amounted to $69 billion and is expected to in-
crease [8]. Large-scale, long-term objective sleep tracking via 
these trackers [9, 10] could improve the assessment of popula-
tion health, interventions to improve sleep, and realize the dis-
pensation of personalized sleep advice [11–17]. Reliable objective 
measurement of sleep can also aid in the refinement of sleep re-
commendations, which are currently based on consensus based 
on self-report duration, and do not take into account other met-
rics such as variability.

Earlier concerns about data quality obtained from early 
consumer sleep trackers are continually being addressed 
by both improvements in measurement technology and a 
growing number of rigorous performance evaluation studies 
demonstrating high correlation (r’s > 0.70) of sleep measure-
ments using PSG and/or research actigraphy [18–21], along-
side development of a standardized testing framework [22, 
23]. This provides increased assurance regarding the reliability 
of single-night sleep measurements. However, to accurately 
characterize habitual sleep patterns that influence health 
outcomes, multiple nights of sleep need to be sampled due 
to inherent variability in sleep patterns. While sleep trackers 
are convenient to deploy for extended periods, compliance in 
wearing the devices varies, especially when longer-term char-
acterization (weeks to months) of sleep behavior is of interest. 
Trade-offs need to be made between data completeness, re-
sources available to monitor and motivate compliance, and 
the final number of participants required to answer a specific 
research question.

In contrast to studies on physical activity [24–33], only a 
few studies have explored the reliability and accuracy of sleep 
patterns assessed from longitudinal sleep tracking [34–38]. 
The latter is important to establish minimal recording dur-
ation benchmarks for the accurate estimation of an individual’s 
sleep patterns. Existing studies on multiple nights of sleep in 
children/adolescents [34, 35] recommend collecting at least 5 
nights of actigraphy for the estimation of habitual sleep param-
eters such as sleep onset timing, wake after sleep onset, and 
sleep efficiency while more than 7 nights could be required for 
estimation of sleep duration. However, most of such studies 
have used sleep diaries and research-grade actigraphs. Sleep 
diaries tend to overestimate sleep duration [39] while studies 
employing research actigraphs are typically short-term and 
involve relatively small samples [34, 35]. As these studies also 

do not typically validate their obtained minimum number of 
nights on data collected from future time periods (1-month or 
1-year later), it is unclear how generalizable or stable these es-
timates are over the longer term. Finally, existing studies do 
not distinguish between different aggregated periods of sleep 
(e.g. weekly vs. monthly, weekday-only vs. weekend-only, or 
consecutive vs. nonconsecutive nights) due to short recording 
periods (<1 month). Different time windows may be of interest 
for different studies (e.g. comparing week-to-week changes in 
sleep patterns following an intervention vs. tracking seasonal 
changes in sleep or sleep variability over intervals covering va-
cations compared to regular work weeks).

To address these gaps, we utilized data from a large-scale 
longitudinal population-health study. Within-subject, objective 
sleep data from 1951 individuals were collected over the period 
of 2  years, using a consumer sleep tracker. These data were 
used to ascertain the minimum number of nights of sleep data 
needed to establish reliable estimates of sleep duration and 
variability for weekly and monthly periods. We then verified the 
robustness of these estimates, by applying the established min-
imums in a set of holdout future data recorded from the same 
participants 1-month and 1-year later. These analyses were also 
repeated for bed and wake time metrics, over weekday-only 
and weekend-only time periods, as well as over consecutive vs. 
nonconsecutive nights.

Methods

Data source

Data were obtained from the “Health Insights Singapore” 
(hiSG) study, a longitudinal population-health study by the 
Health Promotion Board, Singapore, using wrist-worn sleep 
trackers paired with a mobile app. Initiated in August 2018, 
the study recruited 1951 young adults working in the Central 
Business District aged 21–40  years. As this study intended 
to survey a representative sample of Singaporean office 
workers, no sleep exclusion criterion was applied, however, 
based on a self-report questionnaire probing how well partici-
pants thought they slept on a 5-point scale (“Not Well At All,” 
“Sometimes,” “Neutral,” “Well,” and “Very Well”), 3.8% reported 
sleeping ‘Not Well At All’ while 13.1% reported only sleeping 
well ‘Sometimes’. Participants were given devices (Fitbit Ionic, 
Fitbit Inc, San Francisco, CA) to track their activity/sleep and 
installed a mobile application to complete surveys over a 
period of 2  years. They were rewarded with points convert-
ible to vouchers if they wore the tracker daily, logged sleep, 
meals, and completed surveys and were allowed to keep the 
device conditional upon meeting study requirements. The 
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National Healthcare Group Domain Specific Review Board ap-
proved the study protocol. Informed consent was obtained 
from all participants prior to study participation. To deter-
mine the minimum number of nights for reliably estimating 
sleep parameters, we utilized data gathered between January 
1, 2019 to November 30, 2019 for the main analyses (Figure 
1). Two 1-month periods December 2019 and December 2020 
were used for validation. Most of the data in 2020 were not 
used for the main analyses as our earlier work found that 
lockdowns due to the COVID-19 pandemic affected sleep for 
this sample [11]. Only participants with full weekly data (7 
nights) and 4 weeks of monthly data (28 nights) for each re-
spective weekly and monthly time window were included. In 
total, we assessed 107 144 nights of sleep data from 1041 par-
ticipants for the main analyses and 21  034 nights from 734 
participants for the validation analyses.

Tracker based data

Sleep data for each participant were extracted from the Fitbit 
API (bedtime [startTime], wake time [endTime], time in bed 
[timeInBed], and total sleep time [minutesAsleep]). Although 
total sleep time (TST) was the focus of the present manuscript, 
we also extracted time in bed (TIB), bedtime, and wake time 
measures in Supplementary Analyses.

Bedtime and wake time were converted to minutes from mid-
night to simplify analyses. As in our prior work [11], we only ana-
lyzed nights where resting heart rate was concurrently collected 
with sleep data, as this decreased the likelihood of including 
wrist-off periods where sleep estimation would not be valid. 
Records that indicated <4 h TIB or >12 h TIB were also excluded 
from the calculation of sleep variables, as they could indicate 
possible split sleep sessions or inappropriate detection of sleep 

Figure 1. Flow diagram describing inclusion and exclusion criteria of study participants. TIB = Time in Bed. hiSG = Health Insights Singapore study.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpac026#supplementary-data
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by the algorithm (e.g. long periods of sedentary activity after 
wake). In addition, to exclude atypical sleep periods, we removed 
sleep sessions that commenced between 08:00 am and 08:00 pm.

Sampling of sleep data for analyses

Mean and variability estimates for the four sleep parameters: 
TIB, TST, bedtime, and wake time were assessed. Sleep variability 
was operationalized as the intraindividual standard deviation of 
the sampled nights from each time window, defined below.

Since weekly and monthly sleep patterns are important for 
sleep research and/or assessment of interventions, we analyzed 
the data across both weekly and monthly time windows. The 
dataset consisted of 47 weekly (January 1, 2019 to November 30, 
2019)  and 11  monthly time windows. Monthly time windows 
were set to a fixed length of 28 nights to ensure consistency 
and to allow comparisons between different months. For each 
of these time windows, we separately estimated the minimum 
number of nights required to reliably estimate sleep param-
eters. To do this, a variable number of nights were sampled from 
each time window. The number of nights sampled (referred to 
as i from here) for mean sleep parameters ranged from 1 to 6 
nights for weekly time windows and 1 to 27 nights for monthly 
time windows, while the number of nights for sleep variability 
parameters ranged from 2 to 6 nights and 2 to 27 nights for 
weekly and monthly time windows respectively, as variance can 
only be computed from at least 2 data records. The maximum i 
for each time window was 1 night smaller than the total number 
of nights in the time window. For example, 6 nights would be the 
maximum i to be drawn for weekly time windows as 7 nights 
would represent the use of complete data for that week. Next, 
we applied the sampling method used by Yao et al [29]. For each 
sample night i, 10 sets of samples was drawn without replace-
ment for each participant and the average over the i nights was 
computed. For instance, for a weekly time window (January 1 to 
January 7), 10 sets of samples of i = 6 sample nights were drawn 
from each participant and averaged over 6 nights, giving 10 
sample means of a sleep parameter. This was repeated for i = 1 to 
i = 5, for each of the 8 sleep parameters. 10 sets of samples were 
chosen as our sensitivity analyses showed that drawing extra 
sets of sizes 20 and 50 did not improve the stability of results.

Additionally, the sampling was performed with two ap-
proaches: random nonconsecutive and random consecutive. 
This was to mirror and account for missing data in both con-
secutive and nonconsecutive nights in the time series that 
leads to gaps between nights. For the random nonconsecutive 
approach, i sample nights were sampled without replacement 
from the specific time window. In the random consecutive ap-
proach, a start night of the time window was chosen randomly, 
and i nights were extracted consecutively starting from that 
point. Time windows were considered as circular time series, i.e. 
each time window was appended to its end to provide a con-
tinuous time window for this period.

To explore the effects of type of day (weekday/weekend) 
on the minimum number of nights, we examined both com-
bined weekday + weekend data as well as weekday-only (Sun–
Thu night) and weekend-only (Fri–Sat night) data. For weekly 
weekday-only time windows, i ranged from 1 to 4 given only 5 
weekdays within a week. Weekend-only data were not exam-
ined for weekly time windows since i would only consist of 1 
night which would be insufficient for reliable sleep estimates. 

For monthly time windows, i ranged from 1 to 19 (20 weekdays) 
and 1 to 7 (8 weekends) for the weekday-only and weekend-only 
analyses respectively.

Computation of reliability and error metrics

The metric computed for the main analyses were the intraclass 
correlation coefficient (ICC). The ICC represents the proportion 
of between-subject variation over the total variance. The higher 
this value, the lower the proportion of within-subject variation 
indicating higher reliability. As the sample means from weekly 
or monthly data were used to estimate the observed sleep 
parameters averaged over the same week or month of the com-
plete data, ICC would increase as a function of the number of 
i sample nights. To determine the minimum number of nights 
to reliably estimate observed weekly and monthly sleep param-
eters, the smallest i sample nights were chosen at the point at 
which ICC values passed the threshold of 0.6 and 0.8. ICC values 
in the range of 0.6 to 0.8 indicate “good” reliability and values of 
above 0.8 indicate “very good” reliability [40]. While researchers 
should aim to collect enough data to ensure highly reliable esti-
mates, this may not always be possible; here we suggest a lower 
bound that has “good” levels of reliability.

To determine the error when estimating the observed weekly 
or monthly sleep parameters of the complete data from a min-
imum number of nights, we computed the mean absolute error 
(MAE). However, this alone does not give a representation of its 
true performance given that the same set of data were used to 
compute both ICC and the error scores. Thus, we also examined 
whether our obtained minimum number of nights generalized 
to a separate dataset, collected on the same individual 1-month 
and 1-year later. To perform this validation, we computed the 
MAE for the following month of December 2019, as well as one 
year later in the month of December 2020. Since these 2 months 
were not used to compute the ICC, they provide an idea of the 
generalizability of our results to data independent of the cur-
rent analyses. The formulae for the MAE for any given i sample 
nights in a time window is as follows:

MAE =
1
N

N∑
n=1

1
10

10∑
j=1

(|mean daily sleep from i sample daysn−

mean daily sleep from complete datan|)

 

Statistical analysis

To compute the ICCs, we used two-way mixed models to obtain 
estimates of weekly or monthly aggregated metrics (i.e. mean 
or variability) from the 10 sets of samples [41]. For each time 
window and i sample nights, a mixed model was fitted and the 
variance components were extracted for ICC computation. This 
resulted in a set of ICCs for each range of i sample nights in any 
given time window for a sleep parameter (e.g. 6 ICCs for sample 
nights i = 1 to 6 for a random nonconsecutive weekly weekday + 
weekend combined time window for TST). To obtain an average 
ICC value for weekly and monthly windows, ICC values for each 
i sample night were averaged across all weeks and all months 
separately, and the smallest i that passed the “good” (ICC ≥ 0.6) 
and “very good” (ICC ≥ 0.8) [40] threshold were selected, rep-
resenting the minimum number of nights to estimate weekly 
and monthly sleep with “good” and “very good” reliability levels 
respectively.
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Nonparametric Friedman tests with Bonferroni corrections 
were subsequently applied to examine differences between the 
minimum number of nights obtained from nonconsecutive and 
consecutive approaches. All analyses were performed in R (ver-
sion 4.0.5), with mixed models fitted using the ‘lme4’ package 
(version 1.1.26) and ICCs extracted using the ‘performance’ 
package (version 0.7.3).

Results

Sociodemographic and sleep characteristics

Data from 1041 and 576 participants contributed to ana-
lyses of weekly and monthly time windows respectively. 
Sociodemographic and sleep characteristics of the participants 
are presented in Table 1. Daily wear time (mean ± standard devi-
ation) averaged 19.40 ± 5.38 h.

Weekly time windows

The minimum number of nights to reliably estimate weekly 
average sleep was determined using data from 47 weekly time 
windows and averaging the ICC scores.

The ICC analyses suggested that a minimum of 5 nights 
were needed to obtain a “very good” estimate of weekly average 
TST (ICC = 0.86, MAE = 11.39 mins), while at least 3 nights were 
required for a “good” estimate (ICC  =  0.65, MAE  =  20.84 mins) 
(Figure 2, A and Table 2). For estimation of weekly TST variability, 
6 nights were needed for a “very good” estimate (ICC  =  0.87, 
MAE = 5.62 mins) while 5 nights were needed for a “good” esti-
mate (ICC = 0.72, MAE = 9.75 mins) (Figure 2, B and Table 2). MAEs 

for the entire range of available nights (1–6) are also presented in 
the Supplementary (Figure S1).

The minimum number of nights obtained from the initial 
analyses were used to estimate complete weekly sleep param-
eters in two holdout future time windows one month later in 
December 2019 and one year later in December 2020. Resulting 
estimates for each threshold had very similar accuracy in the 
future time periods as were found in the original January–
November 2019 time period. (MAE’s differing by <1  min; see 
Table 2).

Details for other sleep metrics (TIB, bedtime, wake time) 
are described in the Supplementary Materials. In short, highly 
similar estimates were found for TIB mean (“good”: 3 nights, 
ICC  =  0.66; “very good”: 5 nights, ICC  =  0.87) and variability 
(“good”: 5 nights, ICC = 0.72; “very good”: 6 nights, ICC = 0.87). 
For bedtime and wake time, fewer nights were needed for reli-
able estimates of the mean (bedtime: 2–3 nights; wake time: 2–4 
nights) than for variability (bedtime: 5–6 nights; wake time: 5–6 
nights; See Supplementary Figure S2 for analysis details for all 
sleep metrics). Finally, sampling using nonconsecutive and con-
secutive approaches yielded similar results (p =  .56), therefore 
only results for the nonconsecutive approach are presented here 
(See Supplementary Figure S2 for the consecutive approach and 
other sleep variables).

Monthly time windows

The minimum number of nights to reliably estimate com-
plete monthly average sleep was determined using data from 
11 monthly time windows. Similar to the weekly time windows, 
this was determined by taking the smallest number of sample 
nights that yielded an average ICC that was above the threshold 
for “good” (ICC ≥ 0.6) and “very good” (ICC ≥ 0.8) levels across the 
11 months.

ICC analyses revealed that a minimum of 10 nights were 
needed to obtain a “very good” estimate of mean monthly TST 
(ICC = 0.82, MAE = 11.78 min), while at least 5 nights were re-
quired for a “good” estimate of monthly TST (ICC  =  0.64, 
MAE = 18.71 min) (Figure 3, A and Table 3). For estimation of TST 
variability, 18 nights were required for a “very good” estimate 
(ICC = 0.81, MAE = 5.49 min), while 11 nights were required for 
a “good” estimate (ICC = 0.60, MAE = 9.39 min) (Figure 3, B and 
Table 3). MAEs for the entire range of available nights (1–27) are 
also presented in (Supplementary Figure S3).

The MAEs for December 2019 and December 2020 (Table 3) 
demonstrated the robustness of the minimum number of nights 
recommendations for monthly time windows. Estimates for 
each threshold had very similar MAEs in the future time periods 
as in the original January–November 2019 time window (MAE’s 
differing by <1 min).

Again, results for other sleep metrics (TIB, bedtime, and wake 
time) and analysis of the consecutive sampling approach are 
presented in Supplementary Figure S4.

Weekday-only and weekend-only analyses

The minimum number of nights required to reliably estimate 
mean TST and variability was also performed on weekday-only 
and weekend-only periods (Table 4). Specifically, at least 3 and 2 
nights were needed to obtain a “very good” and “good” estimate 

Table 1. Sociodemographic and sleep summaries (mean and SDs) for 
eligible participants (n=1041)

Variable Mean (SD) / % 

Sociodemographic features
 Age 31.15 (4.52)
 BMI 23.32 (3.99)
 Sex—Females (%) 50.24
 Ethnicity—Chinese (%) 94.62
 Monthly household earnings in SGD(%)
  <$2k 9.61
  $2k–$3.9k 39.39
  $4k–$5.9k 26.99
  $6k–$7.9k 10.09
  $8k–$9.9k 5.76
  >=$10k 8.17
 Education—Bachelors’/Postgraduate Degree (%) 86.07
Number of nights of tracking
 Weekdays and weekends 221.97 (72.68)
 Weekdays 162.55 (53.32)
 Weekends 59.42 (20.74)
Sleep
 Time in bed (min) 428.94 (34.31)
 Total sleep time (min) 372.40 (30.15)
 Total sleep time variability (min) 63.21 (13.62)
 Bedtime (hh:mm) 00:25 (54.22)
 Wake time (hh:mm) 07:34 (51.18)
Daily wear time (h) 19.40 (5.38)

SGD = Singapore dollars; 1 SGD ~= 0.72 USD.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpac026#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpac026#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpac026#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpac026#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpac026#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpac026#supplementary-data
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of mean weekly weekday TST respectively while 4 nights were 
needed to estimate weekly TST variability with “very good” 
and “good” estimates. For monthly time windows, mean TST 
on weekdays required at least 7 and 3 days for “very good” and 
“good” estimates while on weekends, at least 5 and 3 days were 
needed. Finally, for sleep variability, at least 14 and 9 days were 
needed for weekday estimates while 7 and 5 days were needed 
for weekend estimates. Results for other sleep metrics (TIB, bed-
time, and wake time) and analysis of the consecutive sampling 
approach are presented in Supplementary Figures S5–S7.

Discussion
In this study, we sought to investigate the minimum number 
of nights required to reliably characterize the average duration 
and variability of sleep within a given time window (reaching 
thresholds for “good” [ICC ≥ 0.6] to “very good” [ICC ≥ 0.8] re-
liability) from a consumer sleep tracker. We found that for a 
1-week period, 3–5 nights of sleep data were needed to reliably 
estimate mean sleep duration (TST), and 5–6 nights of data were 
required to estimate sleep variability indexed by the standard 
deviation of TST. To characterize sleep in 1-month window, 5–10 
nights and 11–18 nights would be required for mean TST and 
TST variability respectively. Fewer nights of data might suffice 
to produce reliable estimates for sleep timing metrics (bedtime, 
wake time), or when analyzing weekdays only. These minimum 

requirements apply to data collected 1-month and 1-year later 
resulting in comparable error estimates to those associated with 
the original dataset.

The issue of how much data is minimally required—or con-
versely, how many missing data can be tolerated given resource 
constraints and imperfect subject compliance—is of vital im-
portance to the design of sleep studies intended to accurately 
depict habitual sleep patterns and to understand how best to 
sleep. So far, studies using consumer-grade sleep trackers have 
applied inclusion criteria on an ad-hoc basis or based on recom-
mendations derived from sleep diaries or actigraphy data. For 
example, Ong et  al [42]. analyzed data from 20k+ Fitbit users 
to compare sleep duration and timing across multiple coun-
tries and age groups. Based on the distribution of data provided 
per user, they set a minimum cutoff of 10 weekday nights and 
4 weekend nights for inclusion. Another study examined sleep 
data from over 150k Fitbit users to assess changes in sleep 
over the 2019 and 2020 Covid-19 pandemic [16]. Following the 
SBSM guidelines for actigraphy monitoring, a 10-day minimum 
criterion was applied to calculate habitual sleep duration and 
timing [43]. Different cutoffs have also been applied in other 
consumer-grade sleep tracker studies (e.g. 70% of nights within 
a period [44], 7 consecutive days [45], 14 days [46], and 4 weeks 
[47]). With the current analysis we aimed to provide a set of re-
commendations that could be used to allow a more uniform 
and principled application of minimum data requirements in 
wearable-based sleep studies for quality control and optimal 

Figure 2. ICC values by the number of sample nights from weekly time windows using nonconsecutive nights for TST (A) Mean and (B) Variability measures. Reliability 

thresholds of 0.8 and 0.6 are shown in dashed lines. 

Table 2. Mean absolute errors using minimum number of nights from ICC analyses of weekly time windows

Measure ICC threshold Min nights 
MAE  
Jan–Nov 2019 

MAE  
Dec 2019 

MAE  
Dec 2020 

Weekly
TST mean (min) 0.8 (very good) 5 11.39 (5.17) 11.85 (5.35) 11.14 (5.23)

0.6 (good) 3 20.84 (9.56) 21.04 (9.19) 20.46 (9.58)
TST variability (min) 0.8 (very good) 6 5.62 (3.50) 5.75 (3.60) 5.39 (3.44)

0.6 (good) 5 9.75 (6.05) 9.79 (5.96) 9.37 (5.75)

Means (SDs) are presented for weekly time windows for the minimum number of nights obtained from ICC analyses for 0.8 and 0.6 reliability threshold. Only results 

for nonconsecutive approaches are displayed here.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpac026#supplementary-data
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data selection. This may be particularly pertinent for large-scale 
and/or longitudinal sleep tracking studies, as missing data 
can be expected to scale with increased tracking time [48], or 
when analyzing legacy datasets (e.g. from open sources or when 
end-user data is analyzed through the device manufacturers’ 
databases [16]). As our supplementary analyses reveal large 
MAEs arising from the use of too few nights of data, it is crucial 

that reliable sleep estimates are obtained from sufficient nights 
in order that correct estimates for sleep recommendations can 
be derived.

A notable strength of the current analysis was that it 
was based on a large-scale longitudinal dataset. Data from 
1041 individuals over the course of 11 months were included 
in the initial analysis. This allowed us to arrive at robust 

Figure 3. ICC values by the number of sample nights from monthly time windows using nonconsecutive nights for TST (A) Mean and (B) Variability measures. Reliability 

thresholds of 0.8 and 0.6 are shown in dashed lines.

Table 3. Mean absolute error using minimum number of nights from ICC analyses of monthly time windows

Measure ICC threshold Min nights 
MAE  
Jan–Nov 2019 

MAE  
Dec 2019 

MAE  
Dec 2020 

Monthly
TST mean (min) 0.8 (very good) 10 11.78 (4.12) 12.06 (4.10) 11.60 (4.20)

0.6 (good) 5 18.71 (6.67) 18.52 (6.23) 18.80 (6.60)
TST variability (min) 0.8 (very good) 18 5.49 (2.44) 5.52 (2.40) 5.34 (3.18)

0.6 (good) 11 9.39 (4.06) 9.07 (3.68) 9.22 (4.80)

Means (SDs) are presented for monthly time windows for the minimum number of nights obtained from ICC analyses for 0.8 and 0.6 reliability threshold. Only re-

sults for nonconsecutive approaches are displayed here.

Table 4. Minimum number of nights required for reliable estimation of weekday-only and weekend-only sleep

Measure Type of day ICC threshold Min nights 
MAE  
Jan–Nov 2019 

Weekly
TST Mean (min) Weekday 0.8 (very good) 3 14.17 (8.17)

0.6 (good) 2 21.35 (12.29)
TST Variability (min) Weekday 0.8 (very good) 4 7.05 (5.23)

0.6 (good) 4 7.13 (5.33)
Monthly
TST Mean (min) Weekday 0.8 (very good) 7 11.82 (4.75)

0.6 (good) 3 20.40 (8.16)
Weekend 0.8 (very good) 5 13.27 (5.71)

0.6 (good) 3 23.03 (9.69)
TST Variability (min) Weekday 0.8 (very good) 14 5.16 (3.11)

0.6 (good) 9 9.16 (5.21)
Weekend 0.8 (very good) 7 4.75 (2.53)

0.6 (good) 5 11.19 (5.97)

MAEs are presented in Means (SDs).
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reliability estimates. Furthermore, the longitudinal nature of 
the dataset allowed us to validate the applicability of the found 
minimum data recommendations against future time periods 
(as far as one year later). Using the minimum requirements 
as derived from the initial 11 months yielded very similar re-
liability estimates when applied on data collected 1  month 
and 1  year later. This further affirms the stability and utility 
of these estimates for the characterization of longer-term 
habitual sleep patterns. These features set the current study 
apart from previous actigraphy/sleep diary-based studies that 
were mostly based on data collection over shorter periods of 
time (one to several weeks [34–37]) and render the resulting 
recommendations particularly applicable for longitudinal 
data. While these conclusions could conceivably be applied 
on multiday studies using research-grade accelerometers, 
our findings of 3–5 nights for reliable estimation of weekday/
weekday–weekend combined sleep duration did differ from 
prior work in adults suggesting that more than 7 nights would 
be required [35]. However, as analysis methods used in these 
studies differed, it is still unclear whether similar conclusions 
would be obtained with research-grade accelerometers.

Another advantage of the current data were that it allowed 
us to calculate reliability estimates over different time win-
dows. Monthly time windows may be of particular interest in 
population studies where aggregated data can be used to assess 
long-term trends in sleep patterns (e.g. examining the effects 
of evolving safety measures during the COVID-19 pandemic [11, 
16]). Other studies, such as sleep intervention studies, may rely 
more on assessing changes in sleep over shorter time periods 
as short as one week (e.g. comparing baseline versus post-
intervention sleep [12, 49, 50]). One finding of our analysis was 
that while more nights of data were required to reliably char-
acterize a 1-month period compared to a 1-week period, pro-
portionally, a 1-month period is more robust to missing data 
(requiring 17%–30% of nights for mean TST) than a 1-week period 
(requiring 43%–60% of nights for mean TST). Supplementary 
analyses also showed that it did not matter if these nights were 
consecutively measured or not, allowing for temporal gaps in 
the data, which often arise due to battery issues, or forgetting to 
wear the device after charging.

Finally, the data allowed us to separately estimate the min-
imum data requirements to characterize sleep on weekdays 
and weekends. Weekend–weekday differences contribute to 
intraweek variability, and lower reliability estimates. For this 
reason, some studies focus on weekday sleep only [49]. Our 
results showed that fewer nights of data were required when 
weekday sleep was considered in isolation. However, if monthly 
weekend–weekday differences are of specific interest, it is re-
commended to include at least 3–7 weekdays and 3–5 weekend 
nights for mean sleep duration and 9–14 weekdays/5–7 weekend 
nights for TST variability.

Limitations and future directions

There are several limitations to note for the current study. First, 
the dataset was based on a relatively homogenous population 
of young adult white-collar workers. This precluded a more 
detailed analysis of sociodemographic factors and the influ-
ence that they may have on the reliability estimates. It is likely 
that examining a wider range of age (e.g. children/adolescents, 

elderly), occupation (e.g. shift workers, gig workers), and 
socioeconomic status would lead to more diverse sleep patterns 
that would consequently influence the reliability estimates. 
Future studies should verify the current minimum requirements 
in different populations. Furthermore, validation of the current 
findings in different geographical locations would be recom-
mended. Seasonal changes in sleeping patterns will likely affect 
the reliability estimates. As the data were collected in Singapore 
(located at equatorial latitude), seasonal variation was not pre-
sent. It is possible that some variation could be introduced due 
to international travel (not explicitly identified in this study), 
which could be random across the sample, or most influen-
tial during major holiday periods. Finally, future work utilizing 
long-term monitoring (>14 nights) could also examine min-
imal requirements for other sleep behaviors e.g. daytime sleep, 
shorter sleep periods <4 h, sleep fragmentation, or sleep exten-
sion before a period of sleep restriction, as this could have an 
impact on subsequent sleep and performance [51].

Conclusion
Findings from the current study suggest that average short-
term weekly and longer-term monthly sleep from a consumer 
sleep tracker can be reliably estimated from data with limited 
or missing data. While obtaining complete data for sleep dur-
ation, timing, and variability are ideally preferred, this is not al-
ways possible in longitudinal designs or consumer-based data 
analysis. Researchers should plan for an appropriate minimum 
data collection period, given the sleep measure and time frame 
of interest. We show that to achieve reliable estimates of mean 
sleep duration over a 1-week period, a minimum of 3–5 nights 
would be required for mean sleep duration and 5–6 nights for 
a 1-month period. Variability measures required more nights 
than mean estimates, and sleep timing measures required fewer 
nights than sleep duration estimates. Since these measures are 
usually derived concurrently from consumer sleep trackers, col-
lecting 6 nights (for 1-week) or 19 nights (for 1-month) of data 
should reasonably cover the most commonly tracked sleep 
measures.

Supplementary Material
Supplementary material is available at SLEEP Advances online.
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