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Cryoelectron tomography directly visualizes heterogeneous macromolecular structures
in their native and complex cellular environments. However, existing computer-
assisted structure sorting approaches are low throughput or inherently limited due
to their dependency on available templates and manual labels. Here, we introduce
a high-throughput template-and-label-free deep learning approach, Deep Iterative
Subtomogram Clustering Approach (DISCA), that automatically detects subsets
of homogeneous structures by learning and modeling 3D structural features and
their distributions. Evaluation on five experimental cryo-ET datasets shows that an
unsupervised deep learning based method can detect diverse structures with a wide
range of molecular sizes. This unsupervised detection paves the way for systematic
unbiased recognition of macromolecular complexes in situ.
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In recent years, cryoelectron tomography (cryo-ET) has made it possible to image densities
of different molecules and their spatial distributions inside intact cells or viruses in a near-
native, “frozen-hydrated” state to a resolution of a few nanometers in three dimensions
(1, 2). This molecular-resolution visualization of how macromolecular complexes work
together inside cells has allowed researchers to obtain mechanistic insights into particular
cellular processes and distinguish competing models from one another (3). However, a
major challenge remains to precisely and comprehensively identify densities of different
molecules in complex cellular tomograms. A popular method to perform this task is
“template matching” (4), which uses available structures obtained in vitro from X-ray
crystallography or single-particle cryoelectron microscopy as template references to search
for similar shapes in the tomograms. While useful, its dependency on available structural
templates may introduce reference-dependent bias (5). An alternative popular practice is
to manually pick target structures and then average them to obtain the initial template,
which is also biased by subjective preferences (6). More importantly, as evidenced by
genome sequencing and mass spectrometry, there may exist a large number of proteins
with unknown structure and functions (7–10). Macromolecular complexes that lack
available structural information cannot be identified in cryo-ET cellular tomograms
using existing structural templates.

With that in mind, we and others have previously proposed a structural pattern mining
approach (11, 12), as an important step toward template-free visual proteomics (13).
This approach consists of 1) template-free particle-picking steps that detect potential
structures in a tomogram and 2) recognition steps that classify each particle as a
particular type of structure. However, the throughput of these methods is limited
because they involve a tremendous number of geometric transformation operations
for subtomogram averaging, classification, and refinement. Additional membrane
segmentation preprocessing procedure may also be required (11). With the recent advance
of cryo-ET data collection methods (14, 15), large numbers of tomograms can now
be produced daily (more than 100 tomograms of size ∼4, 000×6, 000×1, 000 voxels,
containing up to a million particles in total), allowing the effective imaging of many
samples with different treatments and experimental controls for comparative analyses.
The computationally expensive structural pattern mining approaches are impractical for
handling such large-scale datasets. A better high-throughput analysis method is therefore
needed to allow systematic and comprehensive investigation of the fast-growing size of
in situ cryo-ET data.

Recently, deep learning methods have been gaining momentum both for cryo-EM par-
ticle picking (16), image enhancement (17–19), structural variability reconstruction (20,
21), and protein structure modeling (22–24) as well as for cryo-ET image segmentation
(21, 25), classification (26, 27), and denoising (28, 29). By automatically learning better
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heuristics from accumulating data, their accuracy can improve
over time, and they have been shown to perform more ef-
ficiently and accurately than the aforementioned traditional
geometric approaches (30, 31). Due to their significantly faster
recognition speed, they also promise better scalability to large-
scale datasets with a large number of classes encompassing
heterogeneous structures. However, existing deep learning-based
cryo-ET subtomogram classification methods are based on
supervised learning (32). Supervised methods pose an additional
major challenge: creating valid training data. In these supervised
deep learning methods, training a neural network requires a
substantial amount of prelabeled data. For cryo-ET, training
data have conventionally been produced either by using template
matching as mentioned above or via laborious manual labeling of
target structural patterns in tomograms (33). Both unavoidably
produce biases by reference or subjective preference that limit the
analysis. Unfortunately, this difficulty cannot be circumvented
by using an annotated tomogram database consisting of multiple
independent sources as a less-biased universal training set. This
difficulty is because training from separated cryo-ET data sources,
collected under different imaging conditions, was shown to
result in lower recognition accuracy due to the variable image
intensity distribution among data sources (34, 35). Moreover,
these supervised methods remain unable to discover structures
that are not annotated in the training dataset, posing a similar
limitation to template matching. Therefore, a more natural and
effective approach could be training the neural network in an
unbiased template-and-label-free way by using comprehensive
intrinsic structural features in the data themselves.

In light of this, we introduce a high-throughput unsuper-
vised learning approach, DISCA (Deep Iterative Subtomogram

Clustering Approach). DISCA automatically detects structurally
homogeneous particle subsets in large-scale cryo-ET datasets by
learning 3D structural features extracted by a Convolutional
Neural Network (CNN) and statistically modeling the feature
distributions (Fig. 1). Given a dataset of reconstructed 3D
tomograms, as a preprocessing step, we first use template-free
particle picking to detect potential structures and extract them
as subtomograms. This preprocessing step is done automatically
with no manual selection involved. The extracted subtomograms
contain heterogeneous structures. We then use DISCA to
sort the subtomograms into relatively homogeneous structural
subsets. Specifically, we formulate a generalized expectation–
maximization (EM) framework that iteratively clusters subtomo-
grams based on their extracted CNN features and optimizes the
CNN through unsupervised training. Finally, as postprocessing
steps done outside our framework, the sorted subsets are aligned,
averaged, and reembedded to the original tomogram space to
visualize the recovered structures and their spatial distributions.

Results

The DISCA Computational Framework. DISCA is mainly in-
spired by unsupervised image clustering methods recently pro-
posed in the computer vision domain (38, 39). These methods
integrate deep neural networks with feature clustering algorithms
and self-supervised strategies to learn discriminative feature
representation of images from large-scale 2D image datasets
without the need for prespecified image labels. Similarly, we
incorporated a feature clustering algorithm and self-supervision
into DISCA. Furthermore, considering the specific properties
of cryo-ET data, such as the low SNR and unknown cluster
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Fig. 1. Workflow of DISCA exemplified on a Synechocystis cell (36). (A) 2D slice view of the template-free particle picking on the raw tomogram. (B) Unsupervised
training of the YOPO neural network by iteratively clustering extracted features, each dot denotes the feature vector of a subtomogram in the feature space
dimensionality reduced by t-SNE (37). The color of each dot denotes its cluster assignment. From Left (initial iteration) to Right (final iteration), feature vectors
of different clusters became more and more separated. (C) Structural patterns detected by DISCA reembedded to the original tomogram space. Structures of
the same color belong to the same detected structural class.
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number, we designed a neural network architecture and training
strategies to improve the structure-sorting performance on cryo-
ET data. In supervised learning, a CNN is trained to maximize
the expected prediction performance on a set of labeled training
data. As we aim to learn only from unlabeled data, we develop
a strategy to iteratively estimate both the number of structurally
homogeneous subsets and the structural class labels of input
subtomograms. The proposed iterative dynamic labeling strategy
updates two models in an alternating fashion via a generalized
expectation–maximization (EM) algorithm (40). Fig. 2 illustrates
the YOPO (You Only Pool Once) model for feature extraction
and the Gaussian distributions for the statistical modeling of
structurally homogeneous subsets in the feature space RP . In
the E-step, the number of structurally homogeneous subsets and
the labels are estimated given the current learned features. In
the M-step, YOPO parameters are updated by backpropagation
training to minimize the loss function of computing the labels
estimated from the E-step. We show the workflow of DISCA
in SI Appendix, Fig. S1. In detail, YOPO is randomly initialized
to extract feature vectors xn ∈ RP from input subtomograms
sn ∈ S. Then, the feature vectors are fitted in the feature space
by the mixed multivariate Gaussian distributions across a set of
candidate K number of structurally homogeneous subsets. Only
the mixture distribution with the lowest Bayesian information
criterion is kept. We stabilize the optimization of the statistical
model fitting by inheriting the parameters from the previous
iteration. In each iteration after the first one, the parameter priors
of the Gaussian mixture model, including the prior weights,
means, and covariance matrix of each cluster, are initialized by
the clustering solution from the previous iteration. Moreover,

Fig. 2. Conceptual explanation of DISCA. The numbers correspond to key
steps in SI Appendix, Fig. S1. The input is a set of subtomograms extracted from
tomograms using template-free picking methods. CNN features extracted
(step I) from subtomograms are statistically modeled (step II) to estimate the
cluster labels (steps II and IV). The CNN is in turn trained (step V) using the
current estimated labels in order to learn better features iteratively.

because errors can accumulate when initializing the statistical
model fitting using parameters from the previous iteration,
to avoid getting stuck at a local optimum, a de novo model
fitting with randomly initialized parameters was also performed
in each iteration, and its parameters were adopted if this
model increased the likelihood function of the statistical model.
The underlying idea of this design is similar to the Epsilon-
greedy algorithm (41) in reinforcement learning in which the
best solution from the previous observation is chosen with a
probability of being replaced by a new solution. In our design,
in each iteration, two clustering solutions are calculated: 1)
fine-tuning the clustering solution from the previous iteration
by inheriting the clustering model parameters and 2) running
the clustering algorithm from scratch with randomly initialized
parameters. The second solution will be chosen only if it improves
the statistical likelihood of the model over the first solution.
Otherwise, the first solution will be chosen. Using this strategy, a
local optimum from the first clustering solution will be avoided.
Then, the current estimated label of a subtomogram is given by
a hard cluster assignment that corresponds to the component
multivariate Gaussian distribution with the highest probability.
In the next iteration, the current estimated labels are used for
training YOPO by minimizing the categorical hinge loss function
to learn better feature representations. After YOPO training, the
mixture distributions are updated on the newly extracted feature
vectors. This process continues iteratively until the stopping
criteria (SI Appendix), consistency of labels or maximum number
of iterations, have been met.
Neural network architecture design. We now describe the ar-
chitecture design of YOPO and how we achieve rotation and
translation-invariant feature extraction. A tomogram is a grayscale
3D volume of very large size (e.g., 4, 000×6, 000×1, 000 voxels).
Even binned 4 times across each axis, a tomogram is still large
(e.g., 1, 000×1, 500×250 voxels). Feeding such a large 3D
volume into a CNN will inevitably exceed the memory of the
system. One previous CNN method (33) dealt with this problem
by slicing the tomogram into 2D images along the z-axis for cost-
effective processing. However, taking 2D slices resulted in losing
relevant structural information in 3D. In contrast, our objective is
to cluster the heterogeneous densities of molecules (the majority
being macromolecular complexes) enclosed in subtomograms
into structurally homogeneous subsets. Because subtomograms
extracted from binned tomograms are significantly smaller
(e.g. 243 voxels) than tomograms (42), they can be efficiently
processed by 3D CNN without information loss.

Convolutional neural networks (CNNs) have been shown to
outperform traditional hand-crafted feature extraction methods
for the task of extracting discriminative features from images
for various biomedical image analysis tasks (43, 44). In order
to leverage the superior performance of CNNs, we designed
a CNN named YOPO (SI Appendix, Fig. S2) specifically for
subtomogram data that considers its distinct characteristics: 1)
The structural details are essential to determine the identity of
a macromolecule enclosed in a subtomogram; 2) the enclosed
macromolecule is of random orientation and displacement; and
3) the signal-to-noise ratio (SNR) is extremely low. Because of the
robust architecture design, YOPO achieves properties including
structural detail preservation, transformation invariance, and
robustness to noise. Such properties were also described as desired
in traditional subtomogram classification methods (45).
Structural detail preservation: The standard pooling operation
(max-pooling or average pooling) in CNN feature extraction
is a problem for processing small 3D subvolumes. Indeed, even
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pooling by the smallest factor, 2, will dramatically reduce the sub-
volume size (for example, 243 to 123) and result in losing 87.5%
of the information capacity. As structural details predominantly
determine a macromolecular complex’s identity, the standard
pooling operation may not be ideal for extracting features that
preserve detailed structural information. In the Classification in
Cryo-Electron Tomograms SHape REtrieval Contest (SHREC)
2020 (30) and 2021 (46), most of the participating semantic
segmentation neural networks employ a U-Net-like architecture.
Similarly, in a U-Net architecture, the low-level feature maps in
the contracting path are concatenated to the expansive path as
a way to preserve high-resolution structural details. Therefore,
as an alternative to conventional neural network architectures in
processing cryo-ET data, we equipped YOPO with a sequence of
convolutional layers without any pooling operations in between
for processing an input subtomogram into feature maps with both
low-level and high-level structural information. Following the
convolutional layers, rather than using the basic step of flattening
the 3D feature maps into a 1D feature vector, we incorporated a
global max-pooling layer to keep only the maximum of each of
the feature maps. The global max-pooling operation also achieved
translation invariance. As proved later, YOPO will output the
same feature values for a subtomogram and its displaced copy
because of the translation invariance.
Robustness to noise: Another challenge is the extremely low
SNR of cryo-ET data. Often, raw tomograms are so noisy
that even human eyes barely recognize the structure. While the
convolutional layers in YOPO perform filter-like operations, we
further boosted YOPO’s robustness to noise. We use a dropout
strategy by adding a dropout layer after the input layer to
corrupt the input subtomograms. This is inspired by denoising
autoencoders (47) to regularize the network and reduce the
variance of model prediction from noisy samples. Here, we use
a Gaussian dropout layer, which randomly silences 50% of the
nodes and injects multiplicative 1-centered Gaussian noise with
standard deviation 1 during training. The Gaussian dropout
layer has similar regularization performance as the conventional
dropout layer, but it exhibits faster convergence properties
(48). By randomly silencing a subset of nodes and injecting
Gaussian noise, the Gaussian dropout layer can be viewed
as a computationally efficient way to approximate multiple
CNNs with slightly different parameters during CNN training.
When multiple CNN models are aggregated by inactivating
the Gaussian dropout layer during the prediction, the output
variance is reduced, thus achieving robustness to noise. Finally,
we added one fully connected layer after the global max-
pooling layer to output the feature vectors of length 1024. In
order to train YOPO, we equipped the final classification layer
with softmax activation to output class labels. The Gaussian
dropout layer, self-supervision for rotation invariance, and label
smoothing described below have all been shown theoretically and
empirically to be effective in preventing overfitting to increase the
optimization robustness (49).

As a feature extraction model, YOPO preserves detailed struc-
tural information and extracts rotation- (through self-supervised
training) and translation-invariant (through architecture design)
features from subtomogram data. The translation invariance
of YOPO is independent of the input data or the network
weights. Such translation invariance usually cannot be achieved
by standard CNN architecture designs. As independently eval-
uated by the SHape REtrieval Contest (SHREC) 2020 (30)
in a supervised learning task, YOPO achieved the third-best
accuracy and outperformed the template-matching baselines.
Most importantly, YOPO requires only localized coordinates

of target macromolecules for training, in which, a whole
subtomogram only needs a single label. In comparison, all the
other participating methods require labeled segmentation maps
for training, in which every voxel needs to be labeled. The
segmentation maps (dense labels) for an experimental cryo-ET
dataset are extremely time-consuming to prepare as every single
voxel of part of a tomogram needs to be labeled by experts.
Therefore, YOPO was deemed “significantly more accessible for
cryo-ET researchers” given that a minimal amount of training
supervision was needed (30). We note that, in DISCA, the
training of YOPO is fully unsupervised and further automated to
be free from all external domain knowledge, including existing
structural templates, manual labeling, or manual selection of
densities in the tomograms.

Validation of the Feature Learning and Modeling Ability. The
design of DISCA enables transformation-invariant feature ex-
traction, automatic estimation of the number of clusters, and
progressively improved performance with larger sample sizes.
To validate DISCA’s ability to learn to extract and model
3D transformation-invariant features, we conducted several
experiments on realistically simulated datasets of various imaging
parameters. These simulated datasets have prespecified ground
truth labels to quantitatively assess the performance of DISCA
and existing methods.

To test the accuracy of DISCA in simultaneously estimating
the number of clusters K and structural class labels, we simulated
subtomogram datasets of various SNR and tilt-angle ranges
(examples shown in SI Appendix, Figs. S3 and S4 for each
dataset). We used a standard subtomogram simulation procedure
(50, 51) and took into account the tomographic reconstruction
process with missing wedges and a contrast transfer function.
The simulated imaging condition is similar to real experimental
settings (52) with voltage 300 KeV, defocus−5 μm, and spherical
aberration 2.7 mm. We chose five representative macromolecular
structures (molecular weights range from 0.3 to 2.3 MDa):
RNA polymerase (PDB ID: 1I6V), rotary motor in ATP
synthase (1QO1), proteasome (3DY4), ribosome (4V4A), and
spliceosome (5LQW). Experimental cryo-ET data typically have
an SNR below 0.1 (53) and a tilt-angle range around −60◦
to 60◦. For each macromolecular structure, we simulated 400
subtomograms with random orientations and displacements at
each SNR (0.1, 0.03, 0.01, 0.003, and 0.001) and tilt-angle range
(±60◦ and ±40◦) to demonstrate the robustness of DISCA to
the image noise and the missing wedge effect.

We performed DISCA on each of the simulated datasets. We
evaluated the results by three criteria: 1) the estimated K with
candidate K ranging from 2 to 20; 2) the homogeneity score
(54) measuring how homogeneous each cluster is according to
the ground truth labels. We note that the homogeneity score
does not require an equal number of clusters to the ground
truth; 3) the prediction accuracy measuring the percentage of
correctly labeled subtomograms. The prediction accuracy can
be calculated only when K is estimated correctly. The results
from Table 1 show that DISCA correctly estimated the true
K for eight of the ten datasets except at SNR 0.003 and
0.001 of tilt-angle range ±40◦. As expected, the homogeneity
scores gradually decreased with lower SNR and smaller tilt-
angle ranges. However, in all settings, we achieved good results
with homogeneity scores higher than 0.8, which means that the
resulting clusters are generally homogeneous. We have conducted
the experiments using randomly initialized models multiple
times. The results were similar with±5% margin, which ensured
the reproducibility of our method.
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Table 1. Performance of three methods on simulated datasets
Simulated ±60◦ Simulated ±40◦

Dataset SNR 0.1 0.03 0.01 0.003 0.001 SNR 0.1 0.03 0.01 0.003 0.001

- - - - - - - - - -
Template matching 0.7013 0.4709 0.1496 0.0136 0.0032 0.5543 0.3336 0.0655 0.0062 0.0012

83.95% 69.75% 45.35% 25.25% 20.95% 76.25% 61.15% 36.60% 23.80% 21.20%
K = 5 K = 4 K = 5 K = 5 K = 3 K = 6 K = 5 K = 3 K = 3 K = 3

Autoencoder 0.3843 0.4539 0.3613 0.4915 0.3881 0.5227 0.3470 0.3735 0.3878 0.3874
56.75% - 53.45% 64.80% - - 53.35% - - -

K = 5 K = 5 K = 5 K = 5 K = 5 K = 5 K = 5 K = 5 K = 6 K = 6
DISCA 0.9878 0.9373 0.8746 0.8712 0.8719 0.9568 0.8020 0.8344 0.8366 0.8323

99.70% 97.80% 94.80% 94.25% 94.50% 98.70% 90.35% 91.80% - -

In each cell, the first row denotes the estimated K for unsupervised methods. The second row denotes the homogeneity score compared to the ground truth. The third row denotes
prediction accuracy.

We additionally performed template matching and autoen-
coder clustering for comparison. As we directly simulated the
subtomograms, we used a subtomogram alignment method (55)
implemented in AITom (56) to align each candidate template
to each simulated subtomogram. The template with the highest
alignment score was chosen. For template matching, even though
we incorporated prior domain knowledge of known structural
templates and thus K , the results are still worse than DISCA
because template matching is not robust to noise. Under SNR
lower than 0.01, template matching failed with accuracy close to
random guess (20%). We previously proposed an unsupervised
deep learning model to cryo-ET data (57), a convolutional
autoencoder that coarsely groups and filters raw subtomograms.
In that paper, we proposed a pose normalization step to normalize
the orientation and displacement of the structure inside a
subtomogram for better structural grouping. Compared with
DISCA, the convolutional autoencoder can perform only coarse
grouping with a homogeneity score lower than 0.55. This is
mainly because DISCA is a significantly more sophisticated
method that involves iterative feature learning and modeling in
order to recognize the fine structure differences between different
types of macromolecules.

We further conducted several experiments and demonstrations
using simulated dataset SNR 0.01 and tilt-angle range ±60◦,
which is closest to the image condition of experimental datasets
as measured on the Synechocystis cell (36) and Rattus neuron (52)
tomograms. In Fig. 3, K was estimated at 4 for early iterations,
where some clusters were not separated well. Extracted features
gradually separated out through the iterative learning process.
Here, we provided a summary index, distortion-based Davies–
Bouldin index (DDBI), modified from the Davies–Bouldin index
(58), as an indicator measuring the cluster tightness relative to
cluster separation. Rather than using Euclidean distance in the
feature space, we used a distorted measure of the distance which
takes each cluster’s covariance into account. The lowest DDBI is
achieved at iteration 15, which was kept as the final result.

To verify that the trained YOPO model extracts 3D features
that are transformation-invariant to a large extent, we simulated
five subtomograms for each of the five structural classes and
then generated 200 randomly rotated and translated new copies
for each subtomograms. The extracted features are visualized in
Fig. 3B. We can see that features extracted from transformed
copies are very similar to each other as compared to transformed
copies of subtomograms of other classes.

To demonstrate the learning ability of DISCA with respect
to different sample sizes, we conducted experiments varying
input subtomogram numbers from 50 (10 subtomograms of

each structural class) to 10,000 (2,000 subtomograms of each
structural class). The results are shown Fig. 3C . The accuracy
of DISCA improves progressively with larger sample sizes. The
accuracy of template matching stays the same because it does not
involve a learning process.

Unsupervised Structural PatternMining. Currently, many pop-
ular subtomogram averaging software applications (60–64) have
been developed that refine the averages to high resolution.
However, these tools require relatively structurally homogeneous
particle inputs. The main objective of DISCA is to efficiently
sort representative structures into relatively structurally homoge-
neous subsets in large-scale datasets to complement these tools.
Therefore, DISCA aims to recognize representative structures in
a high-throughput way rather than to improve the subtomogram
average resolution. We tested DISCA on five experimental
cryo-ET datasets from distinct cell types: Rattus neuron (52),
Synechocystis (36),Cercopithecus aethiops kidney (57),Mycoplasma
pneumoniae (65), and Murinae embryonic fibroblast (66). Three
of the datasets were obtained from the public repository EMDB
(67) and ETDB (66). Unlike simulated data of which the
ground truth clustering labels can be prespecified according to the
structures enclosed, the clustering ground truth of subtomograms
extracted from experimental cellular tomograms is not known
in most experiments. There are two major commonly accepted
ways to validate cryo-ET structure detection results. One is to
align and average each detected structure subsets to recover the
structures and compare them with existing known structures.
The other is to compare with structural biologists–manual
annotations. For all the five experimental datasets, we have done
subtomogram averaging and calculated the gold-standard Fourier
shell correlation resolution. Three of the experimental datasets
(36, 52, 65) have available human experts’ annotations, which
require a heavy amount of manual selection and annotation. The
Cercopithecus aethiops kidney dataset has automated annotation
from our previous coarse representation learning method (57).
We have compared the automated annotation results of DISCA
on these annotated datasets in order to validate their results.
The YOPO neural networks on the experimental datasets
were all randomly initialized without any pretraining process
to demonstrate the robustness and generalization ability of
DISCA.

As shown below, DISCA detected diverse representative struc-
tural patterns, including macromolecular complexes: ribosome,
TRiC, capped proteasome, phycobilisome array, and other
cellular structures: thylakoid membrane, mitochondrial mem-
brane, and calcium phosphate precipitates. The macromolecular
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Fig. 3. Validation on the SNR 0.01 and ±60◦ simulated dataset. (A) T-SNE (59) embedding of extracted features in different iterations. Each dot denotes
one sample with its color indicating its structural class. (B) T-SNE embedding of extracted features from randomly transformed subtomogram copies
(5 subtomograms per class and 200 copies per subtomogram; the rotation for each copy is done in the angular range of ±180◦ along each axis). Each
dot denotes one copy with its color indicating its structural class. (C) Accuracy of template matching and DISCA with respect to different sample sizes.

complexes that were detected have a wide range of sizes from
1.2 MDa to 4.5 MDa in molecular weights. The original
manuscripts describing these datasets used manual density
selection, template matching, and subtomogram classification
to recover the structures. Our unsupervised structural pattern
mining results from DISCA not only covered the previously
identified spatial localization of various macromolecules well but
also validated their results in a highly automatic and unbiased
way. Subtomogram alignment and averaging following DISCA
resulted in maps with 14 to 38 Å resolution range, confirming that
template-and-label-free approaches are suited for in situ structural
analyses. We describe the detailed results of these datasets in the
following paragraphs.

First, we quantitatively assessed the accuracy of DISCA on
the Mycoplasma pneumoniae dataset. For this dataset of 65 to-
mograms, obtaining the clean ribosome particles for comparison
required 2 mo of time and heavy computation for traditional
3D template matching, manual curation, and computational
sorting multiple times. The template was obtained by classifying
and averaging some manually picked ribosomes. Then, template
matching was performed on tomograms low-pass-filtered to 60 Å
resolution, and the top 400 hits on each tomogram were selected,
resulting in 26,000 total candidate ribosomes. We manually
filtered out obvious false positives, such as ones on or outside
of the bacterial cellular membrane, and checked the rest of
them. A total of 18,987 true positives were left. Although no
picking methods can guarantee 100% accuracy for experimental
data, here we denote the precision of the “template matching
& manual curation” approach as 100% because ribosomes are
relatively easy to be identified by human eyes and they have been
manually checked. This follows the common practice of manual
detection of target structures in cryo-ET (25). Nevertheless,

this template matching and manual curation approach still has
missing ribosomes as false negatives, as evidenced by some true
ribosomes uniquely detected by DISCA. As shown below, there
are about 20% unique true ribosomes detected by DISCA that
were missing from template matching detection. Therefore,
we use the total number of true ribosomes detected by both
approaches, 23,592, to calculate the metrics in Table 2. In
addition, we would like to note that it is common that experts
estimate that their miss rate is between 10 and 20% on detecting
ribosomes by template matching. This estimation is consistent
with our experimental results.

We compared the template matching and manual curation
results as well as the raw template-matching results with the
results from DISCA. In summary, DISCA achieved a high F1
score of 0.893 (Table 2). Furthermore, DISCA detected about
20% of the ribosomes missed by the template matching and
manual curation approach and detected more true ribosomes
overall. Fig. 4 compares an example raw tomogram slice and
the corresponding reembedding annotations of the detected
patterns. The voxel size of this tomogram is 6.802 Å, and the
resolution measured on the ribosome average is 14.17 Å. For
comparison, we applied template matching, manual curation,
subtomogram averaging, and classification by Relion (60) to
recover the ribosome structure, which is referred to hereafter
as the template-matching approach. We consider two detections
as overlapping if their Euclidean distance is smaller than 8 nm.
Under this criterion, 96.9% of the 18,987 ribosomes detected by
template matching are included in the 198,715 subtomograms
extracted by template-free particle picking.

DISCA clustered the 198,715 total extracted subtomograms
into ten clusters where one cluster corresponds to ribosome
structures and one cluster corresponds to membrane structures.
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Table 2. Quantitative comparison of ribosome
detection by two approaches on the Mycoplasma
pneumoniae dataset

DISCA Raw template Template matching
matching & manual curation

Total picked 22,875 26,000 18,987
Unique 6,768 – 2,843
True in unique 4,645 – 2,843
True positives 20,749 18,987 18,987
False negatives 2,843 4,605 4,605
Precision 90.7% 73.0% 100%
Recall 87.9% 80.5% 80.5%
F1 score 0.893 0.766 0.892

Among those 18,987 ribosomes detected by the template-
matching approach, 85.0% of them overlap the ribosome cluster.
On the other hand, 70.4% of the 22,875 ribosomes detected
by DISCA overlap with the template-matching results. As
shown in Fig. 4 A, c and d ), the template-and-label-free result
from DISCA resembles the template-matching result, with a
correlation coefficient of 0.995.

We further investigate the 6,768 ribosomes uniquely detected
by DISCA. To assess how many of them are truly ribosomes, we
used the Relion subtomogram classification function to classify
them into 4 classes. As shown in Fig. 4B, classes 1, 2, and 3 clearly
correspond to the ribosome structure, whereas class 4 cannot be
identified. Therefore, the 4,645 subtomograms in class 1, 2,
and 3 are likely to be true positives missed by the template-
matching approach. For comparison, there are 2,843 ribosomes
uniquely detected by the template-matching approach. Since this
number is about half of the 6,768 ribosomes uniquely detected by
DISCA, we classified them into 2 classes using the same Relion
procedure. The results shown in Fig. 4B confirmed that they
are truly ribosomes. Therefore, we empirically determined that
DISCA has a false-positive rate of 9.3% and a false-negative rate
of 12.1% (3.1% due to the particle-picking preprocessing step).
Moreover, DISCA detected about 20% of ribosomes missed
by the template-matching approach. There are 23,592 true
ribosomes detected by DISCA and template matching in total,
which corresponds to our estimated number of all ribosomes in
these 65 Mycoplasma pneumoniae cellular tomograms. Overall,
DISCA detected more true ribosomes than template matching
(20,749 vs. 18,987). We note that here we used Relion for
averaging the subtomograms into multiple classes only for
validation purposes. The subtomogram averaging results shown
in all figures correspond to averaging each cluster into only one
class using Relion 3.0. Fig. 4B is the only exception in which we
needed to perform subtomogram classification and averaging by
Relion to inspect the ribosomes uniquely detected by DISCA.

Then, we visualize the unsupervised structural pattern mining
example results on the other four datasets in Fig. 5. Overall, the
results obtained from DISCA validated the results reported in
the original articles of these datasets: 1) On the Rattus neuron
tomograms, based on their prior knowledge, the authors applied
manual subtomogram picking, subtomogram classification and
averaging, and iterative template matching to recover three
macromolecular complexes: ribosome, proteasome, and TRiC
(figure 2 in ref. 52). DISCA produced similar macromolecular
complexes detection results (Fig. 5A) as well as detection of
obvious subcellular structural patterns, including mitochondrial
membrane and calcium phosphate precipitate. We obtained the
template matching with selection by Relion classification results
on three tomograms of this dataset from the authors (52) and

performed a quantitative comparison (Table 3; cluster size: the
number of subtomograms in the corresponding DISCA cluster;
overlap: the number of overlapping subtomograms with template
matching detection; template matching: the number of detected
particles by template matching; the F1 score is calculated based
on the overlapping results by the two approaches). Similar to the
Mycoplasma pneumoniae dataset, the result on ribosome detection
is promising (∼0.85 F1 score). The results on proteasome and
TRiC detection are not as good but satisfactory (∼0.5 F1 score).
The potential reason is that detecting smaller macromolecules is
still very challenging for both template matching and DISCA.
2) On the Synechocystis cell tomograms, the authors applied
manual picking and several rounds of subtomogram averaging
and template matching to detect and annotate the membrane-
associated phycobilisome array and ribosome structures. We
note that the subtomogram averages in the original article were
produced from 20 tomograms, whereas we have only two publicly
available tomograms with no expert annotation to quantitatively
compare with. The subtomogram averaging on the sorting results
of DISCA is not ideal, but the automated annotation results of
DISCA (Fig. 5B) are similar to the annotation results in the
original article (figure 1 in ref. 36). 3) On the Cercopithecus
aethiops kidney cell tomograms, the authors reported coarse
discovery of globular and surface patterns using an autoencoder
clustering model. However, the ribosome-like globular pattern is
of very low resolution, which is probably due to the impurity of
the resulting clusters. DISCA showed notable improvement of
ribosome-like globular pattern and membrane pattern (Fig. 5D)
on this dataset as compared to Fig. 5 and SI Appendix, Fig. S5 of

A

B

A B

C D

Fig. 4. (A) Example unsupervised annotation on a Mycoplasma pneumoniae
cell tomogram (65): a slice of the original tomogram; b detected patterns
reembedded to the original tomogram space; c isosurface visualization
of detected patterns identified (generated from subtomogram averaging);
d isosurface visualization of the ribosome structure using the template-
matching approach. (B) Relion subtomogram classification of uniquely de-
tected ribosomes by the two approaches.
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Table 3. Quantitative comparison of the three macro-
molecular complexes detection on the Rattus neuron
dataset

Cluster Template
size Overlap matching F1

Ribosome 1,127 884 1,015 (968) 0.845 (0.864)
Proteasome 77 40 98 (81) 0.462 (0.512)
TRiC 188 75 143 (117) 0.453 (0.492)

Numbers in parentheses denote quantity and statistic with respect to particles picked by
the DoG methods.

the original article of this dataset (57). 4) TheMurinae embryonic
fibroblast tomograms are obtained from ETDB (66), but there
is no existing research publication on this dataset. We detected
biologically meaningful structural patterns including single and
double membranes and ribosomes (Fig. 5C ) on this dataset.
For all the macromolecular structures, we plot the gold-standard
Fourier shell correlation (FSC) curve of the subtomogram
averages and visual comparison with existing solved structures
from the Protein Databank in (SI Appendix, Figs. S9–S16).

We note that the preprocessing step difference of Gaussians
(a variant of the Laplacian of Gaussian) is a conventionally used
particle-picking method in cryo-ET. Because structures in cryo-
ET data are very complex with very low SNR, DoG picks all
possible particles, which tends to have many false positives such as
pure noises. That is the rationale behind the proposed framework,
to efficiently sort the large number of heterogeneous particles into
relatively homogeneous subsets. In our experiments, we defined
the recognition of a structure to be 1) with averaging resolution
better than 40 Å, and 2) the average can be visually identified as
a certain type of structure. Based on the averages we show that
met these two criteria, about 30% of particles can be recognized.

In terms of time cost, DISCA is a very efficient method for
processing a large amount of data both theoretically (overall
time complexity O(N), where N is the number of samples,
SI Appendix) and practically: On the Mycoplasma pneumoniae
cell dataset of 65 tomograms, DISCA took less than a day to
sort 198,715 template-free picked subtomograms (binned to 243

voxels of 13.33 Å spacing). With trained DISCA models, the
prediction of new data is very fast and can process millions
of such sized subtomograms in less than an hour. Moreover,
since the resulting clusters sorted by DISCA consist of relatively
homogeneous structures, the postprocessing subtomogram av-
eraging step also becomes more efficient. This is because we
only need to average each cluster into a single map instead
of performing subtomogram classification and averaging into
multiple class averages. On the Mycoplasma pneumoniae cell
dataset, the subtomogram averaging took only 1 d to finish.

Discussion

We describe a high-throughput unsupervised structural pattern
mining framework for cryo-ET data. DISCA can efficiently
produce meaningful structures from large-scale datasets that
encompass very heterogeneous structures without any prior
knowledge, which constitutes a major step for unsupervised
structure determination in situ. The noteworthy missing wedge
effect in cryo-ET is addressed by the robust network architecture
design and the self-supervision step in DISCA, which is discussed
in detail in Methods section. We demonstrate the performance of
DISCA on five cryo-ET datasets of different cell types. We find
that the structures detected by DISCA were similar to previously

reported ones recovered with highly intensive computational and
manual processing.

A major limitation of DISCA comes from its operation on
picked subtomograms. Ideally, subtomograms at every voxel
should be analyzed. However, this requires the processing of
billions of particles which is computationally infeasible. Although
the particle-picking step introduces some false positives and
negatives, we deem that its trade-off for efficiency is acceptable.
Moreover, the vast majority of particles at every single voxel
contain background noise or structures that are too small to un-
ambiguously identify in cellular cryotomograms. Including them
in the sorting process will bias the model toward distinguishing
structures from the background instead of the difference between
structures. As different macromolecular structures have different
sizes, in our experiments, we used a fixed subtomogram box size
that could enclose most macromolecular structures. To avoid
the issue of structures being clipped, we note that it is possible
to 1) extract larger-sized subtomograms for DISCA or 2) use
the same subtomogram size for DISCA and extract larger-sized
subtomograms for postprocessing averaging.

Another limitation of subtomogram operation is the analysis
of large continuous structures such as membranes. The embed-
ding of subtomogram averages will appear broken into small
pieces as in Fig. 5. Since the DISCA detection of membrane
subtomograms is sufficiently accurate, this limitation can be
easily addressed by performing membrane segmentation on the
subtomograms rather than averaging them, which will produce a
realistic continuous annotation of the membrane structure such
as the one in SI Appendix, Fig. S8.

A major concern with unsupervised methods is their training
stability. From our experience, the training in DISCA is generally
stable due to the initializers used: Orthogonal kernel initializer
and zero bias initializer were used for YOPO. The training
stability ensures the reproducibility of DISCA. In practice, to
obtain the optimal sorting performance, the users could either
run DISCA multiple times and keep the results with the lowest
DDBI metric or keep a DISCA model successfully pretrained on
existing datasets and fine-tune on new datasets.

In terms of methodological parsimony, DISCA requires no
manual intervention or selection of existing structural templates
for matching. The template-and-label-free nature of DISCA
offers maximal automation and objectivity. Overall, the per-
formance demonstrates that DISCA is a reasonable alternative
for cryo-ET structure discovery when manual annotation or
prior knowledge of a dataset is lacking, as well as a robust
tool to validate existing template-based results. By quickly
detecting representative homogeneous structural subsets in a
cryo-ET dataset, DISCA can also serve as a preprocessing step
to complement the standard template matching and subtomo-
gram average pipeline. Although DISCA automatically detects
abundant and representative cryo-ET particles, researchers are
sometimes interested in rare macromolecules or certain types of
target proteins. The ability of DISCA in detecting relatively rare
structures has been quantitatively demonstrated on the TRiC
and proteasome structures in Table 3. Additionally, the users
could 1) combine DISCA and template matching to search
for certain target proteins or 2) extend DISCA to multistages
in which abundant particles are first detected and excluded
and apply DISCA again to sort the remaining particles. In
conclusion, DISCA shows the promise of high-throughput cryo-
ET structural pattern mining for discovering abundant and
representative structures systematically. The proposed framework
will allow researchers to fully leverage state-of-the-art cryo-ET
imaging infrastructure and workflows.
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Fig. 5. Comparison of example raw tomogram slice and corresponding reembedding annotation of patterns detected from a set of (A) seven Rattus neuron
tomograms (52). The identified clusters consist of 12,229 subtomograms from 38,292 total extracted subtomograms. The voxel size of this tomogram is 13.68
Å, and resolution measured on the ribosome pattern (averaged from 3,708 subtomograms) is 27.36 Å; (B) two Synechocystis cell tomograms (36). The identified
clusters consist of 4,804 subtomograms from 12,912 total extracted subtomograms of voxel size 13.68 Å; (C) twenty Murinae embryonic fibroblast tomograms
obtained from ETDB (66). The identified clusters consist of 11,471 subtomograms from 54,684 total extracted subtomograms. The voxel size of this tomogram
is 15.48 Å, and resolution measured on the ribosome pattern is 33.77 Å (averaged from 2,459 subtomograms); (D) two Cercopithecus aethiops kidney cell
tomograms (57). We note that since the Synechocystis cell and Cercopithecus aethiops kidney cell datasets are small datasets with only two tomograms, the
ribosome pattern is not as ideal as other datasets.
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Materials and Methods
Rotation and Translation-Invariant Feature Extraction. One important
characteristic of subtomogram data is that the structure enclosed is randomly
oriented and exhibits small random displacement. To cluster multiple copies of
the same structure in different orientations and displacements together into the
same subset, YOPO must be able to extract features invariant to both translation
and rotation.

The rotation invariance was achieved by self-supervised learning for enforcing
a CNN to be invariant to certain geometric transformations of the input and
improving its generalization ability. In each iteration, alongside the original
input subtomogram, a randomly rotated copy of the subtomogram is also fed
into YOPO for training. The label of the randomly rotated copy stays the same.
By doing so, the rotation invariance of YOPO is enforced by backpropagating the
loss gradient. Although having a full range of exhaustive sampling of rotation
angles for data augmentation would force the network to learn the highest level
of rotational invariance, there is a trade-off with the amount of computation.
We do not have a preset range of rotation angles used. Instead, a 3D rotation is
randomly sampled from all possible 3D rotation angles. Then, in each iteration,
the randomly sampled 3D rotation is applied for each subtomogram input
to generate a rotated copy. Our current design already achieves a satisfactory
level of rotational invariance as demonstrated in our experiments in Fig. 3B. In
addition, because an input subtomogram is a 3D cubic volume, there will be
empty regions in the corner of rotated subtomogram copies with sharp edges
along the border of the empty regions. These artifacts, creating features with
no structural meaning, will negatively affect the training of the neural network.
During the self-supervision step, the empty region of the rotated subtomogram
is filled with Gaussian white noise to avoid sharp edge artifacts. The Gaussian
white noise has a mean zero and SD one, same as the normalized image intensity
distribution of the input subtomogram data.

The translation invariance is already achieved in the architecture design
of YOPO by the global max-pooling layer. The convolution operations yc are
translation equivariant: The extracted feature maps of an input subtomogram sn
translated by tθ will be the same as translating the extracted feature maps from
the original subtomogram by tθ : yc(tθ (sn)) = tθ (yc(sn)). Then, because the
global max-pooling layer yg computes the global maximum from a feature map,
which is translation-invariant, the output from the global max-pooling layer
is translation-invariant to the input subtomograms: yg(tθ (sn)) = yg(sn).
Denoting YOPO feature extraction from a subtomogram as y(sn) = yf ◦ yg ◦
yc(sn), where yc denotes the sequence of convolutional layers, yg the global
max-pooling layer, and yf the fully connected layer, we have:

y(tθ (sn)) = yf ◦ yg ◦ yc(tθ (sn)) = yf ◦ yg(tθ (yc(sn)))

= yf ◦ yg(yc(sn)) = y(sn). [1]

As a result, the final extracted feature vectors are translation-invariant to the
input subtomograms. This property, y(tθ (sn)) = y(sn), holds for all input data
sn and all network weights of y. In other words, this translation invariance is
independent of the network weights and input data.

Transformation invariance is desired because if the feature vector changes
when the orientation and displacement of a subtomogram structure change,
it is not easy to cluster the same type of structures together. For neighbor
structures in a subtomogram, first, due to the small size of a subtomogram, it
is likely that only a small part of a neighbor structure exists in a subtomogram.
Therefore, their influence on the extracted feature vectors is limited. Second,
in the data augmentation self-supervision step, the subtomogram is randomly
rotated, which helps to ignore the influence of neighbor structures located at
the corner of the subtomogram.

When designing YOPO, we have tested alternative architectures such as 3D
InceptionNet and ResNet as feature extractors and incorporated other layers
including max-pooling, average pooling, global average pooling, flatten, and
conventional dropout layers into the network design. The final YOPO design was
based on empirically comparing alternative architectures.

Statistical Modeling of Structurally Homogeneous Subsets in Feature
Space. Recent works (68, 69) have shown that second-order statistics in CNNs—
for instance, the covariance between features—are vital for differentiating

between different visual patterns. Accordingly, simple clustering algorithms
such as K-means or hierarchical clustering which do not consider second-order
statistics are not suitable. Another notable class of clustering algorithm is
density-based clustering such as DBSCAN (70). DBSCAN has the advantage
of automatically determining the number of clusters and filtering out noisy
samples. However, it has two disadvantages for our task: 1) Same as K-means, it
does not consider second-order statistics; and 2) it needs to calculate pair-wise
distances between all samples, resulting in time complexity of O(nlog n), which
is not scalable to large-scale datasets.

To fully capture the feature covariance information, after extracting the
translation and rotation invariant features from the input subtomograms by
YOPO, we model the learned feature vectors for each representative structural
pattern as a multivariate Gaussian distribution in the feature space.

In greater detail, given a set of N subtomograms sn ∈ S extracted from
a dataset of tomograms V , the YOPO network y extracts feature vectors xn =

y(sn), xn ∈ RP from each subtomogram, where P is the dimensionality of
the feature space. We model the distribution of the data point xn as a mixture
of K multivariate Gaussian distributions. The mixture distribution’s probability
density fg is defined as:

fg(xn;φ,µ,6, K) =

K∑
k=1

φkg(xn;µk ,6k). [2]

In Eq. 2, φk is the prior probability of sampling xn from the kth component.
The prior probability for each component is initialized randomly and optimized
along with other model parameters. The kth component is a multivariate
Gaussian distribution g with mean µk and covariance matrix 6k . Hence, the
posterior probability of sampling xn from the kth component is ρk(xn) =
φkg(xn;µk ,6k)∑K
i=1 φig(xn;µi ,6i)

. Solving the model in Eq. 2 provides the probability

ρk(xn) of feature vector xn being sampled from each component distribution
g(xn;µk ,6k). g(xn;µk ,6k) has its own covariance matrix6k to distinguish
between different structural patterns. The component k̂ = arg max

k∈1,...,K
ρk(xn) is

the highest posterior probability among all components. k̂ will be used as the
class label for subtomogram sn in the clustering solution.

Iterative Dynamic Labeling. A potential issue is that, unlike in supervised
learning, where training data labels are fixed, the YOPO training data labels are
dynamic. In other words, there will inevitably be mislabeled data when training
YOPO, especially in the early iterations. To address this issue, we adapt the
label smoothing regularization technique (71) to make the YOPO training less
prone to mislabeled data. The smoothed one-hot encoding of training labels is
lls = (1−α) ∗ lhot +

α
K , where K is the number of clusters, lhot is the original

one-hot encoding of training labels, and α is the smoothing factor. The larger
the label smoothing factor α, the less certain the model prediction.

Moreover, the estimated K is also dynamic in different iterations. We need
to enable YOPO to output different class numbers during the training. When
the estimated K differs from the previous iteration, we replace the last layer,
the classification layer, with a new one with the current estimated K number
of nodes. Because the new classification layer has randomized initial weights,
we train its weights with the fixed current extracted features as input to reach
consistency between its prediction and current estimated labels.

Further details and discussion of distortion-based Davies–Bouldin index
(DDBI), automatic estimation of the number of structurally homogeneous
subsets, matching clustering solutions, missing wedge effect, and time cost
and complexity analysis can be found in SI Appendix.

Implementation Details. The implementation details, including those of
the preprocessing particle-picking step and the postprocessing subtomogram
averaging and embedding alignment steps, are described in SI Appendix.

Data Source. The Rattus neuron dataset is obtained from ref. 52. The
Synechocystis dataset is obtained from EMDB (67) EMD-4603 and EMD-4604
(36). The Cercopithecus aethiops kidney dataset is obtained from ref. 57. The
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Murinae embryonic fibroblast is obtained from ETDB (66) with the MefB cell line
from O. Loson in Chan Lab. TheMycoplasmapneumoniaedataset was acquired as
described previously (65). Tomograms were reconstructed and denoised using
Warp (72). The original tilt-series data is available via EMPIAR-10499. The Rattus
neuron, Synechocystis, and Mycoplasma pneumoniae datasets were collected
with Volta phase plates.

Data, Materials, and Software Availability. To directly benefit the cryo-ET
research community, all the code is available in our open-source cryo-ET data
analysis software AITom (56). User-friendly tutorials is provided on how to
apply our models to users’ own datasets. Currently, we have disseminated
most of our existing published algorithms into AITom. There are more than
20 tutorials provided in AITom for different cryo-ET analysis tasks with more
than 30,000 lines of codes mainly written in Python and C++. AITom is also
being integrated with the software Scipion (73) as a plugin. The subtomogram
average of macromolecular complexes from the Rattus neuron dataset and the
Mycoplasmapneumoniaedataset have been deposited in the EM Data Bank with
accession numbers EMD-40043, EMD-40087, EMD-40089, and EMD-40090.

The raw datasets can be obtained according toData source. The trained models,
demo data, and other generated data are available in AITom (56). All study data
are included in the article and/or SI Appendix.
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