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Consensusmolecular environment of schizophrenia risk
genes in coexpression networks shifting across age and
brain regions
Giulio Pergola1,2,3*, Madhur Parihar1, Leonardo Sportelli1,2, Rahul Bharadwaj1,
Christopher Borcuk2, Eugenia Radulescu1, Loredana Bellantuono2,4, Giuseppe Blasi2,5,
Qiang Chen1, Joel E. Kleinman1,3, Yanhong Wang1, Srinidhi Rao Sripathy1, Brady J. Maher1,3,6,
Alfonso Monaco4,7, Fabiana Rossi1,2, Joo Heon Shin1, Thomas M. Hyde1,3,8,
Alessandro Bertolino2,5*, Daniel R. Weinberger1,6,9*

Schizophrenia is a neurodevelopmental brain disorder whose genetic risk is associated with shifting clinical
phenomena across the life span. We investigated the convergence of putative schizophrenia risk genes in
brain coexpression networks in postmortem human prefrontal cortex (DLPFC), hippocampus, caudate
nucleus, and dentate gyrus granule cells, parsed by specific age periods (total N = 833). The results support
an early prefrontal involvement in the biology underlying schizophrenia and reveal a dynamic interplay of
regions in which age parsing explains more variance in schizophrenia risk compared to lumping all age
periods together. Across multiple data sources and publications, we identify 28 genes that are the most consis-
tently found partners in modules enriched for schizophrenia risk genes in DLPFC; twenty-three are previously
unidentified associations with schizophrenia. In iPSC-derived neurons, the relationship of these genes with
schizophrenia risk genes is maintained. The genetic architecture of schizophrenia is embedded in shifting coex-
pression patterns across brain regions and time, potentially underwriting its shifting clinical presentation.
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INTRODUCTION
Schizophrenia (SCZ) risk increases as a function of genetic related-
ness with an affected individual (1). The latest rendering of the
genome-wide association study (GWAS) approach has identified
287 distinct SCZ-associated loci harboring many more potential
risk genes (2). Therefore, an important current challenge is to
explain how hundreds or perhaps thousands of spatially distant
and biologically diverse genes confer risk for SCZ and which bio-
logical pathways they affect. Another outstanding question concerns
the molecular environment in which genes mapped to GWAS loci
exert their function and which other genes play key roles in such a
molecular environment. Most studies so far have emphasized the
functional characterization of genes mapped to GWAS loci, which
likely act upon a molecular environment including genes not
GWAS significant. This perspective is particularly intriguing for a
disease such as SCZ that has been modeled as a condition with om-
nigenic heritability (3).
As the clinical illness presumably is the emergent manifestation

of perturbations in cellular systems biology, not in individual genes
of small effect, the study of gene coexpression in the brain is a

compelling strategy to identify convergence of SCZ risk in biolog-
ically meaningful pathways. Many SCZ risk variants control gene
expression (4–9); thus, gene coexpression may be one mechanism
governing the convergence of genes mediating SCZ risk into biolog-
ical pathways of risk (10–12). Interindividual genetic variation asso-
ciated with risk-enriched coexpressed gene sets has also been linked
with intermediate phenotypes and clinical traits of SCZ (13–15).
Although coexpression in the human brain has typically been

characterized as a “snapshot” of brains lumped together for a
pooled analysis, it stands to reason that brain tissue will present
shifting/dynamic coexpression patterns across development and
age. A neurodevelopmental perspective of SCZ posits that early de-
velopmental dysfunctions in brain regions such as the dorsolateral
prefrontal cortex (DLPFC) and the hippocampus may interact with
molecular aspects of neurotypical brain development, causing the
diagnostic symptoms to emerge later in life (16). Brain circuits
whose function involves specific aspects of later maturation, such
as the surge in dopaminergic innervation of the striatum and
cortex in young adulthood (17), may contribute to this later onset
of clinical symptoms. However, premorbid characteristics of SCZ
are well described, including delays in developmental milestones,
language, and cognitive capacity (18). A provocative yet biologically
plausible idea ingrained in the neurodevelopmental perspective is
that the same genes, e.g., genes mapped to GWAS loci, may have
different effects depending on the molecular environment in
which they act at different stages of development.
Notably, the study of gene coexpression related to SCZ risk has

focused primarily on postnatal, mostly adult cohorts, thus largely
missing a potential neurodevelopmental perspective in which
genes mapped to GWAS loci act in concert with partner genes shift-
ing in the course of development. Published reports have
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considered principally the DLPFC rather than a circuit of brain
regions also involved in SCZ risk, including the hippocampus (19,
20), and the associative striatum (21, 22). Although risk conver-
gence is likely more dense in specific cell types (11, 23, 24), most
work has used bulk homogenate tissue data to date. The availability
of cell-specific techniques and published datasets now enables a
more granular understanding of genetic risk converging into coex-
pression gene sets within cells, brain circuits, and multiple time
points in the life span.
Prior works on autism and SCZ risk have suggested the utility of

parsing coexpression into age period–defined cohorts (25, 26). For
example, Werling et al. (27) and others reported remarkable differ-
ences between prenatal and postnatal gene expression and expres-
sion quantitative trait locus (eQTL) patterns (28–30). In this and
other studies (31), however, once coexpression modules had been
identified, the set of genes composing a module remained fixed.
This procedure is ideal for tracking gene expression trajectories
but misses how risk gene sets shift over time, potentially converging
and diverging at different ages.
Here, we hypothesized that genes mapped to SCZ GWAS loci (2)

would show shifting patterns of convergence into gene coexpression
pathways at specific time points from early neurodevelopment
through aging and that this variation would also have brain
region selectivity. We thus defined SCZ gene–enriched modules
(named “SCZ risk modules”) based on a stringent consensus
between gene lists. We obtained these gene lists by windowing
gene proximity to GWAS-significant single-nucleotide polymor-
phisms (SNPs) detected at P = 5 × 10−8 (“SCZ risk genes”), as de-
tailed in Materials and Methods and by Pergola et al. (14). We
hypothesized that the placement of a gene within a coexpression
gene set is a component of its genetic association with SCZ and
that network statistics are also associated with GWAS statistics of
a given gene. We tested this hypothesis across ages in a critical
circuit implicated in SCZ (DLPFC, hippocampus, and caudate
nucleus). By parsing data into age period–specific coexpression net-
works, we searched for enrichment of coexpression gene sets for
SCZ risk, allowing sets to change across age periods. We replicated
our main findings using PsychENCODE and other datasets (32).
Last, we identified a previously unreported set of consistent molec-
ular partners of SCZ risk in these networks and tested whether co-
expression relationships of GWAS genes representing the potential
molecular environment surrounding SCZ risk genes hold in
induced pluripotent stem cells (iPSCs), providing an in vitro plat-
form for mechanistic investigations (33).

RESULTS
Our main dataset consisted of 562 postmortem brains from neuro-
typical control (NC) European and African American individuals
and 186 brains from individuals with a diagnosis of SCZ (Materials
and Methods and table S1). We replicated our early developmental
main results in DLPFC using three postmortem datasets, including,
NC RNA sequencing (RNA-seq) data from (i) 16 individuals aged 6
to 25 years from the UCLA-ASD dataset (32), (ii) 21 European and
African American ancestry individuals from prenatal age to 25 years
old from the BrainSpan collection (www.brainspan.org/static/
download.html), and (iii) 48 European and African Americans sub-
jects ranging from prenatal to 25 years old from the Lieber Institute
for Brain Development (LIBD) polyA RNA-seq data (12, 14).

Data from the main and replication datasets were preprocessed
separately (see Materials and Methods). Demographic information
of all individuals (cases and controls) used across studies are shown
in table S1. After preprocessing, we used weighted gene coexpres-
sion network analysis (WGCNA) to identify coexpressed gene
sets (34). We included all individuals complying with inclusion cri-
teria (Materials and Methods), regardless of age, for each brain
region examined in the benchmark networks that we identified. Fol-
lowingWGCNA nomenclature, throughout this paper, we define as
“network” the set of all genes considered, which are clustered into
“modules,” i.e., a partition of this graph composed of genes highly
connected with each other and not overlapping with any other
module. While modules are given arbitrary color names, a particu-
lar gene set that includes all genes that remain isolated, i.e., not in
any highly connected module, is called the “gray” module.
First, we performed a sensitivity analysis to establish the param-

eters used to identify SCZ risk modules based on enrichment for
SCZ risk genes. To this aim, we used previously published networks
(5, 10–14, 26, 27, 31, 35, 36). We then tested four hypotheses (each
outlined in Fig. 1): (i) Age-parsed networks in neurotypical brains
explain more SCZ genetic risk than the same data not age-parsed
(benchmark networks). To test age parsing effects, we considered
ordinal age periods (perinatal, juvenile, adult, and older adult) on
the bulk tissue region samples and identified the shifting patterns of
module enrichment across the human life span in those age periods
(“Age study”). (ii) The course of SCZ enrichment across age differs
between NC and patients with SCZ. Here, we used a sliding window
approach to age (“Sliding windows”), which, unlike the age-period
study, did not model fixed periods but rather the gradual variation
of convergence of SCZ risk genes with age across different brain
regions and compared coexpression patterns between the NC and
the SCZ samples. (iii) There is a molecular environment to SCZ risk
that can be identified by consensus between networks in terms of
genes coexpressed with SCZ risk genes. We computed the overlap
between our networks’ DLPFC SCZ risk–associated modules and
previously published networks to obtain a consensus gene set coex-
pressed with SCZ risk genes (“Consensus genetic environment”).
We thus assessed the reproducibility of coexpression gene sets
and identified genes that are typically coexpressed with SCZ risk
genes, with the assumption that such genes are important for the
biology of SCZ risk in the brain. (iv) We tested whether an in
vitro biological system reproduces the network features and consen-
sus relationship that we identified in brain in a model of neuronal
cells differentiated from human iPSCs (“iPSC study”).

Parameter setting and regional coexpression
We aimed to identify modules enriched for genes in the proximity
of genome-wide significant SNPs, hence limiting our search to loci
whose association with SCZ was corrected for multiple compari-
sons. As the loci defined by Trubetskoy et al. (2) comprised 2194
genes, representing a sizable fraction of the transcriptome, we eval-
uated several sets of genes at multiple genomic distances from the
tagging SNP (35), plus the set of 120 genes prioritized by the authors
of the third wave of the Psychiatric Genetics Consortium (PGC3)
manuscript (see Materials and Methods). We hypothesized that
the distance of coexpressed genes from SNPs varied across different
modules, and these data could be informative about the particular
SNPs and genes involved. We leveraged data from published net-
works to establish an appropriate tradeoff between sensitivity and
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specificity. Table S2 shows the Bonferroni-corrected significant
module count for each network assessed for enrichment for
protein-coding genes in the proximity of SCZ-significant SNPs.
There was remarkable variability in terms of distance of the signifi-
cant gene set from the SCZ-significant SNPs (Fig. 2A), as indexed
by a coefficient of variation of 1.14. The coefficient of variation was
computed as SD/mean of the peak enrichment window genomic
distance from the index SNP. The value above 1 indicates that the
SD was larger than the mean [SD = 214 kilo–base pair (kbp);
mean = 186 kbp]. We prioritized modules enriched in at least
three genomic distance windows (note S1.1). Figure 2B shows the
characterization of these modules in published networks from the
DLPFC. By and large, we rediscovered modules already prioritized
in the original reports, but the number of modules that we identified
with this criterion was generally lower than the original reports,
hence reflecting greater stringency. We also identified some
modules not previously reported in these articles preceding the
PGC3 publication (2). The biological characterization of these
modules reflected neuronal biology and enrichment for loss-of-
function intolerant genes (Fig. 2B). Following this calibration
step, we used the same criterion and prioritized modules enriched
in three genomic distance windows in our networks.

Study 1: SCZ risk gene enrichment across brain regions
and age
Age parsing improves gene importance prediction models
Most previous studies along with the bulk tissue networks that we
identified here across all ages embedded age information in network
identification. Here, we generated age period–specific networks.
Age periods were defined as a trade-off between sample size and bi-
ological meaningfulness: (i) perinatal, fetal life to 6 years; (ii) juve-
nile, 6 to 25 years (birth to 25 years for caudate nucleus); (iii) adult,
25 to 50 years; and (iv) older adult, over 50 years.
We obtained 13 age period–parsed gene coexpression networks

(four age periods × three brain regions without perinatal caudate
and two replication networks). Table S3 summarizes the descriptors
of these networks. Given the evidence implicating early neurodeve-
lopmental components of SCZ (26, 37), our central hypothesis in
the age study was that age-parsed coexpression explained SCZ
genetic risk better than nonparsed coexpression. To assess the ex-
planatory power of parsed networks, we investigated the genetic
convergence of the SCZ genetic signal by a continuous measure
of that signal across all genes. To this end, we usedMAGMA (multi-
marker analysis of genomic annotation) in its revised version (38,
39) to compute for each gene a Z score of association with SCZ
based on GWAS effect size (2) of SNPs in the GWAS loci. First,
we assessed whether splitting the datasets into age periods with a
smaller sample size enhanced the accessible biological information.
We computed linear models to associate gene importance with

Fig. 1. Graphic summary of the study design. In this study, we evaluate four hypotheses: (i) Age-parsed networks in neurotypical brains explain more SCZ genetic risk
than the same data not age-parsed. (ii) The course of SCZ enrichment differs between NCs and patients with SCZ. (iii) There is amolecular environment to SCZ risk that can
be identified by consensus between networks in terms of genes coexpressedwith SCZ risk genes. (iv) The consensus genetic environment surrounding SCZ risk genes can
be reproduced in vitro to perform cell system studies of coexpression networks relevant to SCZ. CN, caudate nucleus; HP, hippocampus; MAGMA, multimarker analysis of
genomic annotation; SCZ, schizophrenia. The figure was created with BioRender.com and Inkscape.
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coexpression, in which the outcome variables were MAGMA scores
obtained for each gene and predictors were module assignment
(categorical) and total connectivity of each gene in each network.
We compared linear models obtained with the entire cohort (no
parsing in three brain regions: DLPFC, hippocampus, and
caudate nucleus) versus the 11 age period–parsed networks.
We first evaluated the direct relationship between total gene con-

nectivity andMAGMA score (an example scatter plot can be seen in
fig. S1). We found a significant positive correlation in all networks

except the perinatal (all other Bonferroni-corrected P < 0.001). This
result suggests that genes with higher SCZMAGMA scores are gen-
erally more strongly connected with all other genes, although the
effect size was small for all (all Kendall’s tau < 0.054).
Both nonparsed and age-parsed gene module assignments were

significantly associated with MAGMA scores (complete statistics in
note S1.3). In age-parsed networks, we found that perinatal and ju-
venile networks consistently, across all tissues, showed a stronger
association between SCZ importance and module assignment

Fig. 2. Coexpression modules enriched for SCZ risk. (A) SCZ risk gene enrichment in previously published networks. SCZ risk was assessed in the coexpression gene
sets in 12 previously published networks for nine reference lists of expanding SCZ risk protein-coding genes [bins: PGC (120 prioritized genes) (2), kb_000, kb_020,
kb_050, kb_100, kb_200, kb_250, and kb_500]. The y axis represents enrichment value −log10(Bonferroni-corrected P value) for a module in that bin (hypergeometric
test; see Materials and Methods). The dotted red line denotes −log10(0.05) threshold. Significant modules (Bonferroni-corrected P value < 0.05) are magnified. Colors
correspond to the name assigned by WGCNA to the coexpression module except in the Hartl2021_BRNCTX network. The gene sets and reference lists were restricted to
protein-coding genes. Diamonds (♦) represent modules previously highlighted for SCZ risk enrichment in the respective publications. (B) Risk module functional char-
acterization. We identified 15 SCZ risk modules across nine published networks as significantly enriched for SCZ risk in at least three of the nine lists of protein-coding SCZ
risk genes. Risk modules were characterized for different enrichments (SCZ, cell type, and other; see Materials and Methods). Only significant enrichments (Bonferroni-
corrected P value < 0.05) are shown. Module names with underline represent previously reported modules. ASC, astrocytes; DEGS, SCZ differentially expressed genes
between patients and controls derived from separate caudate, DLPFC, and HP studies; DMGS, genes proximal to differentially methylated CpG islands in SCZ; Drugga-
ble_genes, SCZ drug target genes; END, endothelial cells; exCA, pyramidal neurons from the hippocampal CA region; exDG, granule neurons from the hippocampal
dentate gyrus; exPFC, pyramidal neurons from the prefrontal cortex; GABA, GABAergic interneurons; LOF, loss-of-function intolerant genes; MG, microglia; NSC, neuronal
stem cells; ODC, oligodendrocytes; OPC, oligodendrocyte precursor cells; TWAS, SCZ transcriptome-wide association study genes derived from separate caudate, DLPFC,
and HP studies.
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than adult networks (Fig. 3A). This finding suggests that genetic
risk for SCZ is more aggregated in networks during earlier develop-
ment than in adulthood, hence pointing to a functional role of SCZ
risk genes in early development. Thus, evaluating gene assignments
and trajectories during these early stages is relevant for understand-
ing the biology of SCZ risk. In addition, perinatal hippocampus
total gene connectivity was negatively associated with MAGMA,
which was not the case in DLPFC networks. This result means
that genes most associated with SCZ were overall less connected
with all other genes (and thus less central in the network) in hippo-
campal in contrast to DLPFC networks, independently of their
module assignment.
Computing age-parsed networks explained significantly more

variance in MAGMA scores for SCZ than using the same samples
without age parsing to compute a single network per tissue (Vuong
test for non-nested models, z = 8.4, P < = 2.2 × 10−16). To validate
this result, we implemented a regression algorithm to predict
MAGMA scores to compare the prediction performance of our
machine learning workflow (Fig. 4A; see Materials and Methods
and method S2.2) between age-parsed and nonparsed datasets
(see Fig. 4). Both datasets contained 21,751 genes and the same in-
trinsic attributes but different expression and coexpression
properties.
The R2 distributions obtained for the Full and Age-parsed data-

sets are shown in Fig. 4B. A Wilcoxon test indicated a significant
improvement (P = 0.015) in the performance obtained with the
Age-parsed dataset. Among the most relevant features in predicting
the MAGMA score were intrinsic attributes such as gene width and
GC content, themedian expression variables, and themodulemem-
bership metrics (KME) associated with the modules of the coex-
pression network (Fig. 4, C and D). Explanatory KME variables
for modules that are not significantly enriched for SCZ are related
to predicting the entire range of MAGMA score values, also includ-
ing low-score genes (somemodulemembership variables have a sig-
nificant negative correlation with the MAGMA score). In the age-

parsed prediction models, the features selected in each and every
run included the median gene expression in perinatal DLPFC/hip-
pocampus and juvenile DLPFC/hippocampus module membership
but not in adult age stages.
Together, these analyses suggest that (i) genes with high

MAGMA score for SCZ tend to be coexpressed, as module mem-
bership contributes to SCZ importance prediction into an unseen
testing set, and (ii) parsing genes into age periods, data being
equal, reveals stronger associations between networks and a contin-
uous measure of gene association with SCZ beyond GWAS-signifi-
cant loci.
SCZ top loci genes converge into coexpression modules in
multiple brain regions, though especially in early-
stage DLPFC
The publications we used to perform the sensitivity analysis for
module characterization focused on cortical samples. We then com-
pared these published results with our networks from DLPFC, hip-
pocampus, and caudate nucleus with and without parsing for age.
We interrogated the properties of SCZ risk genes across age-parsed
networks, asking whether sets of putative SCZ risk genes (defined
from PGC3 and at varying genomic windows from PGC3 SNPs)
were highly coexpressed with each other regardless of modulemem-
bership. We found that SCZ risk genes are more coexpressed with
each other as compared to a null distribution of gene sets of equal
set size, gene length, GC content, and average expression. Results
vary across brain regions and age, with peak statistics around 200
kbp from GWAS-significant SNPs (Fig. 3B). The perinatal results
were not principally driven by postnatal samples, as shown by sig-
nificant departure of connectivity estimates from the null distribu-
tion (windows: 150 to 500 kbp; P[empirical] < 0.001).
In most networks, SCZ risk genes were depleted, i.e., underrep-

resented in hypergeometric tests, in the gray module, more exten-
sively than control gene sets negative for SCZ. Because graymodules
in WGCNA are composed of nonclustered genes, these results
suggest that SCZ risk genes tend to be coexpressed in modules

Fig. 3. SCZ risk is better explained in age-parsed networks. (A) A linear model was used to predict MAGMA score from module assignment and total connectivity
predictors considering all 11 age-parsed networks. The graph shows the −log10(P) for each age-parsed network to predict MAGMA scores from module assignment
within this linear model. (B) Within-set gene connectivity (coexpression) for different SCZ gene sets, across tissue and age. On the y axis is the median of the gene-
wise connectivity for each set, with each SCZ gene set represented on the x axis. Connectivity values were compared to a null distribution of gene sets of equal size,
length, GC content and average expression. The null 95% confidence interval (CI) is in gray shade; themean value is the gray line. Red dots represent SCZ gene sets above
the null 95% CI.
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with other genes, rather than not (note S1.4 and fig. S2). This
finding is consistent with the correlation between MAGMA
scores and connectivity shown above. The underrepresentation in
gray, however, may relate at least in part to the fact that SCZ risk
genes tend to bemore expressed in brain tissue and highly expressed
genes are less likely to be in the gray module (note S1.1 and fig. S3).
Eight of 11 age-parsed networks included at least one SCZ risk-en-
riched module (Fig. 5A). The genomic window in which most of
these modules were significant included genes localized up to 200
kbp from the SCZ index SNP. SCZ risk modules were generally se-
lective for SCZ genes and were not enriched for other disorders (fig.
S4), although hippocampal modules were an exception, represent-
ing enrichment for multiple pathologies. DLPFC enrichments were
not driven by many genes localized in few loci but were character-
ized by the convergence of many loci, while the opposite case was
seen in the hippocampus (note S1.4). Considering that all DLPFC
networks identified coexpression convergence in at least one

module, DLPFC aggregation of SCZ risk genes appears to endure
across multiple age periods in contrast to caudate or hippocampus,
which are relatively age restricted. In summary, the coexpression of
genes in the proximity of GWAS-significant SNPs associated with
SCZ is found most convincingly in the DLPFC.
SCZ risk modules had predominantly neuronal cell specificity

(Fig. 5B). Accordingly, a study of dentate gyrus tissue enriched
for granule cells via laser caption microdissection (23) showed a
greater degree of SCZ risk gene convergence on coexpression pat-
terns compared to bulk hippocampus RNA-seq and insight into the
context-dependent functions of these genes otherwise unavailable
(note S1.2, methods S2.1, and fig. S5). In addition, several of the
age-parsed modules were enriched in genes proximal to CpG
islands differentially methylated in SCZ, which was not the case
in nonparsed networks, suggesting a different gene aggregation
and consistent with the expected epigenetic variation associated
with age. Note how this property contrasts with the sparse other

Fig. 4. The proposed machine learning model is more effective at predicting MAGMA score when trained on age-parsed rather than age-aggregated network
features. (A) Workflow of the analysis: Using a random number generator, the 21,751 genes are randomly assigned to five different partitions, and for each partition, the
algorithm performs a round of a fivefold cross-validation, stratified with respect to the chromosomes to which genes belong; then, it applies the Boruta feature selection
algorithm to the training set and trains an XGBoost regressor on the same set, using only the selected features. XGBoost predicts theMAGMA score of genes in the test set;
One thousand values of R2 are collected during the analysis, corresponding to different random seeds and different iterations of fivefold cross validation. (B) Distributions
of the 1000 R2 values obtained in the MAGMA predictions based on the Full dataset (light blue), containing variables related to expression and connectivity in the three
age-aggregated networks, and on the Age-parsed dataset (green), containing analogous variables for the 11 age-parsed networks. TheWilcoxon test reveals a statistically
significant (P = 0.01544) improvement of performance in the Age-parsed dataset with respect to the Full dataset. (C) Features of the Full dataset selected by the Boruta
algorithm in more than 500 runs. The bars are filled with red lines, blue dots, or gray squares, depending on whether the Pearson correlation of the corresponding feature
with the MAGMA score is, respectively, positive and statistically significant (P < 0.05), negative and statistically significant (P < 0.05), or not significant. (D) Features of the
Age-parsed dataset selected by the Boruta algorithm in more than 500 runs. The meaning of the patterns used to fill the bars is the same as for (C).
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enrichments found in previously published enriched modules,
which were not parsed by age and mainly relied on adult brain
samples (Fig. 2B).
Regulomic analyses identified several transcription factors

whose targets were overrepresented across multiple networks
(Fig. 6A), with the most evidence favoring KLF15, MAZ, and SP2.
Other transcription factors of the SP family with a targetome profile
similar to SP2 were also included, such as SP4, a gene prioritized by
the PGC3 GWAS (2) and enriched for rare damaging coding vari-
ants in SCZ at exome-wide significance (40). SCZ riskmodules were
similar across regions in terms of top gene ontologies (e.g., involv-
ing synapses; Fig. 6B).
Risk convergence trajectories point to specific and shared
gene functional profiles in the DLPFC and hippocampus
across age
The premise of this work was that SCZ risk gene coexpressionmight
change across ages. We measured the overlap between modules in
sequential age periods in terms of Jaccard index (JI) at 200 kbp (as
reported above, the extension window with the greatest number of
significant SCZ risk modules). In the DLPFC, most perinatally
coexpressed SCZ risk genes (module black) continue to be coex-
pressed in juvenile samples (module blue), along with many of
their coexpression partners (Fig. 7A), a pathway strongly enriched
for neurodevelopment (note S1.5 for additional details and

statistics). In the context of a prominent overlap between SCZ
risk modules across age periods, the coexpression of a cohesive
subset of SCZ risk genes remained high (67% still coexpressed
and 33% shifted), while most of their module partners shifted
(52% partner genes). As the perinatal window included individuals
aged from fetal life to 6 years old, we performed a sensitivity analysis
to assess whether this difference in continuity of coexpression after
birth was driven by postnatal samples (note S1.5).We found that the
prenatal module red including only fetal samples recapitulated the
perinatal black enriched module (preservation Z score = 41; see fig.
S6); also in this case, the proportion of SCZ risk genes coexpressed
in the juvenile age stage was higher (46% prenatal genes still coex-
pressed in the juvenile samples and 54% shifted) than the propor-
tion of non-SCZ risk genes (68% partner genes shifted). We further
reproduced this finding in our replication datasets, where we iden-
tified another perinatal and another juvenile DLPFC network, re-
spectively. In the replication perinatal DLPFC, module red
included 21 SCZ risk genes, of which 12 (57%) were also coex-
pressed in the replication juvenile blue module, whereas 43%
shifted module membership. The 66 genes overlapping between
perinatal and juvenile SCZ risk modules were strongly enriched
for modulation of chemical synaptic transmission (17 genes, Padjust-
= 2.46 × 10−7) and regulation of synaptic plasticity (9 genes, Padjust-
= 6.64 × 10−6). Once again, while most SCZ risk genes were still

Fig. 5. SCZ risk modules in networks parsed by age. (A) SCZ risk genes enrichment in the generated networks. Only networks with modules significantly enriched for
SCZ top protein-coding risk genes are shown in (B). See Fig. 2 caption for details on the tests computed and abbreviations in (A) and (B).
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Fig. 6. Regulome enrichment and functional characterization of schizophrenia risk modules. To obtain this figure, transcription factor target enrichments were first
restricted to corrected P < 0.05. Then, for modules significant for SCZ in at least three extension windows (shown in Figs. 2 and 5 and fig. S5), a union of top three most
significant transcription factors for each module is considered for plotting. A white block for a module indicates that the targetome of the transcription factor is not
significantly overrepresented in that module. (A) Transcription factor targetome enrichment. (B) Gene ontology: biological processes (GO: BP), Kyoto Encyclopedia of
Genes andGenomes (KEGG), and Reactome pathways. DG, dentate gyrus granule cell layer. For both (A) and (B), processes/transcription factors significant in less than four
risk modules and risk modules with less than two significant processes/transcription factors are not shown. Underlined module names represent modules previously
reported as associated with SCZ.
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coexpressed, their non-SCZ partners shifted (64%). Accordingly,
table S4 shows that all SCZ risk genes most consistently coexpressed
into SCZ risk modules, even in adult age, were already coexpressed
in perinatal age.
In the hippocampus, the SCZ risk module in the perinatal age

period split into two separate developmental coexpression path-
ways: One mirrored early DLPFC age period coexpression related
to neurodevelopment, and another involved autophagy functions.
In the DLPFC, autophagy was associated with SCZ risk genes
only in the perinatal age period, suggesting that the hippocampus
continues coexpressing autophagy-related genes with SCZ risk
genes in adulthood (Fig. 7B). The pattern of continuity and shift
in coexpression that we observed in perinatal and juvenile DLPFC
was not apparent in the hippocampus, neither in the main dataset
nor in the replication (note S1.5). Caudate age-parsed networks
were not considered because we only found an enriched module
in the juvenile network (Fig. 5).
Sankey plots (Fig. 5, A and B) further show that gray module

composition changes between perinatal to juvenile periods (juvenile
to adult in the caudate nucleus, Sankey plot not shown) and later

transitions. These changes were quantified by computing a JI
across age adjacent gray modules. Across early life transitions, the
JI measured between gray modules did not significantly differ from
the null distribution (gray modules were no more similar than two
randomly selected gene sets), indicating that gray module composi-
tion changes between early life periods. Instead, the JI was signifi-
cantly higher across later life transitions than the null distribution,
indicating that gray composition remains stable in later life periods
(Fig. 7C). For additional results, along with Sankey plots for all
genes, not just SCZ risk genes, in the networks, see note S1.5. Inter-
active versions of full Sankey plots are available online at https://doi.
org/10.5281/zenodo.5676480.

Study 2: Differences between neurotypical and patient-
derived networks
Lifespan trajectories of coexpression show early SCZ risk
convergence and differences between patients with SCZ
and NCs
Given that preassigned age periods do not capture the gradual
changes intrinsic to neurodevelopment and results may be affected

Fig. 7. Coexpression transitions of SCZ risk genes at various age periods. Module membership of SCZ risk genes (200-kbp list; see Materials and Methods) for age-
parsed networks arranged ordinally. Modules for a network are represented as nodes. The size of node corresponds to the number of SCZ genes in the module. The link
width represents the number of shared SCZ genes between modules from two age-parsed networks. Only the risk modules (from Fig. 5) are labelled. The bottom text
highlights select conserved “streams” between risk modules across age. (A) DLPFC age-parsed networks. (B) HP age-parsed networks. In (A) and (B), a general disconti-
nuity from perinatal to postnatal ages is evident, but some risk gene sets continue to be expressed in the perinatal-to-juvenile transition. For clarity of illustration, modules
with less than 30 SCZ risk genes for the 200-kbp list that are not enriched for SCZ are combined into a hypothetical “lightgray module.” (C) Gray composition age tran-
sitions in JI across brain regions, where box plots depict the null distribution, and the red diamond represents the actual JI measured. The left panels considered only SCZ
risk genes, whereas the right panels considered all genes. Notice a transition with low JI between the graymodules of the perinatal and juvenile period in DLPFC. The gray
module represents the unclustered genes not belonging to any modules in the network.
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by the sampling density of subjects along the age dimension, we
identified networks in sliding windows of 40 subjects with steps
of one subject and compared NC with patients with SCZ. The
same samples analyzed in the fixed age period study were used
here, with the addition of cohorts of patients with SCZ. We thus
generated 316 networks from the DLPFC (221 from NC and 95
from patients with SCZ), 306 networks from the hippocampus
(234 from NC and 72 from patients with SCZ), 329 networks
from the caudate (219 from NC and 110 from patients with SCZ),
and 77 networks from dentate gyrus (46 from NC and 31 from pa-
tients with SCZ). Figure 8A shows early SCZ enrichment in neuro-
typical DLPFC that is superseded later, first by the hippocampus
and then by the caudate. The most notable finding is that networks
derived from patients with SCZ persistently show greater

enrichment for SCZ in caudate nucleus. In contrast, the dentate
gyrus data, enriched for neuronal cell type, mainly showed higher
enrichment in controls at the age range overlapping with patient-
derived networks, reaching a higher peak of enrichment than
most other brain regions across age. Although different age trends
may reflect age-related changes in cell composition in patients with
SCZ or the effect of drugs, stress, chronicity, etc., it is noteworthy
that estimated neuronal proportion based on cell decomposition
did not explain the difference in the caudate observed between pa-
tients and controls (Fig. 8B).
To further characterize these networks biologically, we correlat-

edMAGMA gene scores representing the association with SCZwith
gene ontology enrichments across modules within each sliding
window network (Fig. 8, C and D). There is a strong association

Fig. 8. Across module association of cell type and GO with MAGMA enrichment in sliding window networks. (A) Overrepresentation of SCZ top loci genes in age-
varying sliding windows. Multiple coexpression networks were identified with samples first chronologically arranged and then selected via a sliding window of width 40
samples, shifting one sample at a time. The x axis represents the median age of individuals in the window. The y axis represents the maximum SCZ fold enrichment (200-
kbp list) among all modules in that window. Only the smoothened line connecting maximum fold enrichments is shown. The shaded area represents the 95% CI of
smoothened line. The top rug and bottom rug show the individual NC and SCZ sample ages, respectively. (B) Neuronal proportion in age-matched samples. Estimated
neuronal proportion was significantly greater in neurotypical individuals than patients with SCZ in DLPFC, HP, and DG (t test; *P < 0.05). (C) We derived P values for cell
type andMAGMA enrichment for all modules in all slidingwindow networks. A robust linearmodel was constructed for each network to evaluate the association between
cell type enrichment and MAGMA enrichment. (D) The gene ratios of GO term lists were also associated with MAGMA enrichment scores across modules. For (C) and (D),
the y axis shows the Z-stat for cell type or GO term enrichment predicting MAGMA enrichment; the x axis shows the median age of the sliding window network. The red
dashed lines indicate a nominal P = 0.05. SCZ, patients with schizophrenia; NS, nervous system; NSC, neural stem cells.
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with neuronal cell types in both cases and NC at all ages, except in
young caudate NC networks (Fig. 8C). This association suggests a
large overlap of neuronal and SCZ enrichment across modules.
Gene ontology term associations also show consistency between
NC and case networks. The most significant gene ontology terms
are those related to synapse and axon, which are above nominal sig-
nificance across all ages in the caudate, DLPFC, and hippocampus
(Fig. 8D, green lines). The only differences across diagnoses are
found in the caudate with synapse- and axon-related terms, suggest-
ing a greater overlap in modules between enrichment for SCZ risk
and for synaptic function in patients. This result also suggests that
the SCZ risk genes responsible for the greater convergence found in
networks derived from patients (Fig. 8A) are preferentially synaptic
genes. In the hippocampus, modules derived from patients with
SCZ are relatively less enriched for GABAergic neurons compared
to excitatory neuronal types (Fig. 8C). This brain region also shows
the strongest association to nervous system development (Fig. 8D,
violet lines), found at the same level of hippocampus synapse and
axon terms, which is interesting given the potential role of adult
neurogenesis in this region.

Study 3: Consensus genetic environment
Identification of reliable coexpression partners of SCZ risk
genes in perinatal and later postnatal prefrontal cortex
Last, we performed a consensus analysis to test the hypothesis that a
consistent molecular environment surrounds SCZ risk genes, i.e., a
potential locus of molecular convergence involved in how diverse
small effect genes might translate toward a common phenotype.
Across multiple analyses, SCZ risk genes were most robustly coex-
pressed in neurotypical DLPFC modules, as outlined above. Con-
sidering that most previous studies of gene coexpression networks
investigated the DLPFC, we adopted a consensus approach to iden-
tify the genes most often included in coexpression modules overre-
presenting top SCZ loci genes in the current and these prior studies.
Table 1 shows genes coexpressed in SCZ risk modules in at least

two-thirds of the networks that had at least one module enriched
with SCZ risk genes in (i) cortical fetal samples [the perinatal age
period–parsed network and the networks published in (26, 27, 31)]
and (ii) postnatal networks [juvenile, adult, older adult DLPFC net-
works presented here, plus those reported by others (5, 10–14, 35)]
(Fig. 9A). These “consensus” GWAS partner genes include four
from the perinatal consensus (whereas 50 genes were found using
the SCZ-negative gene list) and 24 genes in the SCZ list in the post-
natal consensus (with none above the threshold in the negative list),
all protein-coding genes. This finding suggests that including only
four networks, as in the perinatal study, may be insufficient to dis-
entangle biological signal from noise in a consensus analysis. The
perinatal findings should thus be taken as exploratory.
In this full list of consensus genes, SCZ risk genes defined on the

basis of PGC3 loci were a minority (18%). Only three genes of the 28
appeared among the 120 PGC3 prioritized genes (DLGAP2,
ATP2A2, and OPCML). Therefore, genes not located in GWAS-sig-
nificant loci are often coexpressed with PGC3 loci genes, more often
than most PGC3 genes themselves. The lack of overlap between the
consensus gene lists and GWAS loci genes aligns with the finding
that SCZ risk genes shift coexpression partners over time. Although
these genes were found coexpressed with SCZ risk genes only post-
natally, most of them are expressed at higher levels in perinatal and
juvenile than in adult life (Fig. 9E). We used H-MAGMA (28, 39),

which considers contact points in chromatin organization to map
variants to genes within MAGMA, to characterize the fetal and
adult risk score of each gene (Table 1). Gene ontology analyses on
this list of 28 perinatal/postnatal genes point to the functions
“chemical synaptic transmission” (seven hits, 5.6-fold enrichment,
and qFDR = 0.02),“cation transport” (eight hits, 4.7-fold enrichment,
and qFDR = 0.02), and “cAMP biosynthetic process” (two hits, 125.5-
fold enrichment, and qFDR = 0.02). The top associations of consen-
sus genes with gene ontologies are represented in Fig. 9B.
We noticed that most of the 28 consensus genes have high prob-

ability of being loss-of-function intolerant. Loss-of-function intol-
erance is related to the depletion of disruptive variants. The most
frequent coexpression partners of SCZ risk genes are more loss-
of-function intolerant than background genes: pLI for SCZ risk
genes averaged 0.49, whereas for consensus non-GWAS genes, it av-
eraged 0.61; both estimates surpass those of all other protein-coding
genes in the genome expressed across at least four perinatal or six
postnatal networks (N = 9,552; backgroundmedian pLI = 0.22; one-
sampleWilcoxon signed-ranked test, t30 = 8.6, one-sided P = 0.006).
High pLI is thought to characterize potential SCZ core genes (11),
and frequent coexpression partners of SCZ risk genes share this
feature. No transcription factors or microRNA (miRNA) targets
were significantly overrepresented in the consensus sets.
We derived empirical P values for each consensus gene by per-

muting module membership 10,000 times and identifying a null
distribution of consensus genes (see Table 1 and Materials and
Methods). Each consensus gene had a higher probability of being
coexpressed with SCZ risk genes across both perinatal and postnatal
networks than expected by chance. Moreover, obtaining ≥4 (peri-
natal) or ≥24 (postnatal) consensus genes as output of this analysis
by chance is unlikely for randomly selected genes (perinatal empir-
ical P = 0.03; postnatal empirical P = 1 × 10−4).
We looked at the expression of consensus genes in DLPFC 10×

single-cell sequencing data taken from (41) (https://github.com/
LieberInstitute/10xPilot_snRNAseq-human), which has preanno-
tated cell type and neuronal subtype clusters. Expression levels of
consensus genes were consistently higher in neuronal cell types
versus others (fig. S7). We then evaluated the environment
around consensus genes for each network. For each network, we
generated gene sets from the union of all module partners of con-
sensus genes (even if that module was not SCZ enriched). Across all
networks, consensus partners were very strongly enriched for SCZ
risk genes, whereas the union of modules not including consensus
genes was never enriched for SCZ risk genes despite this meta-set
including more genes (meta_set_with_consensus median = 3086,
SD = 1467; meta_set_without_consensus median = 6653,
SD = 3470; fig. S8), indicating that consensus SCZ risk pathways
may be dispersed across multiple SCZ risk modules and may not
come out as statistically significant when compared to each other.
The consensus partner set showed enrichments related to synapse
and neuron (fig. S9A). Kyoto Encyclopedia of Genes and Genomes
(KEGG) annotations revealed additional enrichments in circadian
entrainment, oxytocin signaling, and addiction (fig. S9B). The flow
of consensus genes across age mirrored closely the flow of SCZ risk
genes, with several overlapping modules (Fig. 9D).

Study 4: Consensus genes in iPSC-derived neurons
Last, we explored whether this consensus set of SCZ coexpression
partners is coexpressed with SCZ risk genes in a cell model of early
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brain development. We analyzed RNA-seq from neurons derived
from human iPSCs designed to have a wide separation of individual
genetic risk for patients with SCZ compared with control samples
(33). We found that 22 of the 23 non-GWAS consensus genes re-
ported in Table 1 were also expressed in iPSC-derived neurons.
We verified whether sets of putative SCZ risk genes (defined from
PGC3 and at varying genomic windows from PGC3 SNPs) were
highly connected with consensus genes (not including those
already labeled as SCZ risk genes). We found that, even in these
stem cell–derived neurons, the preferential connectivity pattern of
consensus genes with putative SCZ risk genes is preserved and
remains significantly higher than background genes matched for
length, GC content, and average expression (Fig. 9C).

DISCUSSION
We investigated the convergence of genetic risk for SCZ into coex-
pression networks at different periods of the neurotypical life span
across different brain regions to address how SCZ risk genes change
their coexpression partners across age and to identify a molecular
environment that might be particularly relevant to enabling the
pathogenic effects of genetic risk. The evaluation of GWAS top
loci and whole-genome risk yielded consistent results regarding a
profile of convergence of SCZ risk on early development coexpres-
sion patterns in the DLPFC, followed by the juvenile hippocampus
and caudate nucleus convergence. The key findings of this report
are as follows:

Fig. 9. Consensus genes and their relationship with PGC3 prioritized genes. (A) Overlap of four perinatal and 24 postnatal consensus genes in the prefrontal net-
works according to their membership to a SCZ risk module across at least two-thirds of 11 networks. Cyan boxes represent genes in SCZ risk modules. Magenta boxes
represent membership to modules not significantly enriched for SCZ. Dark gray boxes represent genes not annotated in that specific network. The figure illustrates how
coexpression partners of SCZ risk genes change from perinatal to postnatal stages. (B) Gene-Concept Network (CNet) plot of the top 15 most significant (Padjust < 0.05)
associated GO biological processes to postnatal (n = 24) and perinatal (n = 4) consensus genes. Nodes for processes are colored beige. Node size represents the number of
hits. Nodes for genes are colored red. Genes also present in the GWAS are marked with round brackets. Only genes that are involved with the top 15 GO biological
processes are shown (14 of 28 genes). (C) Connectivity between SCZ risk genes defined at various windows of genomic extension and 22 non-GWAS postnatal consensus
genes in an iPSC dataset. Plots show −log10(median gene-wise connectivity) (y axis) of consensus genes to each SCZ gene set (x axis) from an iPSC-derived gene coex-
pression network. A null distribution of−log10(median gene-wise connectivity) was computed from randomly permuted non-SCZ and nonconsensus genes, after match-
ing for gene set size, GC content, gene length, and average expression (95% CI for the mean in shaded gray). (D) Sankey plot of consensus gene membership across age
stages in the DLPFC. Thin nodes not connected by links represent modules containing 200-kbp SCZ risk genes but not consensus genes. (E) Median rank-normalized
expression across sliding window samples by age for the four prenatal (top) and 24 postnatal (bottom) consensus genes in the NC DLPFC.
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1) Parsing by age periods explained more variance in a score of
gene importance for SCZ compared to lumping all age periods to-
gether in a single network.
2) SCZ risk genes tend to be more coexpressed than random

genes matched for potential confounders, and cluster into specific
modules, especially in early-stage DLPFC. The finding that perina-
tal and juvenile networks showed greater maximum overrepresen-
tation relative to adult networks suggests that SCZ risk genes cluster
best into coexpression networks in younger neurotypical
brain tissue.
3) SCZ risk genes tend to continue to be clustered together from

perinatal to juvenile life in DLPFC, but most of their coexpression
partners change. This finding was replicated when using exclusively
prenatal samples and was further replicated in external datasets,
suggesting that these SCZ risk genes continue to exert combined
effects while part of their molecular environment changes across de-
velopment, potentially underlying the age-associated shifts in clin-
ical symptomatology.
4) Networks derived from the caudate nucleus of patients with

SCZ show greater convergence of SCZ risk genes than networks
from age-matched NC. This effect is not explained by cell type
abundance inferred via deconvolution.
5) Despite age changes in coexpression, a set of 28 genes is reli-

ably found in modules enriched for SCZ risk genes in the DLPFC
across multiple publications, yet 82% of these genes are not in
GWAS-significant SCZ loci. These non-GWAS enrichment-
related genes are at least as intolerant to loss-of-function mutations
as GWAS genes and significantly more so than the background and
may represent a consistent molecular environment that mediates
SCZ risk.
6) Most of these consensus genes are highly expressed in perina-

tal life and are also expressed and correlated with SCZ risk genes in
iPSC-derived human neurons. This evidence suggests an in vitro
platform for experimental investigation of their role in enabling
SCZ biological risk.
Together, these findings suggest that mRNA coexpression shows

a convergence of SCZ genetic risk situated in the context of age
period and brain regions specificity, revealing potentially important
biological signal beyond what has been identified with GWAS.

SCZ gene coexpression changes across the neurotypical
life span
The aim to identify when and where in the brain SCZ risk genes
converge is based on the putative role of neurodevelopment in
SCZ. These results emphasize early convergence of SCZ risk and
potentially shed light on its shifting clinical presentation (42–44).
Recent evidence supports this view. SCZ candidate risk genes are
expressed earlier in humans than nonhuman primates, especially
during prenatal development (45). Early life gene expression and
chromatin accessibility are associated with SCZ genetic risk (26,
46, 47); SCZ genetic risk shows higher penetrance in the presence
of perinatal environmental risk (48); combined GWAS/chromatin
contact analyses support early life genetic risk convergence for psy-
chiatric disorders (28). Most recently, Cameron et al. (24) have
shown that genes with high PGC3 associations, as estimated via
MAGMA, are preferentially expressed in developing neurons of
the frontal cortex during the second trimester of gestation.
Our data suggest that assessing coexpression changes across the

life span identifies brain region specificity, which is not equally

accessible with “nonparsed” coexpression approaches. For
example, SCZ risk modules enriched for the targetomes of SP4, a
transcription factor prioritized in genetic associations with SCZ
(2, 40), are found in the perinatal and juvenile DLPFC but not in
any nonparsed network (Fig. 6A). Consistent with the privileged
role of the DLPFC in genetic risk for SCZ, we found that in this
region and not in the hippocampus, SCZ risk genes in perinatal
life were still coexpressed in juvenile individuals, while changing
their coexpression environment partners. SCZ risk genes were pe-
ripheral in hippocampal perinatal networks, and the enriched
modules overrepresented risk for other disorders and not just
SCZ, effects not observed in early-stage DLPFC. Note that our
benchmark networks identified using the same samples but
without parsing did incorporate age information. As in prior
studies, age could be traced back to the first principal component
of module gene expression (27, 31). However, the aggregation of
genes in prior studies and in our benchmark networks was likely
driven by gene expression changes during development, without
the opportunity to identify how coexpression partners change
during the life span. In particular, the neurotypical function of
gene modules associated with SCZ appears more fundamental
during perinatal and early developmental periods. As most of the
evidence currently available about SCZ genetic risk in coexpression
networks derives from adults, the developmental perspective that
we provide here has likely been missed in previous work. The
network resource developed in this work is freely available and
can be used for further studies.
Several of our findings are relevant to a system neuroscience ap-

proach to SCZ. The privileged position of the DLPFC in the func-
tional genomics of SCZ agrees with many prior postmortem
DLPFC and imaging studies of living individuals (49–51). As pre-
vious studies established for gene expression (26, 27, 29, 30), also for
coexpression, there are differences between prenatal and postnatal
DLPFC. Our results support this idea as well, but to a lesser degree,
for hippocampus. However, we also found that RNA-seq from the
dentate gyrus of the hippocampus showed greater coexpression of
SCZ risk genes than bulk tissue and peak coexpression in NC in the
sliding window analysis, supporting the relevance of SCZ risk gene
convergence for neurons and suggesting cell type beyond brain
region specificity. A convergence of SCZ risk genes on neuronal
and especially synaptic biology is the same conclusion reached in
the PGC3 report (2). To the extent that coexpression recapitulates
cell types, cellular districts, and functional pathways, the genes most
often coexpressed with SCZ risk genes should share their main
functions and, in fact, do so. The additional enrichment analyses
also highlight spatiotemporal aspects of SCZ risk gene coexpression.
For instance, differentially methylated CpG islands (DMGs) are
coexpressed principally in perinatal or juvenile networks; and dif-
ferentially expressed genes (DEGs) are coexpressed in the caudate
nucleus. The caudate nucleus SCZ enrichment time course aligns
with dopaminergic maturation (37, 44). In the sliding window anal-
ysis, patients with SCZ generally showed greater enrichment for
SCZ risk genes in caudate nucleus networks, the brain region
with maximum dopaminergic innervation. This finding may be as-
sociated with D2 receptor–targeting antipsychotic treatment in pa-
tients with SCZ or with the impact of variants in genes relevant to
dopaminergic transmission (52). Notably, our results based on a
connectivity match between networks across brain regions and
age failed to support previous findings of less connected
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coexpression networks in the DLPFC of patients with SCZ (5). We
hypothesize that the networks available with the present work may
afford greater explanatory power in the translation of postmortem
brain insights into neuroscience and clinical predictions in living
patients with the latest available approaches (13–15, 53–60).

The developmental milieu of SCZ risk genes
Arguably, our most unexpected and novel result is the identification
of a set of mutation intolerant consensus genes that are especially
likely to be coexpressed with SCZ risk genes. This set of genes is
coexpressed with SCZ genes in the large majority of the networks
that we examined, regardless of often emphasized differences across
datasets, preprocessing pipelines, and parameter setting. The
method that we used to derive this consensus is very conservative,
as confirmed by the statistical significance of finding very large con-
sensus sets. The gene-wise P values that we derived control for bias
related to module size of the consensus genes and are highly signifi-
cant for all genes.
We successfully predicted on the basis of the postmortem data

that these genes would be more coexpressed than matched back-
ground genes with the set of 120 PGC prioritized genes in iPSC-
derived human neurons. There is no obvious clustering of these
genes by chromosome, hence discounting the possibility of locus-
related artifacts. By merging modules containing consensus genes,
we showed strong enrichment for SCZ risk genes, which was not
found when merging modules without consensus genes. Gene on-
tologies for the consensus gene set and their modules once again
emphasized neurons, synapses, and ion transport. It is tempting
to speculate that these genes mediate at least in part the read-out
of SCZ risk at the level of biological systems and that they are in-
volved in translating SCZ genetic risk into SCZ biological risk.
There are multiple nonexclusive explanations as to why genetic

variants relevant to the biology of a heritable disease might not
show GWAS-associated signal, which may be related to their high
loss-of-function intolerance. For example, theymight be depleted in
common cis-functional polymorphisms; their common variants
may be associated with other disorders that represent exclusion cri-
teria for SCZ genetic studies, e.g., other central nervous system dis-
orders; their effect may be nonadditive, for instance, because of
epistasis with other variants masking their effect in GWAS, or
their expression may be principally regulated by trans-eQTLs.
Gene coexpression provides a handle on the role of potentially rel-
evant genes undetected by GWAS, thus highlighting previously un-
reported targets “guilty by association” and related regulatory
elements. These non-GWAS genes thus may be part of the cellular
environment in which GWAS-positive genes exert their pathoge-
netic function, potentially accounting at least in part for how
diverse GWAS risk genes of small clinical effect converge on a
common phenotype that shows varying expressivity over the
life span.
In terms of limitations of our methods, although we analyzed the

largest developmental series available to date, the absolute cohort
sizes are still limited, especially for perinatal and juvenile networks.
We endeavored to mitigate this shortcoming by including a
minimum of 40 samples per network; however, this choice came
at the cost of diluting biological specificity associated with age by
extending the age intervals beyond the desirable limits, e.g., up to
6 years of age in the perinatal window. The networks identified
also depend on the nonuniform age sampling with fewer samples

between 1 and 20 years. For these reasons, we confirmed findings
pertaining to perinatal and juvenile windows in independent RNA-
seq data and also included a sliding window approach, which sup-
ported the conclusions of the fixed age period study.
A relevantmethodological aspect of this work is that we obtained

networks comparable across the life span via statistical corrections
for cell type abundance and by matching connectivity between dif-
ferent brain regions and age periods. These operations reduce the
possibility that these potential confounding variables drive the find-
ings. Cell specificity enrichments computed on SCZ-enriched
modules showed that removing interindividual variation in cell
abundance estimates did not compromise module specificity,
which appears equal to or greater than those of published reports.
Despite our efforts, some confounding effects may still affect the
results, particularly regarding ancestry and sex. Statistical correction
of the effects of these variables on expression data cannot address
the potential different genetic architecture underlying the expres-
sion of SCZ risk genes across ancestry groups and sex. The popula-
tion in our cohort differed from the reference PGC3 GWAS that we
used to identify SCZ risk genes. It is thus possible that these vari-
ables still affect our findings, although no evidence has been report-
ed of differential genome-wide association with SCZ in males and
females (2).
In conclusion, while the convergence of SCZ risk genes into co-

expression pathways has been observed before, here, we identify
spatiotemporal dimensions of this convergence such that the rela-
tionships between genes change along the life span, especially
between perinatal and postnatal life, perhaps in parallel to the
seminal transition from the preclinical to the manifest illness.
Age-parsed networks afford superior predictions in terms of poten-
tial gene association with SCZ. The granular quantification of SCZ
risk gene convergence across age reveals a difference between neu-
rotypical adults and patients with SCZ specifically in caudate
nucleus data. Most notably, SCZ risk genes converge especially in
perinatal and juvenile DLPFC, as shown by enrichment and predic-
tion analyses, and keep being coexpressed in a shifting context. To-
gether, these findings highlight that the genetic architecture of SCZ
is embedded in shifting coexpression patterns across brain regions
over the life span. Leveraging this shifting pattern of coexpression,
we identified novel associations with SCZ in a set of genes consis-
tently coexpressed with GWAS-positive genes that may be part of
the cellular environment that mediates the translation of genetic
risk into biological risk for SCZ, an environment that can be
readily studied in an in vitro model to investigate the potential con-
tribution of these genes for the development of future treatments.

MATERIALS AND METHODS
Subjects and materials
This study was based on brain tissue of NC and individuals diag-
nosed with SCZ of European or African American ancestry, all
with RNA integrity number (RIN) ≥ 6 (table S1). All tissue dona-
tions were made with informed consent from next of kin. A number
of brains in the LIBD Human Brain Repository were transferred
from the National Institute of Mental Health (NIMH) Clinical
Brain Disorders Branch under a material transfer agreement, after
having been collected under NIMH Protocol 90-M-0142 and pro-
cessed and approved by the NIMH/National Institutes of Health In-
stitutional Review Board. Additional cases in the LIBD repository
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were collected from the Office of the Chief Medical Examiner for
the State of Maryland under State of Maryland Department of
Health and Mental Hygiene Protocol 12-24 and from the Kalama-
zoo County Michigan Medical Examiners’ Office under Western
Institutional Review Board Protocol 20111080. All samples were
collected and processed using a standardized protocol specifically
developed to minimize sample heterogeneity and technical artifacts.
All included NC subjects had minimal age-associated neuropathol-
ogy (determined from postmortem histopathological examination)
and no substance or drug use from toxicology and were free from
any psychiatric or neurological disorder from clinical histories.
Postmortem clinical information was gathered by conducting
family interviews with the next of kin, as previously described
(61). After psychiatric record reviews and postmortem family inter-
views were completed, brief psychiatric narratives were prepared on
each case, summarizing the demographic, clinical, medical, and
death information obtained from as many sources as possible
(i.e., multiple psychiatric records, police reports, neuropathology
reports, medical examiner’s information, toxicology screen, and
postmortem family interview). Each case was then independently
reviewed by two board-certified psychiatrists, who arrived at con-
sensus DSM-IV Axis I lifetime diagnoses or consulted with a
third reviewer to reach a final diagnosis.
DLPFC samples were derived from Brodmann area 9/46 at the

level of the rostrum of corpus callosum. Hippocampus samples were
derived from themid-hippocampus proper (all dissections included
the dentate gyrus, CA3, CA2, and CA1) plus the subicular complex
(61). For caudate nucleus, samples were taken from the anterior
“head” portion, which is the caudate part most tightly connected
with the prefrontal cortex. Dentate gyrus samples were obtained
from the granule cell layer of the dentate gyrus (DG-GCL). DG-
GCL samples were isolated from neighboring polymorphic andmo-
lecular layers by using laser capture microdissection (23). For all
tissues, RNA-seq was performed via the Illumina Ribo-Zero Kit.
In the Age study, we determined the age periods as a trade-off
between achieving a minimum sample size for each age period to
identify networks (minimum of 40 subjects) and the identification
of biologically meaningful age windows.

Replication datasets. The replication study was carried out using
the (i) UCLA-ASD data from the PsychENCODE collection (36);
here, we selected 16 NC ranging in age from 6 to 25 years; (ii) Brain-
Span data from 21 perinatal and 9 juvenile samples; and (iii) PolyA
data from the LIBD repository, not overlapping the LIBD samples
already used in the main analysis, from 29 perinatal and 19 juvenile
individuals.

Quantification and statistical analysis
Data preprocessing
All downstream analyses have been performed primarily using the
R statistical software (version 4.0.0+). Specific R packages used are
also listed in the Key Resource Table in the Supplementary
Materials.
Regional coexpression and age studies
We performed a common preprocessing for non–age-parsed tissue
samples to ensure the use of the same samples and settings across
ages (the only difference is, thus, the subsequent age parsing). Com-
puting preprocessing parameters on the entire cohorts also allowed
the best-informed estimation of confounding effects on a large
sample. Specific challenges in this approach concern the

preservation of age effects during preprocessing, the comparability
between the networks obtained, and the variation of cell population
abundance between early development and adulthood.
Gene-level mRNA expression was quantified as reads per kilo-

base per million mapped reads (RPKMs) and annotated as total
gene expression separately for each brain region, regardless of alter-
native transcript quantification (61) using GENCODE release 25
(GRCh38.p7). We selected genes above median RPKM ≥ 0.1 and
free of floor effects (maximum 20% of zeroes per gene); we log-
transformed RPKM values with an offset of 1, i.e., log2(RPKM + 1).
We used inter-array distance to identify outlier subjects deviating
more than 3 SDs from the mean (14). Outliers were identified rel-
ative to their age period in the fixed period analysis. Outliers iden-
tified in this step were also excluded from the subsequent sliding
windows analysis. After removing mitochondrial genes that were
highly expressed in some samples, datasets included a variable
number of genes for different regions (table S1).
Comparing networks across different age periods requires the

preservation of the biological effects of age while removing unwant-
ed confounding effects. Standard noise removal techniques, such as
principal components analysis, are effective at modeling noise into
latent factors while preserving biological effects (62, 63). However,
these latent variables were strongly associated with age in our
samples (>80% shared variance), likely because of the inclusion of
prenatal samples. This finding extended to latent variables derived
from experimental quantification of degradation effects conducted
on adult samples, i.e., qSVA (quantitative surrogate variable analy-
sis) (64). To reduce the risk of removing age-related signal in the
Age study, we used correction for explicit confounders, a practice
that has been suggested as optimal for gene coexpression networks
identified in brain tissue (11). In particular, we regressed out the
effect of the following variables from each brain region cohort sep-
arately on the basis of availability: Confounding variables regressed
out for BrainSpan were sex, self-reported ancestry, and RIN. Con-
founding variables regressed out for UCLA-ASD were sex and RIN.
Confounders used for PolyA were the same as those used for the
primary LIBD networks, namely, sex, mitochondrial mapping
rate, ribosomal RNA (rRNA) rate, gene mapping rate, RIN, ancestry
estimated via the first 10 genomic eigenvariates [computed as in the
work of Collado-Torres et al. (61)], and estimated individual neu-
ronal proportion; the latter confounder was included to obtain an
appropriate comparison between subjects of different age. Individ-
ual-level estimated neuronal proportion was computed using the R
package BRETIGEA (species: human, scaling: FALSE, dataset:
kelley) (65) and regressed out because it could bias estimated
gene-gene connectivity due to interindividual variation in cell
abundance across age periods. We estimated and protected linear
and quadratic terms of age using the function cleaningY from the
Jaffelab package (66). We rank-normalized residuals using Blom
formula (13, 54, 56, 58) to limit the impact of deviations from nor-
mality in expression data (67).
Network identification across all studies
Blom-normalized residuals obtained using the linear models de-
scribed above were entered as input in the blockwiseModules func-
tion from the package WGCNA to construct “signed hybrid”
network(s), i.e., negative correlation were set to zero and positive
correlations were soft-thresholded. We obtained the similarity
matrix using Pearson’s R correlation index (minModuleSize: 40,
maxBlockSize: 3000, deepSplit: 4, mergeCutHeight: 0.15, pamStage:
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TRUE, reassignThreshold: 1e-06). The parameter used for soft-
thresholding is the exponent β to which the correlation matrix is
raised to obtain the adjacency matrix. The standard procedure is
to pick the lowest possible β that is high enough to satisfy the
scale invariance criterion, defined as the R2 > 0.8 in the correlation
between original and log-transformed values (34). Lower β values
are often associated with greater network median connectivity.
For each network, we selected the parameter β such that connectiv-
ity was matched across all networks (see below; table S3).
Exploratory analyses on our datasets revealed that perinatal net-

works yielded systematically greater connectivity than other age
periods, thus undermining comparisons between brain regions
and time windows. Outcome variables such as the number of non-
clustered genes are influenced by β and by network connectivity;
thus, the standard criterion to identify networks generated large dif-
ferences between networks. To obtain comparable networks, we as-
sessed the median network connectivity for each sample and
selected β to meet the scale invariance requirement in all networks
while also matching connectivity. To achieve this effect, we used
larger β values for early, highly connected networks at a level of con-
nectivity compatible with later life-span periods while still meeting
scale invariance. Following this procedure, we obtained comparable
graph structures with small variations in connectivity and in
number of nonclustered genes (fig. S10).
For each replication dataset, we rank-transformed and normal-

ized expression values to construct a network for each age group.
For the construction of networks, genes were matched between all
sets and with the main networks that we generated (n
genes = 14,553). A soft power (β) was first identified for each
such that the network was scale invariant (scale invariant index >
0.8) and the median connectivity is not greater than 1.123 (the
median connectivity across LIBD network). The BrainSpan juvenile
network did not match these criteria under β = 30 (the maximum
allowed by the WGCNA package) and was thus not used further.
The blockwiseConsensusModules function from the WGCNA
package was used to detect consensus modules across perinatal net-
works polyA_Perinatal (β = 17) and Brainspan_Perinatal (β = 29)
and across juvenile networks polyA_Juvenile (β = 22) and UCLA_-
Juvenile (β = 25).
Other previously published networks were used “as is,” except for

the network published by Pergola et al. (13). This network used
BrainCloud, a microarray dataset featuring constitutive and alterna-
tive probes. Therefore, we reannotated it to obtain a total gene ex-
pression quantification and make it comparable with the other
networks, which were all annotated to GENCODE release 25
(GRCh38.p7) to be consistent with the annotation database used
in the network identification. For each probeID, first, the corre-
sponding accession number was converted into Ensembl ID using
clusterprofiler package (68). When an accession number mapped to
multiple Ensembl IDs, a single Ensembl ID was randomly selected.
If no Ensembl ID was returned via accession number, then the gene
symbol corresponding to the probeID was used to derive an
Ensembl ID. Only one probeID per Ensembl ID was retained in a
preferential order of probe types: constitutive exonic (hHC), then
alternative exonic (hHA), and then human mRNA (hHR).
Network characterization and association with SCZ risk

Definition of SCZ risk genes. We used the PGC3 definition of 120
priority genes as the list called “PGC.” Then, to obtain genomic
regions agnostic of PGC3 fine mapping and reflecting a consensus

between SCZ risk gene lists, we evaluated enrichment at multiple
thresholds of genomic distance from the index PGC3 GWAS-signif-
icant SNP. We have previously tested a similar method in another
dataset using PGC2 GWAS-significant loci (14). The rationale for
this choice was to generate lists of genes in the proximity of signifi-
cant SNPs that survived genome-wide correction for multiple com-
parisons, assuming that in these genetic regions, the probability of
finding causative genes is highest. On the other hand, as we do not
know whether the index SNP is causative and gene regulation is also
possible at a certain distance from the genes, we evaluated increas-
ing extension thresholds to include increasing numbers of genes.
The number of genes included was still much smaller than all
genes included in all loci identified by PGC3, which are often
larger than 1 million base pairs (Mbp) and thus are proximal to
thousands of genes (possibly with the dilution of the probability
that each gene is causative). By assessing the consensus between
gene lists, we attempted to use a conservative approach in which
the choice of parameters does not drive results. We considered
nine extension windows at increasing distances in both directions
from each PGC3 GWAS significant SNP: PGC [120 genes], 0 kbp
[178 genes] (meaning, genes that overlapped with the index SNP),
20 kbp [299 genes] [extension from the loci used in PGC2 (69)], 50
kbp [456 genes] [extension from the loci used in PGC3 (2)], 100 kbp
[705 genes], 150 kbp [963 genes], 200 kbp [1196 genes], 250 kbp
[1436 genes], 500 kbp [2475 genes] [500 kbp was the maximum ex-
tension where enrichments were found significant by (14)].
The ancestry composition of our expression data included Euro-

pean and African American individuals, hence different from the
PGC core cohort (130,644 European and 30,761 Asian ancestry in-
dividuals), as well as from the PGC primary cohort including Euro-
pean, Asian, African, and Latino ancestries (2). The addition of
African and Latino ancestry in the PGC primary results has
modest effects on the overall summary statistics because the
sample size is below 10% of the PGC core dataset but has a
sizable effect on the clumping, arguably because ancestry in the
genome largely takes the form of LD blocks. As the purpose of
our analysis was only to identify index SNPs associated with SCZ
and not for genetic trait associations, we based our definition of
risk genes on the PGC core summary statistics (2). These
summary statistics arewell powered, genetically more homogeneous
than the PGC primary results, and largely consistent with previous
SCZ-GWAS. It is also noteworthy that the sex distribution in our
expression data privileged males over females, representing
another difference from the PGC core cohort (female-to-male
ratio = 0.81), in which the overrepresentation of males was less over-
whelming. A chi-square test on the proportion of males and females
returned a highly significant difference [χ2 (df = 1,
N = 164,061) = 34, P = 5.5 × 10−9].
We generated negative control gene sets equal in size to the ones

described above used in the enrichment analysis by selecting the 500
least significant SNPs in the PGC3 core summary statistics and de-
fining negative loci at the above-considered distances from each
tagging negative SNP. We excluded any region located at ±3 Mbp
from SCZ SNPs from this selection to rule out any overlaps
between positive and negative gene sets.
Coexpression of SCZ risk genes regardless of module
membership
To test the hypothesis that putative SCZ risk genes are more highly
coexpressed than expected by chance, we took as connectivity
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measure the median of the gene-wise mean connectivity with all
other SCZ risk genes from the adjacency matrix of each network
identified and compared it to a null distribution of randomly per-
muted non-SCZ genes.
As GC gene content and gene length may bias random permu-

tations [SCZ risk genes are GC richer and longer than random genes
(2)] together with gene expression within each network, we ran
10,000 permutations with the restriction to match both gene set
size and GC content, besides gene length and average expression
distributions of the SCZ risk genes. The universe from which
random genes were pooled consisted of genes expressed in each
network, excluding SCZ risk genes (the most extensive list that we
generated at 500 kbp from GWAS-significant SNPs was considered
for this analysis). Last, we defined the empirical P value as the
number of occurrences in which the connectivity measure of the
random genes exceeded the one of the SCZ risk genes divided by
the number of permutations. We set the significance threshold at
an empirical P value < 0.001. We repeated this procedure for the
nine extension windows previously created.
MAGMA
To calculate MAGMA and H-MAGMA, we used the MAGMA tool
v1.09b (39), PGC3 summary statistics as SNP P value data (2) and
1000G European as the reference data file for a European ancestry
population to estimate linkage disequilibrium between SNPs. We
took the following steps: (i) We mapped 1000G SNPs to genes en-
compassed in each network module [a window of 35 kb upstream
and 10 kb downstream of each gene; for H-MAGMA, we used adult
brain Hi-C annotation files already computed in the H-MAGMA
publication (28)], (ii) calculated gene P values on the basis of
PGC3 SNPs P values, and (iii) performed gene set enrichment anal-
ysis using the modules detected in the network that assigns a gene
set P value (universe used byMAGMA consists of all network genes
with at least one SNP mapped). We computed this analysis for each
network for both all biotypes and protein-coding genes and correct-
ed for the number of modules in each network using Bonferro-
ni’s rule.

Enrichment methods
We identified modules in each network. Then, we assessed the over-
representation of SCZ risk genes for each module except gray in
each network relative to a universe composed of all non-gray
genes. We corrected results for multiple comparisons via Bonferro-
ni (number of non-gray modules in each network). This statistic is
independent of the underrepresentation in the gray module and
represents the competitive enrichment of one module relative to
the background. We labeled as SCZ risk modules those significantly
enriched in at least three of the nine extension windows (hypergeo-
metric test, Bonferroni-corrected P value <0.05). In addition to hy-
pergeometric tests, we also computed permutation statistics
(creating for each module in each network a null distribution of
10,000 sets of randomly sampled genes using network-specific
genes as the universe) to obtain an unbiased empirical P value.
We performed these same analyses in networks from published
reports to provide a benchmark (5, 10–14, 26, 27, 31, 35, 36). More-
over, we tested whether SCZ risk genes were significantly underrep-
resented in the gray module of nonclustered genes relative to a
universe represented by all genes expressed in a network. Significant
underrepresentation suggests that SCZ risk genes tend to be coex-
pressed rather than not (see results in fig. S2).

Using the same methods with other GWAS summary statistics,
we computed gene enrichment for several psychiatric, neurologic,
and immune disorders [attention deficit hyperactivity disorder
(70), autism spectrum disorder (71), bipolar disorder (72), major
depressive disorder (73), obsessive compulsive disorder (74), post-
traumatic stress disorder (75), suicide attempt (76), Alzheimer’s
disease (77), amyotrophic lateral sclerosis (78), multiple sclerosis
(79), Parkinson’s disease (80), Crohn’s disease and ulcerative
colitis (81), and rheumatoid arthritis (82)].
Tomitigate the risk of biased enrichments due to the inclusion of

many genes mapping onto few loci, which may depend on RNA-seq
read annotation for transcripts overlapping in the DNA sequence or
due to common regulatory sequence elements between close genes,
we also performed a permutation test of loci overrepresentation. In
this test, all genes within a module located in the same locus
(defined according to the genes located in the proximity of
GWAS-significant SNPs) were counted as a single hit.
For the cell type enrichment analysis, we used gene sets reported

by Skene and colleagues (83) including cell type specificity indices
available at www.hjerling-leffler-lab.org/data/scz_singlecell/. They
computed specificity indices for each gene and range between 1
(high specificity for a given cell type) and 0 (low specificity). We
used specificity indices derived from single-nuclei RNA-seq of
human brains [DroNc-seq in prefrontal cortex and hippocampus
(84)]. We used mean-rank gene set test in the limma R package
(85) to evaluate the enrichment of our components for the specific-
ity indices of each cell type.
We characterized the modules of interest using the Gene Ontol-

ogy Database (PANTHER) (86) and clusterProfiler package (anno-
tation package: org.Hs.eg.db 3.16). We also computed enrichments
for cell specificity (83); transcriptome-wide association study
(TWAS) genes obtained from caudate nucleus (52), hippocampus
(61), and DLPFC data (7, 61, 87); DEGs obtained from caudate
nucleus (52), hippocampus, and DLPFC data (61); DEGs in each
brain region (5, 6, 52, 61, 88), genes proximal to differentially meth-
ylated CpG islands (DMGs) in PFC, and blood (89–94); DEGs in
humans relative to great apes (88); SCZ drug target genes (95–
98); and loss-of-function intolerant genes (99) in the selected
modules. For TWAS and DEGs, we performed a brain region–spe-
cific enrichment using the appropriate gene list of each tissue. The
“universe” of TWAS enrichment was adjusted by intersecting the
list of genes associated with a cis-eQTL, called heritable genes,
with the brain region–specific list of expressed genes. Moreover,
for DLPFCTWAS andDMGs, as well as for drug target enrichment,
we computed a meta-analysis of the papers that we retrieved target
genes from to obtain module-wise enrichment P values (sum-log
Fisher’s method, agnostic to developmental stage).
MAGMA linear models
To reduce biases associated with genes uniquely expressed in a
single brain region or age period, in this analysis, we only consid-
ered autosomal genes included in all Age study networks, i.e., the
intersection of genes expressed in the DLPFC, hippocampus, and
caudate nucleus. In particular, we performed the gene analysis
using MAGMA annotation files (35-kb upstream and 10-kb down-
stream window was used), PGC3 summary statistics as SNP P value
data, and 1000G European as the reference data file for a European
ancestry population, as reported above. Thus, we considered the
gene-wise z scores obtained in this analysis as the MAGMA impor-
tance score (i.e., the measure of gene annotation to SCZ) and
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assessed the association of coexpression in different brain regions
and age periods with gene importance for SCZ derived by
MAGMA. Because H-MAGMA Hi-C annotation was performed
by authors of the paper using hg19/GRCh37 as genomic reference,
we only kept SNP and genes locations consistent with H-MAGMA
reference when generating H-MAGMA scores for the consen-
sus genes.
We computed linear models to associate this score with coex-

pression. In these analyses, the outcome variables were represented
by theMAGMA importance score obtained for each gene, previous-
ly marginalized by gene position, number of transcripts, GC
content, and gene. We assessed the improvement in model fit deriv-
ing from the inclusion of coexpression variables in the model rela-
tive to a null model only, including confounders, via maximum
likelihood estimation. This analysis implied an analysis of variance
(ANOVA) comparing the null model with the test model. We then
tested the following hypotheses: (i) Age-parsed networks explain
more variance in gene importance for SCZ than using the same
samples to compute a single network per tissue; we tested this hy-
pothesis with the Vuong test for non-nested linearmodels (compar-
ing full sample versus age-parsed networks). (ii) SCZ risk
convergence is region and time specific, i.e., networks computed
at critical age periods are reproducibly related to SCZ risk
importance.
We considered as confounders chromosome location, gene start

(to index location within the chromosome), gene width, GC
content, strand, number of isoforms, and gene type. These variables
are potentially related to SCZ risk importance, but they do not nec-
essarily reflect coexpression-related signal, which is why their bio-
logical association with SCZ is considered confounding here. The
poorly represented gene types in our dataset were excluded to
avoid biasing the models; the minimum WGCNA module size
served as the threshold for exclusion (40). We thus excluded
genes annotated as 3prime_overlapping_ncRNA (4), polymor-
phic_pseudogene (3), IG_V_gene (2), non_coding (1), rybozime
(2), scaRNA (15), scRNA (1), TR_V_pseudogene (1), transcribe-
d_unitary_pseudogene (15), and unitary_pseudogene (15). The re-
maining gene types had over 41 entries each. The dataset included
17,996 genes.
To test the second hypothesis, we compared prediction perfor-

mances for the same machine learning workflow on parsed and
nonparsed datasets. The two datasets differed in expression attri-
butes and coexpression properties, specifically median gene expres-
sion (3 features in nonparsed and 11 in age-parsed) and kTotal
(connectivity of a gene to all other genes in the network) and
KME (module membership of a gene) connectivity variables for
the modules of the coexpression networks considered (3
kTotal + 146 KME features in nonparsed and 11 kTotal + 409
KME features in age-parsed). The workflow of the analysis is de-
scribed in Fig. 4A and in detail in the methods S2.2. Briefly, we
used a cross-validation approach stratified by chromosome location
to identify statistically important features for each gene using
Boruta’s algorithm (100). Such features were then used to train an
XGBoost regressor and evaluate its performance using R2. Reiterat-
ing the pipeline for 200 runs of fivefold stratified cross-validation
resulted in a distribution of 1000 R2 values (Fig. 4B). Figure 4 (C
and D) shows the features selected by Boruta in the absolute major-
ity of runs for the two datasets. The dataset included 21,751 genes
because the algorithm was able to handle missing entries.

SCZ risk gene coexpression within-set connectivity
We subset the original adjacency matrix for each SCZ risk gene set
to include only the in-set genes. For each gene in a set, we then com-
puted the mean connectivity (connectivity having been defined as
gene coexpression raised to an exponent β) to all other in-set genes.
Last, the median of the gene-wise mean connectivity was computed
for each set, as a measure of set-wise within set gene connectivity/
coexpression. Connectivity values were compared to a null distribu-
tion of gene sets of equal set size, gene length, GC content, and
average expression.
Risk gene flow
We constructed Sankey plots illustrating the flow of risk across ages.
We considered the extension threshold of 200 kbp because it cap-
tured most of the enrichedmodules compared to all other extension
windows (Fig. 5). We studied the composition of gray modules of
nonclustered genes and of SCZ risk modules obtained considering
all biotypes, not just protein-coding genes, to maintain the net-
works comparable with each other without using multiple criteria
(DLPFC perinatal black, juvenile blue, adult pink, older adult green-
yellow; hippocampal perinatal red, juvenile turquoise, and adult
turquoise and brown). For additional results about the composition
and ontologies of risk gene flow, see the Supplementary Materials
(note S1.5).
JI analyses
In the analysis of module continuity across age periods, JIs were
computed as the intersection/union of the considered sets. To
draw statistical inferences on the dissimilarity between gray
modules across age periods, we pooled all genes that at least in
one of the age-parsed networks belonged to the gray module and
resampled them 10,000 times to create a null distribution for each
network. Then, using the earlier network as a reference, we comput-
ed a distribution of JIs with the null distribution and an empirical P
value. Figure 7C thus represents the null distribution of JIs for each
transition, holding the earlier network as a reference.

Sliding windows
In the work outlined above, we examined age periods that necessar-
ily include quite diverse biological processes. For example, the peri-
natal window ranged up to 6 years of age, thus reflecting different
biology compared with fetal samples (although only a handful of
samples were available between 0 and 6 years). In addition,
keeping age windows fixed does not allow us to estimate to what
extent results are an attribute of the age period considered and
not an attribute of the specific samples analyzed or rather of
sample size available. Furthermore, in the context of the age
study, a comparison between patients and controls cannot be
made because diagnosed patients are adults. Study 2 (sliding
windows) was therefore aimed at addressing these points in two
main steps. The first consisted in ruling out that the findings
about convergence of SCZ risk genes across the life span are
related to the specific samples analyzed. The second was to obtain
a comparison between patients and controls. We identified net-
works in chronological sequential windows of 40 subjects to
control for these potential confounding effects. This way, we
could observe the continuous variation of parameters of interest
(like fold-enrichment mean and variance and others) across differ-
ent tissues. For this analysis, we added patients with SCZ to the pre-
viously used neurotypical individuals and dentate gyrus data
(table S1).
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We first compared neuronal proportion estimates between pa-
tients with SCZ and controls. Neuronal proportion was estimated
using the BRETIGEA package using the BRETIGEA::brainCells
function [BRETIGEA parameters: nmarkers = 50 (default) and
method = “svd” (default), species = “human,” scaling = “F”] and
thenmarginalized by total assigned genes, RNA_rate, andmitoRate.
Residualized neuronal proportions were compared between age-
matched diagnoses for each region using two-sided t tests. Neuronal
proportion estimates were significantly lower in patients with SCZ
than in controls across all regions except the caudate (CN
t264 = −1.07, P = 0.284; DG t132 = 4.27, P = 0.000038; DLPFC
t287 = 3.74, P = 0.00022; HP t243 = 3.53, P = 0.00049).
To compute sliding window networks, we sorted subjects by in-

creasing age for each tissue and identified the first network with the
1st to 40th subjects, the second with the 2nd to 41st, and so on. We
examined primarily the extension window at 200 kbp that in the age
period analyses provided the strongest convergence (Fig. 5). For
plotting, we used the ggplot2 package in R with smoothing
method “loess” and span parameter 0.5, i.e., using 50% of the
points to fit the local regressions (for dentate, the span parameter
was 0.65 to accommodate for the lower number of windows com-
pared to other tissues). For caudate NCwindows, the first window is
not plotted, as it is far from the second window in terms of
median age.
Gene-level mRNA expression was quantified as RPKMs and an-

notated as total gene expression separately for each brain region, re-
gardless of alternative transcript quantification (61) using
GENCODE release 25 (GRCh38.p7). We selected genes above
median RPKM ≥ 0.1 and free of floor effects (maximum 20% of
zeroes per gene) and log-transformed RPKM values with an offset
of 1, i.e., log2(RPKM + 1). We used inter-array distance to identify
outlier subjects deviatingmore than 3 SDs from themean (14). Out-
liers were identified relative to their age period in the fixed period
analysis. Mitochondrial genes were removed. In addition, we per-
formed an intersample comparison on the rank-normalized expres-
sion data of each window to further identify potential outlier
samples. Visual inspection of scale invariance index (R2 of the cor-
relation between raw and log-transformed connectivity values) and
β values across windows revealed that specific samples caused dis-
proportionate effects on these parameters, hence influencing power
and connectivity. Only the SCZ group had samples with such an
impact, and therefore, we removed three SCZ samples to reach
the desired median connectivity with the minimum number of ex-
cluded individuals.
We also found that specific windows deviated from the proximal

windows in the WGCNA parameter that we assessed. Note that
consecutive sliding windows have 95% of the subjects in
common; hence, there is a considerable redundancy to accommo-
date a slight decrease in the number of windows. For each window
of 40 subjects, scale invariance index and median connectivity were
estimated for β values ranging from 1 to 25. We selected β for each
network such that the scale invariance index was greater than 80,
and the connectivity was matched to the connectivity value
(1.123) found in the age study. We tolerated connectivity values
between one-third and three times the target connectivity.
Windows where no β value returned connectivity values within
these boundaries were removed (nine windows in NC [CN: 1,
DLPFC: 3, HP: 5] and one in SCZ [HP: 1]). Thus, we could
match NC and SCZ connectivity with the same value used in the

age study. Notice that there was no outlier sample removal in the
NC group; therefore, the only difference between studies relates to
the windowing procedure.
Moreover, we wanted to assess the association of SCZ with

functional biology along sliding window networks. Therefore, we
computed an across module association of cell type and gene
ontology with MAGMA enrichment for each network. The mean
rank gene set test-based geneSetTest (alternative = “up”,
type = “t”, ranks.only = T) function from the limma package was
used to derive P values for cell type and MAGMA enrichment for
all modules in all sliding window networks. For each sliding
window network, the rlm function was used to predict MAGMA
enrichment [−log10(p_MAGMAenr_module)] from cell type
enrichment [−log10(p_MAGMAenr_module)], accounting for
module size (n_genes_module) using robust linear modeling. See
below

rlm½� log10ðp MAGMAenr moduleÞ

≏ � log10ðp CellTypeEnr moduleÞ þ n genes module�

For GO term enrichment, the ratios of genes found in specific
GO term lists were computed for all modules in all networks. As
with cell type enrichment, this ratio (ratio_GOterm_module) was
used to predict MAGMA enrichment using rlm, accounting for
module size. See below

rlm½� log10ðp MAGMAenr moduleÞ

≏ ratio GOterm moduleþ n genes module�

The Z.stats of cell type or GO term enrichment for predicting
MAGMA enrichment was extracted with their respective robust
linear models and are depicted on the y axis of Fig. 8 (C and D).
Consensus
For each DLPFC or published network featuring SCZ risk modules
according to the criteria that we defined, as shown in Figs. 2 and 5,
we pooled SCZ risk genes from all SCZ risk modules. As our SCZ
risk modules were identified using protein-coding gene lists and the
report by Li et al. (31) had nomodule significantly enriched, we also
considered for this analysis modules enriched for all biotype genes.
For the negative lists, which were generated at 200 kbp from the neg-
ative SNP list, several networks had no significant enrichment; thus,
we used the most significant module to generate the consensus, al-
though it was not significant. Note that this procedure makes the
test conservative, as it goes to the “advantage” of the negative list.
We then intersected lists across networks to count how many
times each gene appeared in an enriched module (minimum
three modules). To compute the fraction of overlapping networks
over the total for each gene, we divided the number of overlapping
modules for each gene by the number of networks in which that
gene was included: If a gene had not been annotated in a particular
network, then that network did not count toward reaching this
ratio. We only considered genes annotated in at least three networks
(six for the postnatal consensus).
To obtain a P value for each consensus gene identified, we ran-

domly permuted the network-specific SCZ risk modules and re-
peated the aforementioned procedure. The universe from which
random genes were pooled consisted of genes expressed in the spe-
cific DLPFC or published networks. Last, we obtained a list of
random consensus genes and defined the empirical P value as the
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number of occurrences in which the real consensus gene appeared
in the random consensus list divided by the number of permuta-
tions (10,000). We set the significance threshold at an empirical P
value < 0.05. We repeated this procedure for peri- and postnatal
consensus lists separately.
Gene pLI scores were downloaded from the ExAC consortium

release (99). A gene is generally considered likely to be loss-of-func-
tion intolerant if its pLI score is 0.9 or higher.

Regulomic analysis
For the regulomic analysis, we used the gProfileR package to search
for transcription factors and miRNA whose potential targets were
enriched in the postnatal consensus list. We restricted the universe
of transcription factors to those expressed above the minimum
threshold in at least six of the networks considered. We corrected
results for multiple comparisons using false discovery rate.

iPSC data
The iPSC generation pipeline has been described in detail elsewhere
(33). Ninety-five human neuronal samples with 56 to 70 days in
vitro belonging to 26 male participants of European ancestry were
available. The original report included 15 NC and 13 patients with
SCZ. Of these subjects, RNA-seq data were available for 14 NC and
12 patients with SCZ. NC had a relatively low polygenic risk score
for SCZ (bottom 37% of the European ancestry male distribution),
and patients with SCZ had relatively high polygenic risk score (top
45% of the European ancestry male distribution). Using the criteria
described above for gene filtering and outlier detection, we removed
one outlier sample (inter-array correlation for this sample exceeded
3 SD; hence, we processed 94 samples). Next, keeping only the
human genes, we gene-wise averaged all samples corresponding
to the same subject (logRPKM expression) to obtain a robust esti-
mate of gene expression and remove within-dataset interdependen-
cy. Similarly, the variables rRNA rate ratio of all reads aligned to
rRNA regions to total reads, total assigned gene (proportion of
aligned reads that were assigned to genes during read counting),
and mitochondrial rate for human genes (proportion of reads that
aligned to chrM) were also averaged. We regressed out along with
the first principal component (PC1) the effect of these confounders,
whereas we protected the effect of diagnosis, which, in these iPSCs,
simply reflects the difference in terms of genetic risk for SCZ
between patients and controls. We identified a network using
WGCNA with the settings described above [except that we used
the minimum beta granting scale invariance (beta = 7) as per the
standard WGCNA settings, as we did not have multiple networks
to compare]. Then, for each module, we computed the hypergeo-
metric overrepresentation of SCZ genes at various extension
windows and 22 non-GWAS consensus genes (5 consensus genes
of 28 that were already in the PGC3 list were excluded to avoid
double dipping, whereas 1 gene was not expressed in iPSC) as
target gene lists.
To test the hypothesis that the non-GWAS consensus genes are

more highly coexpressed with SCZ risk genes than expected by
chance, we took as connectivity measure the median of the gene-
wise mean connectivity of consensus genes with all SCZ risk
genes from the adjacency matrix of the iPSC network identified
and compared it to a null distribution of randomly permuted
non-SCZ and nonconsensus genes, after matching for gene set

size, GC content, gene length, and average expression as previously
described.
The universe fromwhich random genes were pooled consisted of

genes expressed in the iPSC network, excluding SCZ risk genes (the
most extensive list that we generated at 500 kbp from GWAS-signif-
icant SNPs was considered for this analysis) and consensus genes.
Last, we defined the empirical P value as the number of occurrences
in which the connectivity measure of the random genes exceeded
the one of the consensus genes with SCZ risk genes divided by
the number of permutations (10,000). We set the significance
threshold at a one-sided empirical P value <0.05. We repeated
this procedure for the nine extension windows previously created.
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