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The early development of aneuploidy from an accidental chromosome missegregation
shows contrasting effects. On the one hand, it is associated with significant cellular
stress and decreased fitness. On the other hand, it often carries a beneficial effect and
provides a quick (but typically transient) solution to external stress. These apparently
controversial trends emerge in several experimental contexts, particularly in the
presence of duplicated chromosomes. However, we lack a mathematical evolutionary
modeling framework that comprehensively captures these trends from the mutational
dynamics and the trade-offs involved in the early stages of aneuploidy. Here, focusing on
chromosome gains, we address this point by introducing a fitness model where a fitness
cost of chromosome duplications is contrasted by a fitness advantage from the dosage of
specific genes. The model successfully captures the experimentally measured probability
of emergence of extra chromosomes in a laboratory evolution setup. Additionally, using
phenotypic data collected in rich media, we explored the fitness landscape, finding
evidence supporting the existence of a per-gene cost of extra chromosomes. Finally, we
show that the substitution dynamics of our model, evaluated in the empirical fitness
landscape, explains the relative abundance of duplicated chromosomes observed in yeast
population genomics data. These findings lay a firm framework for the understanding
of the establishment of newly duplicated chromosomes, providing testable quantitative
predictions for future observations.
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Aneuploidy, a deviation from the normal chromosome number, is a form of large-scale
genomic variation, involving changes both at the genotypic level and at the phenotypic
level, and one of the hallmarks of cancer (1). In cancer genomes, aneuploidy correlates
with important genomic changes, such as TP53 mutation and expression of proliferation
genes (2) and drug resistance mutations leading to treatment failure (3, 4). Drugs that
disrupt mitotic progression, called antimitotic drugs (5, 6), are widely used for cancer
treatment. These drugs cause chromosome missegregation, large genetic rearrangements,
and aneuploidy. In Saccharomyces cerevisiae models (hereafter referred to as yeast),
perturbed gene expression due to extra chromosomes can cause stress resulting from the
proteome-wide stoichiometric imbalance of protein levels (7, 8). Moreover, aneuploidy
was shown to cause global changes in mRNA and protein expression and to possibly
confer condition-dependents fitness advantage (9–11). Finally, in yeast, the ploidy levels
were shown to influence the emergence of mutator strains (12), to alter the effect of
genetic mutations (13), to influence the phenotypic attributes of hybrid individuals (14),
to impact the speed of adaptation (15, 16), and to act on transcriptional silencing (17)
and on pleiotropic effects (18).

The evolutionary dynamics leading to the emergence of aneuploidy is typically
investigated with yeast models because they can be manipulated with advanced
genetics and cell- and molecular-biology methods and hence be used to create isogenic
backgrounds that differ from each other only by chromosome ploidy number, offering
a direct point of comparison between euploid and aneuploid strains. Moreover, yeast
models can be easily investigated with laboratory-evolution experiments, thanks to their
short replication time (6, 9, 19, 20).

Several experiments in the last decades have raised apparently controversial evidence
for the evolutionary role of aneuploidy (10, 21). While aneuploidy carries significant
cellular stress and decreased fitness (22)—measured, for example, by a reduction of
growth rate—it has also been shown to carry a beneficial effect that provides a quick,
transient solution to external stress (20, 21). This quick solution often emerges faster,
hence more frequently, than other evolutionary routes. Intriguingly, cultured human
cells show the same contrasting trends: Aneuploid cancer cells lines show a reduction of
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growth rate (23–25), but specific patterns of aneuploidy, partic-
ularly in the presence of extra chromosomes, confer a beneficial
effect in specific adverse conditions (26, 27).

In the case of yeast, the literature offers extensive phenotypic
data, for example, growth curves of aneuploids in several
environmental conditions as well as in laboratory-evolution
experiments (6, 9, 10, 19–21), offering the opportunity to test
for unifying trends. The available modeling studies presented so
far have focused on the effect of aneuploidy on cell growth and
physiology (7, 28–31). Two interesting recent studies (28, 30)
proposed a stochastic model of evolution similar to the classic
Fisher’s geometrical model (32) to describe the fitness landscape
of a set of engineered aneuploid strains in different stress
environments. This model explains the observed correlation
between the degree of phenotypic variation and the degree of
overall growth suppression, measured in ref. 9. However, this
model and all the approaches presented so far (7, 28–31) are
limited by a static description of the genetic and phenotypic
architecture of aneuploids, failing to provide a description of the
mutational dynamics leading to its emergence.

Here, we develop a theoretical framework to describe such
mutational dynamics and to address the cost–benefit trade-offs
in early aneuploids. We introduce a fitness model where a fitness
cost proportional to the number of genes in the duplicated
chromosome is counterbalanced by a fitness advantage resulting
from the dosage increase of specific genes. Our approach builds
on the so-called “mutation bias” framework (33–35), a class of
evolutionary models used to investigate the role of fast mutational
processes in directing evolution, in a scenario where evolutionary
routes emerging with a high mutation rate are in evolutionary
competition with alternative mutational targets generated with
a lower rate but able to confer a higher fitness advantage. Our
model makes quantitative predictions that capture the dynamics
leading to the emergence of aneuploidy. As we will describe in
detail, the model captures the probability of the emergence of
extra chromosomes in experimental setups (20) and correctly
predicts the observed outcomes for the emergence of aneuploidy.
We then make use of phenotypic data to isolate the main features
contributing to the fitness landscape of aneuploids with extra
chromosomes and show that the dynamics of our model in
this landscape captures the relative abundance of aneuploidies
observed in population genomics data.

Results

Model and Parameters. We develop and analyze an evolutionary
model to describe the emergence of aneuploidy carrying extra
chromosomes. Fig. 1A describes the key model ingredients. The
model considers a population consisting of euploid individuals,
which is exposed to an external stress causing a decrease in their
growth rate. Individuals in the population can respond to the
stress by increasing the expression of a specific target gene, gaining
a beneficial effect quantified by the selection coefficient (σb > 0).
Individuals can gain fitness by two alternative evolutionary
routes: i) by increasing the target gene expression (for example,
with mutations on the promoter binding site) or improving its
functionality via a set of point mutations (on coding regions
adapting protein function), occurring at a total rate µm or ii) via
missegregation events, taking place at a higher rate (µa > µm)
and resulting in the emergence of aneuploid individuals carrying
extra chromosomes. Note that route (i) could require several
point mutations (modeled here as a one-step process), but the per-
base mutation rate is a lower bound forµm. Aneuploids with extra
chromosomes are less fit than euploids because the duplication

of the nontarget genes in the extra chromosome determines a
global fitness cost (σc > 0). Hence, the selection coefficient
of aneuploids (σb − σc) is lower than that of euploid mutants
(σb), and euploid mutants, although generated at a lower rate,
have a higher fixation probability than aneuploids (φm > φa).
Double mutants (individuals carrying both aneuploidy and point
mutations) are produced at a rate corresponding to the product
of the rates (µm × µa) and therefore are very rare and can
be neglected. We also assume that all mutations other than
missegregations and the target point mutations do not contribute
to the adaptive dynamics in response to the external stress; hence,
we neglected them. Under these assumptions, the model reduces
to the competition between two possible beneficial mutations,
aneuploidy vs. a local mutation.

Importantly, in our model, we do not consider an explicit
fitness landscape, connecting the increase of gene expression and
fitness but we consider only a simplified model of the selection
coefficients of the two mutants. More specifically, we focus on
a scenario where point mutations induce an increase of the
expression of the target gene which is similar to that of the
aneuploid individuals (i.e., 2x for ploidy = 1 background and
1.5x for the ploidy = 2 background). In other words, the benefit
of the aneuploidy would have the same selection coefficient (σb)
as the euploid beneficial mutation.

However, in the more general scenario, point mutations might
alter gene expression to different degrees and are likely to cause
an increase of the expression which is lower than the effect of
gene duplication (36). In this case, the two selection coefficients
(aneuploidy and euploid mutant) would differ, and this difference
would depend on the properties of the fitness landscape. In the
rather general case where there is an optimal value of the gene
expression that corresponds to a fitness peak (37, 38), the fitness
landscape could be described by a quadratic function (39), and
the mutant with the highest selection coefficient would be the
one whose expression is closer to the optimal value.

If the optimal value is close to the expression resulting from a
chromosome duplication (i.e., 2x for ploidy = 1 background
and 1.5x for the ploidy = 2 background), then any point
mutation causing a lower or a higher variation of expression
would have a lower selection coefficient. The reduced selection
coefficient would result in a lower fixation probability φm and
in a lower fixation rate. We note that this more general model
can be effectively described by our framework by a reduction
of the mutation rate µeff

m < µm, while keeping the same
fixation probability (and hence, the same selection coefficient). In
other words, for the fixation dynamics, having a lower selection
coefficient corresponds to having a lower mutation rate, allowing
us to map on our model scenarios where point mutations of
euploid individuals alter the expression of the target gene to a
different degree than a full chromosome duplication. In a similar
way, the case where the optimal value of the fitness landscape
is close to the gene expression resulting from point mutations
would be effectively described with an increase of the mutation
rate of the euploid mutant µeff

m > µm, while keeping the same
selection coefficient of the aneuploid mutant. (This point is
further explained in SI Appendix.)

Evolutionary Dynamics. Our question concerns the conditions
in which chromosomal duplications emerge first. Accordingly,
we investigate the “early-stage” population defined by the point
in time when one of the two mutants, the euploid with point
mutations or the aneuploid mutant carrying extra chromosomes,
becomes fixed in the population (i.e., reaches an intrapopulation

2 of 12 https://doi.org/10.1073/pnas.2211687120 pnas.org

https://www.pnas.org/lookup/doi/10.1073/pnas.2211687120#supplementary-materials


C

Pr
ob

ab
ili

ty
 t

o 
de

ve
lo

p 
an

eu
pl

oi
dy

,
a 

Selection coefficients ratio, b/ c

0

1

0.5

0.25

0.75

D
S
ca

le
d 

pr
ob

ab
ili

ty
 

to
 d

ev
el

op
 a

ne
up

lo
id

y
a/

(
a/

(
a+

m
))

Expected number of
 interfering mutations, m fix 

1

0 1 2 3 0 1 2

0.25

0.125

0.5

E

Ti
m

e 
of

 
em

er
ge

nc
e,

[g
en

]

0

0 500

1000

500

1500

1000 1500

  m/ a

0.01
0.05
0.1

0.15
0.2
0.3
0.4

  Simulated data,
 a=10-5 gen-1 

  Simulated data,
 a=10-4 gen-1 

A
Point mutations

Missegregation

+
+

+

++

Fixation of
point mutations 

Fixation of 
aneuploidy 

Fitness benefit

Fitness benefit
&

Fitness cost

+

a

m

b- c

b

B
Point mutations

Missegregation

tm

ta

tmin=min(ta,tm) tmin min(ta,tm)

Clonal InterferenceNo Clonal Interference}
No Clonal Interference Clonal Interference

a 
Expected time of 

emergence (Eq.3),[gen]

Fig. 1. A trade-off between fitness cost and fitness benefit explains the population dynamics of early aneuploids with extra chromosomes. (A) Schematic
illustration of the evolutionary model, which considers two alternative mutational routes to cope with an external stress requiring the increase in the expression
of a specific target gene. Individuals in an evolving population can increase the target gene expression via point mutations, taking place at rate (�m), or via
duplication of the target chromosome, at a rate related to missegregation. This second evolutionary route takes place at a higher rate (�a > �m) and generates
aneuploids. Aneuploids with extra chromosomes pay a fitness cost because they carry the duplication of nontarget genes in the extra copy of the chromosome
containing the target gene. Hence, euploids, although emerging at a lower rate, have a higher fixation probability than aneuploids �m > �a . (B) The dynamics
associated to individuals carrying mutations associated to the two evolutionary routes, i.e., aneuploid mutants (green) versus euploid mutants (grey) here
schematically represented with Müller plots, which are used to illustrate the succession of genotypes in an evolutionary process (the horizontal axis shows time,
while the vertical axis represents relative abundances of genotypes. Each genotype is shown with shaded areas of different colors and originates in an arbitrary
clone placed in the middle of its parent area) is characterized by the time of emergence of the successful mutant (the mutant whose descendants will eventually
take over the population). In the model, both evolutionary routes are attainable, and only the fastest of the two mutants, (i.e., the one that will generate a
mutation able to overcome the genetic drift and reach fixation), emerging at a time tmin = min(ta , tm), will reach fixation. Clonal interference—occurring, for
example, when a euploid mutant emerges during the fixation dynamics of an aneuploid individual—will prevent the fixation of aneuploidy and effectively
delay the emergence of the successful mutant (tmin ≥ min(ta , tm)). (C) Fixation probability of aneuploids with extra chromosomes in a regime with no clonal
interference (�m�afix ' 0), plotted as a function of the nondimensional ratios �b/�c (x axis) and �m/�a (color coded). Results of simulations (circles) are compared
to analytical calculations (solid lines). (D and E) Collapse plots of simulated data of the model in the clonal interference regime (�m�afix ≥ 0) validate the analytical
results for the fixation probability of aneuploids with extra chromosomes (Eq. 1, shown in panel D) and for the emergence time of the successful mutant (Eq. 3,
shown in panel E). Material and Methods for details on the numerical simulations of the model. Additional model parameters used for the data shown in panels
B, C , and D: N = 1000, �cN = 50.

frequency '1) for the first time. This dynamics is described by
fixation rates, which are given by the product of the mutation
rates, the effective population size N , and the fixation rates:
λm = µmNφm(σm, N ) for the euploid mutant and λa =
µaNφa(σa, N ) for the aneuploid one. The fixation probabilities
depend on the selection coefficients (σa ≡ σb − σc for the
aneuploid and σm ≡ σb for the euploid mutant) and on
the effective population size N , as given by Kimura’s formula
φ(σ , N ) = (1− e−2σ )/(1− e−2σN ) (40).

Analytical Expression of the Probability to Develop Aneuploidy
with Extra Chromosomes. In order to characterize the onset
of the fastest variant, we focus on the waiting times for the
emergence of a successful mutant, defined as the mutant that
will eventually reach fixation. The two times, denoted as ta
and tm for the aneuploid carrying extra chromosomes and the
euploid mutant respectively, are stochastic variables. Since these
mutations emerge at a constant rate, the probability distribution
of the waiting times is exponential ta,m ∼ Exp (λa,m); hence,
their expected values are equal to the inverse of the fixation rates
(τa,m ≡

〈
ta,m

〉
= 1/λa,m).

The statistics of the fastest emerging mutant can be described
by the difference of the two times, tdiff ≡ ta − tm, whose

probability density has an analytical expression (SI Appendix).
In particular, the problem of computing the probability for
the variant carrying extra chromosomes to reach fixation is
equivalent to computing the probability for the time difference
to be negative (tdiff < 0). However, since the selection
coefficient of aneuploids carrying extra chromosomes is lower
than that of the euploid mutant, individuals of the former class
will interfere with the expected progression of the aneuploid
mutation to the fixation (Fig. 1B), by an effect known as “clonal
interference” (CI) (41–44).

We find that, to compute the probability to fix extra
chromosomes, CI effects are captured by the extended condition
tdiff +δfix

a < 0, where δfix
a = log(2Nσa)/σa is the effective time to

fixation of an aneuploid mutant carrying extra chromosomes (44)
(i.e., the time interval during which CI effects can take place,
Material and Methods). This leads to the expression

Pa ≡ P(tdiff + δfix
a < 0) =

λa

λm + λa
e−λmδ

fix
a , [1]

for the fixation probability. This expression is similar to the ones
presented in refs. 35 and 45. Consistently with ref. 41, CI effects
are related to the expected number of euploid mutations that can
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emerge during the fixation dynamics of the mutant with extra
chromosomes. In the limit λmδfix

a � 1, there are no interfering
mutations, and the probability to develop extra chromosomes
is set by the fixation rates alone Pa '

λa
λm+λa

(Fig. 1C ). In
the clonal interference regime λmδfix

a > 1, the emergence of
aneuploidy with extra chromosomes is exponentially suppressed
to zero (Pa ∝ e−λmδ

fix
a , Fig. 1D). Moreover, in this regime, the

evolutionary dynamics would be characterized by the elimination
of aneuploidy, resulting from the emergence of euploid mutants,
after an initial increase in the frequency of aneuploid mutants.
However, the observed loss of anueploidy would not signal the
existence of karyotype instability, as the duplicated chromosome
would not be lost within aneuploid individuals. Our model can be
exploited to investigate this scenario and predicts the existence
of a critical population size around which such dynamics (rise
of aneuploidy to high frequency and subsequent elimination
because of CI effects) could be observed (SI Appendix, Fig. S9).

When Pa >
1
2 , the emergence of aneuploidy is more likely

than that of the competing beneficial point mutations. Hence,
the condition Pa = 1

2 sets a lower critical value for the
beneficial selection coefficient (σ ∗b ), which reads (SI Appendix
for derivation)

σ ∗b =
σc

1− r
+O(µmN logN ). [2]

The above equation defines σ ∗b . The prevalence of the evolution-
ary route developing extra chromosomes is observed in “stress”
conditions where the beneficial effect exceeds the minimal value
σb ≥ σ

∗

b > σc . Here, r = µm/µa < 1 is the ratio between the
mutation µm and the missegregation rate µa (SI Appendix).

Aneuploidy with Extra Chromosomes Is a “Quick Fix” in Stress-
ful Conditions. The dynamics leading to the fixation of one of
the two evolutionary routes can also be described in terms of
the waiting time before the emergence of the fastest successful
mutant. This dynamical quantity is described by the minimum
of the two waiting times, tmin ≡ min(ta, tm), and has expected
value (Fig. 1E and SI Appendix for derivation)

τmin = 〈tmin〉 = τm

(
1− (1 + λmδ

a
fix)Pa

)
. [3]

Thanks to the possibility of developing extra chromosomes, the
waiting time until the emergence of the successful mutant is
therefore shorter than the time needed to develop the competing
set of point mutations τm = 1/λm, which, in our model, would
be attained if the mutational route was the only genomic change
offering a solution to the external stress. This evolutionary route
is still dynamically selected when σb < σc → τmin ' τm =
1/λm, i.e., when the global effect of extra chromosomes (benefit
minus cost) is detrimental. Conversely, in the opposite limit
σb � σc → τmin ' τa = 1/λa, the waiting time is set up by
the fixation rate of extra chromosomes alone. Clonal interference
effects (λmδafix > 0) lead to an increase of the waiting time,
i.e., reducing the speed of adaptation in response to the stress,
consistently with refs. 41–44.

In summary, the model describes in quantitative terms
the early-stage evolutionary role of aneuploidy carrying extra
chromosomes. According to the predictions, extra chromosomes
provide a “quick fix” to the external stress (because Pa ' 1 →
τmin ' τa < τm). Aneuploidy also has an indirect effect on
the mutational dynamics of euploid individuals, by effectively

selecting the fast mutants, hence causing a reduction of the
waiting time to the emergence of the successful euploid mutant
(1 > Pa > 0→ τmin < τm).

The Model Correctly Predicts the Outcome of Experimental
Evolution Data from Ref. 20. Our model can be applied to
describe the evolutionary dynamics observed in experimental
setups akin to ref. 20. In their experiment, Yona and coworkers
exposed four independent yeast populations of diploid strains
to a constant heat stress of 39◦C. After ∼450 generations, the
duplication of chromosome III (trisomy) was found to have
reached fixation in all four populations. The duplication of this
chromosome was shown to carry a beneficial effect in response
to the applied heat stress and to be the dominant evolutionary
solution over an alternative mutational route attained by point
mutations inducing the upregulation of heat-shock genes.

In order to compare the model prediction to the outcome of the
experiment, we obtained growth curves from the authors of ref.
20, evaluated for the diploid and aneuploid strain (carrying the
trisomy of chromosome III) both in normal conditions (30 ◦C)
and in stress conditions (39 ◦C). We used the growth curves to
infer values of the selection coefficients of aneuploid individuals.
(Materials and Methods, SI Appendix, Fig. S1 and Table S1; the
numerical values we obtained are σb = 0.17 gen−1 and σc =
0.05 gen−1).

Given these values for the selection coefficients, we evaluated
the cumulative probability of developing aneuploidy (Eq. 13)
vs time, according to our model prediction (Eqs. 1 and 3 and
Material and Methods), using an effective population size of
N = 106 individuals, as a function of the missegregation rate
(µa) and of the total mutation rate (µm) (Fig. 2). We find the
model predictions Eqs. 1 and 3 to be in quantitative agreement
with the outcome of the experiment, for realistic values of the
missegregation rate (µa ≥ 8 ∗ 10−7gen−1) and of the total
mutation rate (µm ≤ 5 ∗ 10−9). Similar results are obtained
by setting a bigger value for the effective population size of
(N = 107; SI Appendix, Fig. S3).

In order to determine realistic ranges of the rates (µa,µm)
in yeast, we reasoned as follows. The numerical value of
the yeast per-base spontaneous mutation rate is µspont. =
1.7 ∗ 10−10gen−1 (46). The mutation rate can be higher than
the spontaneous rate since the same phenotypic effect, i.e.,
the development of resistance to heat by upregulation of heat-
shock genes, can be attained with more than a single point
mutation. A conservative estimate of the size of this mutational
target is no more than 100 bases, giving an upper bound
constraint for µm ≤ 10−8gen−1. Values of the mutation rate
lower than the spontaneous rate, on the other hand, would
correspond to a scenario where the selection of the euploid
mutant does not develop a whole duplication of the expression of
the target gene (but would alter gene expression to a lower degree;
SI Appendix) and hence were also considered to be realistic.
Measurements for the missegregation rate exist in the literature
(µa ' 10−6gen−1).

The agreement between model prediction for the probability
to develop aneuploidy and for the time fo fixation and experi-
mental data is observed in yet another independent evolutionary
experiment, described in refs. 20 and 47, where a diploid yeast
population was exposed to a different stressing environment,
high pH. This experiment revealed the fixation of strains with
the duplication of chromosome V (trisomy; SI Appendix, Figs.
S1, S2, and S3 and Table S1).
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A B

Fig. 2. Model predictions agree with laboratory-evolution data from ref. 20. (A) Expected cumulative probability for the emergence of aneuploidy with extra
chromosomes vs. the time to reach fixation (Material and Methods), computed according to the model prediction (Eqs. 1 and 3) shown for three combinations of
the values of the model parameters (�a ,�m) (color-coded, numerical values reported in the legend of the plot). In the experiment, where a yeast population was
exposed to stress by increasing the temperature to 39 ◦C, 4 out of 4 yeast populations developed chromosomal duplications (CI66% = [0.8,1] for the probability
to develop aneuploidy), and all the fixations were reached before 450 generations. Hence, the experimental data fall in the region of the plot corresponding
to Pa ∈ [0.8,1] and t = 450gen, marked by a green bar and highlighted by green dashed lines. The trajectories predicted by the model that cross this region
are in agreement with the experimental data. Similarly, panel (B) shows the combinations of the numerical values of the model parameters (�a ,�m) that are
in agreement with the experimental data. The colored circles mark the values of the model parameters that were used to generate the trajectories shown in A
(each dot has the same color of the corresponding trajectory in A). Numerical values of the beneficial selection coefficient (�b = 0.17 gen−1) and for the fitness
cost of aneuploidy (�c = 0.05 gen−1) were obtained from exponential fits of the growth curves of the corresponding yeast strains (20) (Material and Methods and
SI Appendix, Fig. S1). The effective population size was set to N = 106 individuals (SI Appendix, Fig. S3 shows results for N = 107). The data reported here refer to
the “high-temperature” experimental setup. Similar agreement between model prediction and experimental data is observed for the “high-pH” experimental
setup (SI Appendix, Fig. S2)

The Cost of Extra Chromosomes Increases Linearly with the
Total Number of Genes They Contain. The fitness cost of an
aneuploid strain is defined as the reduction of its per-individual
offspring. In proliferative conditions, this can be proxied by the
growth rate difference with respect to the euploid strain, evaluated
in the same environmental conditions. An alternative proxy for
fitness is the stationary-phase population size in a given condition.
We deduced these proxies from both growth rates (9) and full
growth curves (19) collected for yeast aneuploid strains grown
in rich media and in the absence of external stress (Material and
Methods).

In both datasets, we found a statistically significant negative
linear correlation between the growth rate of aneuploid strains
and the total number of genes carried in the exceeding chro-
mosome. This relation is observed (with different slopes) both in
strains with disomic chromosomes compared to a haploid (ploidy
1) genomic background (Fig. 3 A, B, and C ) and in strains with
trisomic chromosomes compared to a diploid genetic background
(Fig. 3C ). Notably, the same trend is not only observed in
aneuploid strains carrying only a single duplicated chromosome
(Fig. 3A) but also in strains with up to 8 duplicated chromosomes
(Fig. 3 B and C ), suggesting that epistatic interactions between
the fitness costs of multiple duplicated chromosomes are small.
The dataset from ref. 19 also shows a negative correlation between
the fitness proxied by stationary-phase population size (optical
density, OD) and the total number of genes carried in the excess
chromosomes (Fig. 3B). Linear negative correlations between
growth rates and the number of genes in excess chromosomes
of aneuploid strains are also coherently observed in all the stress
conditions investigated in the dataset from ref. 9 (SI Appendix,
Fig.S5A).

Altogether, this experimental body of evidence suggests a gen-
eral fitness cost for aneuploid individuals with extra chromosomes
with respect to a euploid background, of the form

σc = c0ng , [4]

where ng is the total number of genes carried in the extra
chromosomes and c0 is the average cost per gene, which depends

on the external condition and on the background. The fitness
described by Eq. (4) does not necessarily imply that all the
exceeding genes contribute to fitness but also supports a scenario
where only a fraction of the genes of the duplicated chromosome
can reduce the reproductive fitness (48, 49). The statistically
significant linear correlations observed in Fig. 3, however, suggest
that the subset of genes that contribute to the cost should be
(roughly) evenly distributed across the genome. Indeed, only in
such a case, the probability of finding a gene contributing to
the fitness cost in a given chromosome would be proportional to
its length, giving rise to the observed correlations. We note that
this model considers chromosome copy number and duplication
of different chromosomes equivalent in terms of per-gene cost.
Specifically, the average fitness costs (c0) of aneuploid strains
with diploid vs haploid background display a linear correlation
(SI Appendix, Fig. S5B), suggesting the existence of a condition-
specific effect on the fitness cost. Values of the fitness cost in
the diploid background are found to be about a factor one half
of those observed in the haploid background, indicating that
the development of extra chromosomes is suppressed in haploids
and is more likely in diploids, an effect that is in agreement with
observations based on evolutionary genomics data (21, 50, 51).

Of note, in Fig. 3A, the disomy of Chr VI shows the largest
deviation from the linear decreasing trend (similar deviation was
observed in ref. 21). This deviation results from an additional
fitness cost that is specific to this disomy, which was reported to
be lethal in the ploidy = 1 background (19). This additional cost
is due to the two key cytoskeleton genes TUB2 (tubulin) and
ACT1 (actin), which reduce cell viability when their expression
is increased (52, 53). Notably, the effect of the disomy of Chr VI
is alleviated in combination with other aneuploidies, for example,
Chr I and Chr XIII (19).

A Minimal Fitness Model for Aneuploid Strains with Extra
Chromosomes. The analyses reported in Figs. 2 and 3 suggest
that a global effect of extra chromosomes on the growth rate of a
strain is recapitulated by a minimal fitness-landscape model, with
no epistatic interactions between genes of the extra chromosomes.
In this model, fitness is the sum of two contributions: i) a
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Fig. 3. The fitness cost of extra chromosomes is proportional to the total number of genes present in the excess chromosomes. (A) Plot of the values of the
difference between the exponential growth rates of aneuploid strains with extra chromosomes and the exponential growth rate of the euploid strain (squares,
labels indicating disomic chromosome numbers) against the number of genes carried in the disomic chromosomes (data from ref. 19; Materials and Methods
for details). The growth rate differences (estimating fitness differences) display a significant negative linear correlation with the number of duplicated genes
(red line, Pearsons’ r = −0.93, P-value< 10−6). (B) Values of the stationary-phase optical density (OD, squares, labels indicate disomic chromosomes) shown
against the number of genes in the disomic chromosomes (data from ref. 19). The stationary-phase OD of aneuploid strains, a complementary proxy for the
fitness, displays a significant negative linear correlation with the number of duplicated genes (red line, Pearson’s r = −0.68, P-value < 0.005). In panels A and B,
the data corresponding to the disomy of Chr VI were not included in the statistical evaluation, as this disomy in a euploid background is known to be lethal on
its own (19, 21, 52, 53). (C and D) Scaled growth rate differences of aneuploid strains obtained from ref. 9 (Material and Methods). The plots show scaled growth
rate differences (squares) between aneuploid and haploid (C) or diploid strains (D) against the number of genes carried in unbalanced chromosomes (disomic
chromosomes for the left plot and trisomic chromosomes in the right plot). Numbers next to the squares indicate the number of unbalanced chromosomes
carried in each strain. In both panels, the proxied fitness difference of aneuploid strains displays a significant negative linear correlation with the number of
genes carried in extra chromosomes red lines, Pearson’s r = −0.77 (B), −0.69 (C) and P-value ≤ 0.001 (B), 0.004 (C).

fitness cost (σc) that captures the empirical observation described
by Eq. 4, and ii) a chromosome-specific fitness component,
which captures the additional beneficial or detrimental effect
of excess chromosomes σkar,s. Under these assumptions, the
selection coefficient of an aneuploid strain (s) in any given growth
condition (environment or stress), with respect to the closest
euploid background (haploid or diploid) takes the form

σ cond
s = −σc,s + σkar,s

= −c0
∑
i

χ i
s ni +

∑
i

χ i
s σ

cond
i , [5]

where the karyotype of the strain is defined by the characteristic
matrix � s, where χ i

s = 1 if, in the strain s, the ith chromosome
number exceeds the background ploidy number. The fitness
cost of the strain is due to the total number of exceeding
chromosomes, σ cond

s = c0
∑

i χ
i
s ni = c0ns, where c0 > 0

is the condition-specific average fitness cost per gene, ni is
the number of genes in the ith chromosome, and ns is the
total number of extra chromosome of strain s. Each aneuploid
chromosome has an effect on the growth rate σ cond

i , which can
either be beneficial (σ cond

i > 0) or detrimental (σ cond
i < 0)

and is condition-specific. This results in the karyotype fitness
component σkar,s =

∑
i χ

i
s σ

cond
i . A condition (environment or

stress) is defined by the value c0 and the set of values {σ cond
i }.

The Fitness Landscape Defined by Eq. 5 Captures Nontrivial
Behavior of Stress Phenotypes. The two fitness components

of the minimal model, i.e., the fitness costs σc,s and the
chromosome-specific fitness effects σkar,s, can be inferred from
large-scale studies of aneuploid yeast phenotypes in stressful
conditions, such as ref. 9 (Material and Methods).

The first component captures the global linear decreasing
trend of the growth rates of aneuploid strains vs. the total
number of exceeding genes, as discussed above. Interestingly, this
component can also explain in quantitative terms the observed
linear correlation between the degree of phenotypic variation
and the degree of overall growth suppression, observed in the
data (9) and modeled in refs. 28, 30. In our modeling framework,
this correlation corresponds to a linear relationship between the

average value (σc) and the SD (6 ≡ (σc − (σc))2
1
2 ) of the fitness

cost evaluated in a cohort of aneuploid strains. Here, we have
denoted with . averages computed over the cohort of aneuploid
strains in a given growth condition. The fitness cost Eq. 4 predicts
a linear relationship of the form

σc ∼ CV (ng) 6, [6]

where CV (ng) = St.dev(ng)
ng is the coefficient of variation of the

distribution of the number of exceeding chromosomes (the total
number of genes contained in aneuploid chromosomes) evaluated
in the set of aneuploid strains considered. The quantitative
expression Eq. 6 explains about 80% of the observed variability
of the growth rates in the dataset of ref. 9, implying that the
fitness cost alone cannot explain the whole range of observed
phenotypic diversity (SI Appendix, Fig. S6).
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The deviations from this linear trend are captured by the
second (condition- and chromosome-specific) fitness component
(σkar,s), where the effect of an aneuploid extra chromosome
(i) on the growth rate is quantified by a chromosome- and
condition-specific fitness effect, σ cond

i . SI Appendix, Fig. S7A
reports the inferred values of the fitness-gain component of
each chromosome across stress and control growth conditions
for the Pavelka et al. dataset. These inferred values are net of
possible confounding factors due to the per-gene fitness cost
highlighted previously. Curiously, the chromosome-specific fit-
ness components in the same environment are generally different
(uncorrelated) between the ploidy = 1 and ploidy = 2 backgrounds
(SI Appendix, Fig. S7B). This difference could suggest that the
effect of chromosome duplication is ploidy specific, consistently
with observations of other ploidy-specific fitness effects (54).
However, in the Pavelka et al. experiments, each strain was
carrying mode than one duplicated chromosome; hence, epistatic
interactions between different extra chromosomes could have
been present. Unfortunately, the current data are too sparse to
infer such epistatic interactions. Additionally, the difference of
the chromosome-specific fitness effect between the ploidy = 1 and
ploidy = 2 backgrounds could be related to different physiological
constraints seen by haploids and diploids and to the different
relative gene-dosage increase resulting after a duplication in the
two different backgrounds.

Looking at SI Appendix, Fig. S7A, one clearly sees that adding
different specific extra chromosomes can improve or decrease
the fitness in a specific environment, but each environment is
characterized by the extent of such fitness gains and losses. For
example, in stressful environments such as in the presence of
4NQO, adding an extra chromosome to the genetic background
could improve or decrease the fitness by a factor that is more
than 10-fold larger than performing the same operation in
a nonstressful condition such as glycerol media. Because of
this property, it is tempting to classify the “harshness” of an
environment by the variability in behavior of aneuploids bearing
specific extra chromosomes. Indeed, the variability of effects
across chromosomes in a fixed given condition is found to be
proportional to the fitness cost per gene observed in the same
environment (SI Appendix, Fig. S8 A, B, C, and D), which can
be seen as an independent evaluation of the harshness of that
environment. Additionally, contrary to the effects of specific
chromosomes, the distributions of the fitness components for
the ploidy = 1 and ploidy = 2 backgrounds (shown in SI
Appendix, Fig. S8 C, D, and E) share common properties that are
related to the growth condition. In particular, each environment
is characterized by distributions of chromosome-specific fitness
effects that have a similar width for ploidy = 1 and ploidy = 2
backgrounds (SI Appendix, Fig. S8E).

Expected Interpopulation Dynamics of Aneuploids. The mini-
mal fitness-landscape model described by Eq. 5 can be used to de-
scribe the expected interpopulation dynamics of aneuploid strains
with a single chromosome gain, by investigating the substitution
dynamics associated with Eq. 1 in the landscape (Eq. 5) when
χ i
s = δi,j, for some j > 0, and δi,j is the standard Kronecker delta.

Following a standard population dynamics approach (55, 56),
we can use a probabilistic framework to characterize the selective
effects of a generic environment on the growth rate of a strain
with an aneuploid chromosome, by assuming that the beneficial
effect (σb) is exponentially distributed,P(σb) = be−bσb . Averages
with respect to this distribution, denoted with 〈〈.〉〉, quantify the
expected dynamics of aneuploid strains with excess chromosomes

in a set of conditions. Hence, they can be used to generate
predictions on the typical population dynamics of aneuploids.
Under these assumptions, the model predicts that the average
probability of developing aneuploidy with extra chromosomes,

P inter
a ≡ 〈〈Pa〉〉 ' e−bσ

∗

b = e−b
c0ng
1−r , [7]

decreases exponentially with the number of genes contained
in the extra chromosomes, suggesting in particular that the
relative abundance of duplicated chromosomes is exponentially
suppressed with their length. In addition, the typical selection
coefficient of an aneuploid strain that has reached fixation,

σ inter
b ≡

〈〈Paσb〉〉

〈〈Pa〉〉
'

1
b

+ σ ∗b =
1
b

+
c0ng
1− r

, [8]

is expected to increase linearly with the cost of extra chromo-
somes, implying in particular that longer chromosomes require
higher fitness advantage to reach fixation.

Combined together, the two model predictions (Eqs. 7 and 8)
suggest an “equilibrium” distribution of aneuploid strains of the
form (Material and Methods)

Xeq(ng) =
1
Z

e−κng

ng
, [9]

where ng is the number of genes contained in the aneuploid
chromosome, Z is a normalization factor, and κ is an effective
fitness cost per gene (Material and Methods). This prediction is in
good agreement with the relative abundances of yeast aneuploid
strains observed in evolutionary genomics data (Fig. 4). Interest-
ingly, the numerical values of the effective fitness cost per gene
are in agreement with existing experimental evidence (57, 58)
suggesting a reduced fitness cost for wild strains (collected as
“natural strains” in refs. 57, 59 as “wild strains” in ref. 58).
In other words, these strains have a higher propensity to
generate aneuploidy, when compared to strains of other kinds,
including domesticated, industrial, and human-associated strains
(SI Appendix, Table S3). We find similar results when comparing
the abundance of strains with a ploidy > 2 background to that

Fig. 4. The fitness landscape derived from phenotyping of laboratory yeast
strains explains the relative abundances of yeast aneuploid strains observed
in evolutionary genomics data. Relative abundances of aneuploid strains
vs. the number of excess genes contained in the aneuploid chromosome
(squares) are shown. The numbers of aneuploid strains were retrieved from
published data collected in eight studies and reported in ref. 21(SI Appendix,
Table S3). The orange line shows the fitness model expectation, for the
relative equilibrium frequencies set by chromosome acquisition and loss
rates of Eqs. (7 and 8), which predicts a functional dependence of the relative
frequencies on the number of excess genes (ng ) of the form∝ exp(−�ng)/ng .
Numerical values of model parameters are reported in SI Appendix, Table S3.
Data count of the duplications of Chr VI (gray square) was not considered
in the model fit since this chromosome is known to be lethal because of the
specific effects of the main cytoskeletal genes tubulin and actin (19, 21, 52, 53).
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of strains with a lower ploidy background, finding that extra
chromosomes are associated with a lower fitness cost in a ploidy
> 2 background (SI Appendix, Table S3).

Discussion

In yeast, the development of aneuploidy resulting from an
accidental chromosome missegregation has been characterized
by massive experimental data (3–10, 19–22). As a consequence
of this major effort, we are in need of unifying principles
to rationalize this wealth of data and embed the underlying
evolutionary dynamics into simple quantitative models. Here,
we have focused on a specific question, the role of chromosomal
duplication with respect to a reference euploid background. Our
results show that a simple evolutionary model where a fitness
cost of chromosome duplications is counterbalanced by a fitness
advantage from the expression of specific genes can explain
in quantitative terms two key observations of the emergence
dynamics of aneuploidy: i) chromosome duplications emerge
transiently as a “quick fix” to dosage insufficiency of a single
gene in stressful environments (11, 19, 60) ii) depending on the
nature of the applied stress, aneuploidy or local mutations may
be favored (20).

While traditionally the fitness advantage of a phenotype
associated with a certain mutational target was considered to be
the primary trait related to its adaptive value, the recent debate
has challenged this assumption based on experimental results that
highlight an important role of mutational paths and mutation
rates. Our analysis of aneuploids with extra chromosomes
provides another example where mutational paths with high
rates may give a more relevant contribution to adaptation than
mutations with large benefits occurring more rarely (33–35).

Our results support the existence of a cost of single-
chromosome duplications that is proportional to the number
of genes contained in the exceeding chromosomes. This sim-
ple behavior is surprising due to the numerous documented
complex physiological changes that emerge with aneuploidies,
such as dosage imbalance, effects on interaction networks, and
consequent osmotic effects (7, 61). Importantly, our results are
in line with a scenario where only a fraction of the genes in a
duplicated chromosome will actually contribute to the fitness
cost, as supported by the results of refs. 48 and 49. These studies
also find that the fitness costs can be complex and specific to
a genetic background and that in many cases, they are due to
stoichiometric imbalance between proteins that are interaction
partners, as supported by recent investigations of the effect of
chromosomal imbalance on gene expression, which provided
evidence of transmodulations across the genome in aneuploid
individuals in both yeast and Arabidopsis (62). Of note, such
effects were detected only after a careful reanalysis of the yeast
transcriptomic dataset collected in ref. 19 and were originally
missed because of an unsound normalization of the data (62).
More specifically, this scenario implies that some duplicated genes
may give a negligible contribution to the fitness cost; hence,
the average fitness (c0) should be thought of as the average of
a bimodal distribution (genes with a nonnull contribution plus
genes giving a null contribution). In addition, our analysis (Fig. 3)
would suggest the class of genes contributing to the cost to be
evenly distributed across the genome. This model interpretation
is in agreement with existing literature for yeast (48, 49, 63–
65). The same interpretation is in accordance with similar effects
observed in multiple eukaryotes (66) and could possibly describe
other systems, as it is mostly related to general physiological and

physical-chemistry principles that should hold across taxa (66).
Moreover, the remaining fraction of genes that do not contribute
to the cost would be described by our model as behaving neutrally
and could therefore be retained in small segmental duplications;
this aspect would be in agreement with the conclusions of ref. 63.

Another interesting interpretation of this form of the fitness
cost is that the reduction of the growth rate of aneuploid
strains may be at least in part the result of the interdependence
between growth rate and gene expression, in accordance with the
phenomenological laws first observed in bacteria (67), and more
recently also in yeast (68). This quantitative framework could
also explain the dependence of the fitness cost on the growth
conditions that we observe in (Fig. 3). Indeed, the cellular growth
rate was shown to be determined by the fraction of proteome
occupied by ribosomes, which, in turn, depends on the growth
conditions (e.g., nutrient quality). In a similar way, the growth
defect due to the overexpression of unneeded proteins was shown
to be condition dependent (67, 69). Targeted experiments with
combined measurements of growth rate and proteomic allocation
in aneuploid strains could be used to test this interpretation
of the fitness cost. A possible role of resource allocation in the
fitness cost of overexpressed proteins was also suggested in a direct
investigation of the cost of overexpressed proteins (49), which,
however, also found that these effects vary considerably with the
genetic background. Genes contained in an extra chromosome
are unnecessary for the survival, and their expression induces a
reduction of the growth rate by effectively decreasing the fraction
of resources allocated to the ribosomal and housekeeping protein
sectors, leading to a decrease in growth rate. This connection
holds only if the genetic gene dosage is proportional to gene
expression, an effect experimentally observed in yeast (9, 19, 70).
Interestingly, the connection between the fitness cost and gene
dosage is coherent with our analysis since we observe that values
of the fitness cost in the diploid background are close to one half
that of those observed in the haploid background, suggesting
a connection of the fitness cost per gene to the relative extra
gene dosage. Importantly, the linear (per-gene) cost of duplicated
chromosomes appears to be a common unifying feature of the
fitness landscape in different conditions and environments.

Our model assumes that, when duplicated, some genes will
impose a fitness cost to the cell, causing a reduction of its prolif-
eration rate. However, the biological mechanisms that cause this
cost are not described within the model, leaving room for several
interpretations and further modeling efforts. One contribution
to this cost is related to regulatory effects and could be associated
with all the genes that are up-regulated together with a duplicated
gene, as a result of both cisregulations or transregulations, and
additionally, as discussed above, stoichiometric imbalances in
protein interaction networks caused by dosage changes are found
to play an important role (by regulatory as well as biophysical
effects).

For this contribution, the proportionality observed in Fig. 3
would suggest the number of genes affected to be proportional
to the number of duplicated and costly genes (i.e., the number
of genes that are duplicated and contribute to the cost), meaning
that what matters for the main trend is the average number of
interaction partners of each such gene.

The formulation of a minimal fitness-landscape model (Eq. 5)
informed by data allows for the inference of chromosome-
specific fitness effects. Such effects are related to the dosage
increase of genes contained in specific duplicated chromosomes,
offering a quantitative framework for the inference of fitness
components of early aneuploids. In addition, we have shown that
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a simple description of the longer-term evolutionary dynamics
of our model (Eqs. 1 and 3) in this landscape captures the
relative abundance of aneuploidies observed in yeast population
genomics data. Hence, this model can be used to investigate both
the intrapopulation dynamics of aneuploidy individuals within
an evolving population (Fig. 2) and the substitution dynamics at
the interpopulation population level (Fig. 4).

Importantly, our model can be used to design evolutionary
experiments to investigate key biological questions related to
the emergence of aneuploidy, which require precise quantitative
assessments. For example, our model could be used to test
whether the karyotype state of aneuploid individuals is stable
in the long term (and in which conditions). As we have shown
(SI Appendix, Fig. S9), for this question to be addressed, it would
be important to design experiments where clonal interference
effects would be expected since an observed dynamics with
initial rise of aneuploids followed by its elimination from the
population could be misinterpreted as a signal of karyotype
instability, while simply being the signature of CI. Moreover, our
modeling framework could be deployed to design and investigate
mutation accumulation (MA) experiments aimed at measuring
the missegregation rate. In particular, our quantitative expression
for the fitness cost of aneuploid individuals (Fig. 3 and Eq. 4)
could be used to account for fitness effects in MA setups and
correct the estimate of the missegregation rate (71, 72).

The model introduced here can be extended to describe
more complex scenarios. First, it can be applied to investigate
the evolutionary consequences of a sudden increase of the
missegregation rate (6), which can result from the usage of
antimitotic drugs. Second, it can be used as an ingredient to
build models of chromosomal instability, with a clear interest
for cancer development (73). For the latter aspect, it would be
important to clarify to what extent the increase of gene dosage
translates into protein production in human cells (22).

Materials and Methods
Simulations of the Evolutionary Model. We performed numerical simula-
tions of a standard Wright–Fisher model with mutations and selection, with
constant population size N. Individuals of the populations are grouped into
three distinct and nonoverlapping classes: a) euploid individuals, b) aneuploid
individuals, and c) euploid individuals with point mutations. Class (b) is
generated from class (a) with a rateµa (per individual, per generation), and its
members have a selection coefficient σb − σc . Similarly, individuals of class
(c), characterized by a selection coefficient σb, are generated from individuals
of class (a) with a rate µm (per individual, per generation). The simulation is
initialized with all individuals assigned to class (a), and it is stopped when either
class (b) or class (c) reaches a frequency x ≥ 0.95. At the end of each simulation,
we recorded the successful class either (b) or (c) and the time of appearance
(measured in generations) of the first mutant whose descendants took over the
whole population (i.e., the emergence time of their last common ancestor tmin).

Evolutionary Parameters for the Experimental Data (20). To quantify the
fitness cost of the aneuploid strain investigated in ref. 20, we made use of
growth curves of the aneuploid and the euploid strains, evaluated at permissive
conditions, i.e., without stress. We then inferred the growth rates f30◦C

eu and
f30◦C
an with an exponential fit of the corresponding growth curves (SI Appendix,

Fig. S1A). Similarly, for evaluation of the fitness benefit of the aneuploid strain
in the presence of a heat stress (39 ◦C), we inferred the growth rates f39◦C

eu and
f39◦C
an (SI Appendix, Fig. S1B). The two selection coefficients were then computed

from the following set of equations:

σc = 1−
f30◦C
an

f30◦C
eu

σb − σc =
f39◦C
an

f39◦C
eu
− 1. [10]

Selection coefficients of the aneuploid strain for the experiment performed in
high pH were computed analogously, using growth curves of the aneuploid
and euploid strain evaluated in permissive (SI Appendix, Fig. S1C) and stress
conditions (SI Appendix, Fig. S1D). Numerical values for the inferred growth
rates are shown in SI Appendix, Table S1.

To estimate the effective population size of the wells used during the evolution
experiment, we used the following argument. The experiment in (20) was
performed in 96-well plates, with a max volume per well' 0.4ml. During the
experiment, cell density in liquid cultures was monitored by optical density at
600nmand reached a maximum value∼ 1 OD600. Since the valueOD600 = 1
corresponds to approximately 107 cells per ml (74), we estimated the effective
population size to be 107 ' N ' 106. In Fig. 2 and SI Appendix, Fig. S2, we
show results obtained with N = 106, while in SI Appendix, Fig. S3, we show
equivalent results computed for N = 107.

The expected cumulative probability for the emergence of aneuploidy with
extra chromosomes was computed as using two model ingredients. The first
ingredient is the cumulative distribution describing the probability to have a
successful aneuploid mutant (i.e., a mutant that eventually will reach fixation)
emerging before time t, which reads

Ca(t) ≡ P(temergence ≤ t) = Pa(1− e−(λa+λb)t), [11]

where Pa is the aneuploidy fixation probability (Eq. 1), while λm =
µmNφ(σb, N) and λa = µaNφ(σb − σc , N) are the fixation rates for the
euploid and the aneuploid mutants. The fixation probabilities are computed
according to Kimura’s expression, φ(σ , N) = (1 − e−2σ )/(1 − e−2σN)
(40). The second ingredient is the time to fixation of the aneuploid mutant,
which reads (SI Appendix and ref. 44)

tafix =
2 log(2N (σb − σc))

σb − σc
. [12]

Finally, the expected cumulative probability for the emergence of aneuploidy
reads

Cexp
a (t) ≡ Ca(t − tafix). [13]

Growth Curves Data from Ref. 19 and Inference of Growth Rates. In the
dataset collected by ref. 19, yeast strains were grown in liquid cultures, and
OD600 measurements were taken for several time points. Aneuploidy strains
were engineered to harbor two specific genes (HIS3 and KAN), integrated in the
two copies of the disomic chromosomes (one per copy). The two genes were
also integrated in two chromosomes of the euploid strain. Growth curves were
evaluated in a medium that is selective for the two genes (–His+G418 medium),
therefore preventing the loss of one of the two disomic chromosomes in the
aneuploid strains but is otherwise neutral for other traits and does not induce a
fitness difference between euploid and aneuploid strains.

Growth rates were then inferred fitting the growth curves to a logistic model

Y(t) =
beft

1 + a(eft − 1)
, [14]

where f is the growth rate of the exponential phase, b sets the initial condition
Y(0) = b, and b

a quantifies the fitness in the stationary phase of the growth
(max OD value). We have fitted the data with a parametric Bayesian model
log(Y(t)) ∼ N ((log(b) + f t − log(1 + a(eft − 1)), σY ), choosing priors
a ∼ U(0, 1), b ∼ U(0, 1), f ∼ U(0.1, 1.1), and 1/σ 2

Y ∼ 0(0.01, 0.01),
where the symbol ∼ stands for “distributed as”, and N , U , and 0 stand for
normal, uniform, and gamma distribution, respectively. Model fits to the data are
shown in SI Appendix, Fig. S4, and inferred model parameters are summarized
in SI Appendix, Table S2.

Dataset from ref. 9 and Evaluation of Growth Rate Differences. Yeast
strains in the dataset collected by Pavelka et al. (9) were grown on solid media
plates, and growth data were obtained by automated spot detection and intensity
measurements. The dataset included 38 fully isogenic aneuploid yeast strains
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with distinct karyotypes and genome contents between 1N and 3N and 3
strains euploid strains (one for each ploidy). In our analysis, we retained strains
whose karyotype can be identified as an aneuploid resulting from chromosome
gain; hence, we required the total number of genes contained in the excess
chromosomes to be about one half of the total number (≤ 3,200 genes).
Aneuploidy strains of this form included the majority of the strains of the original
dataset (14 strains with a ploidy = 1 background and 15 strains with a ploidy =
2 background). Since our analysis involved stratification of the data according to
the closest euploid strains, aneuploid strains with a ploidy = 3 were discarded
as too few for a statistical investigation (less than 5 strains).

Growth rate differences were evaluated as follows. The dataset consisted of
values of the optical density (OD) of growth assays, evaluated at the same time
(tmax), of a set of strains with a similar initial number of cells (N0). Assuming
exponential growth (growth assays that reached saturation were excluded from
the analysis by the authors), the OD of a specific strain (s), at a given growth
condition (c), can be modeled as

Ocs = N0 e
f cs tmax , [15]

where f cs is the growth rate of strain s in the growth condition c. OD values were
then normalized to the value observed for the euploid strain with a ploidy = 1
background and in the same growing condition, obtaining transformed values

Ôcs ' e
(f cs−f

c
EU1

)tmax , [16]

which we have log-transformed to get

1̂c
s ≡ log(Ôcs) ' (f cs − f cEU1

)tmax, [17]

which are scaled (a-dimensional) growth rate differences between a given strain
s and the euploid (pl = 1) control strain, evaluated in the growth condition c.
Scaled growth differences with respect to the closest strains were then obtained
by difference

1c
s = 1̂c

s − 1̂
c
EU1

= (f cs − f cEU1
)tmax pl = 1 background [18]

1c
s = 1̂c

s − 1̂
c
EU2

= (f cs − f cEU2
)tmax pl = 2 background. [19]

These values were used to evaluate statistics related to the fitness cost component
shown in Fig. 2 and SI Appendix, Figs. S5 and S6 as well as for the inference of
the chromosome fitness components shown in SI Appendix, Figs. S7 and S8.

Inference of Fitness Components from Dataset from ref. 9. We consider
a minimal fitness model, where the growth rate f cs of an aneuploid strain s in
the growth condition c reads

f cs = f cEU − f ccost,s + f ckar,s [20]

= f cEU − c0
∑
i

χ isni +
∑
i

χ isf
c
i ,

where f cEU is the growth rate of the closest euploid strains to s in the same

condition. The karyotype of the strain is defined by the matrixχ , whereχ is = 1
if, in thestrains, the ithchromosomeexceedsthebackgroundploidynumber. The
fitness cost of the strain is due to the total number of exceeding chromosomes,
f ccost,s = c0

∑
i χ

i
sni = c0ns, where c0 > 0 is the condition-specific average

fitness cost per gene, ni is the number of genes in the ith chromosome, and ns is
the total number of genes contained in exceeding chromosomes of strain s. Each
aneuploid chromosome has an effect on the growth rate f ci , which can either be
beneficial (f ci > 0) or detrimental (f ci < 0) and is condition specific, that results
in the karyotype fitness component f ckar,s =

∑
i χ

i
sf
c
i . In the minimal model

Eq. 21, epistatic interactions between chromosomes are not considered.
For each growth condition of the dataset of Pavelka et al, we have inferred

the model parameters c0 and the chromosome fitness effects {f ci } as follows. It
should be noted that, while Eq. 21 requires growth rates (in units [time]−1),
the dataset by Pavelka et al. consisted of scaled, a-dimensional values f cs tmax ,

where tmax is a value that is constant for all the strains considered (the time
duration of the growth assay). The model Eq. 21 can therefore be inferred with
the considered datasets since all the growth rates are scaled by the same value,
and the inferred model parameters of Eq. 21will be expressed in a-dimensional
units.

To estimate the value c0, we performed a linear fit of the data 1s
c (Eq. 19,

Material and Methods) vs ns, inferring the linear model

1
linear,s
c = 10

c − c0ns. [21]

The value of10
c is a correction to the fitness of the euploid strain. Since the data

were normalized to the growth of the euploid strain with pl = 1, in the pl = 1
dataset, we imposed10

c = 0, while in the pl = 2, the parameter was set free.
Deviations of the data from the linear model were then used to infer the

chromosome fitness effects. We first subtracted the linear model contribution,
obtaining the detrended data

1
detrended,s
c ≡ 1c

s −1
linear,s
c [22]

= 1c
s −1

0
c + c0ns.

The chromosome fitness components are the solution of the linear system

E1detrended
c = χ Ef c. [23]

Since the matrix χ is sparse, the system of equations Eq. 23 cannot be solved
exactly . Hence, we use the approximated least square solution of Eq. 23

Ef c = χ+ Ẽ1c , [24]

whereχ+ is the pseudoinverse ofχ , the matrix that specifies the karyotypes of
the strains considered. Inferred values of the chromosome fitness components
are shown in SI Appendix, Figs. S7 and S8. SI Appendix, Fig. S10 shows a
detailed example of the inference procedure discussed in this paragraph.

Fitness-Landscape Prediction for the Relative Abundances of Aneuploid
Strains. We computed the equilibrium distribution for the relative abundances
of aneuploidy strains as the ratio between the onset rate (r), i.e., at which
aneuploid strains reach fixation, and the loss rate (l), i.e., the rate at which an
aneuploidy is lost because euploid individuals reach fixation:

Xeq ∝
r
l
. [25]

In this context, aneuploidy strains are identified by the number of genes that are
contained in the duplicated chromosome; hence, the only dependence on the
chromosome identity is via its gene content (ng). The two rates corresponding to
the model considered here (Fig. 1) are defined in terms of the model predictions
Eqs. (7 and 8) as follows.

The onset rate can be written as the product of Pinter
a , the intra population

fixation probability (Eq. 7), and an effective rate µstress, describing the rate at
which yeast populations are exposed to stress conditions that can promote the
emergence of aneuploidy

r(ng) = µstressPinter
a ∝ e−

c0
1−r ng . [26]

The loss rate depends on the environmental condition. If the stress condition
that promoted the emergence of aneuploidy is no longer in action, then the
population will restore the original euploid strain by losing the duplicated
chromosome. In this case, the euploid strain, generated with a missegregation
rate per individual µoff

a , has a beneficial selection coefficient σeu = σc
(computed with respect to the aneuploidy individual), and the loss rate will
equal the substitution rate

lno stress(ng) = µoff
a Nφ(σeu, N) ' 2Nµoff

a σc ∝ c0ng, [27]

while φ(σ , N) = (1− e−2σ )/(1− e−2σN) is Kimura’s fixation probability
(40). If the stress condition persists, then in the long term, the population
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will substitute aneuploids with euploid with point mutations, i.e., the second
mutational channel considered in our model. In the case the loss of aneuploidy
would be attained by the sequential generation of an euploid individual,
with a missegregation rate per individual µoff

a and selection coefficient
σeu = σc − σ

intra
b < 0, which then generates a mutant with a mutation rate

individual µm and selection coefficient σm = σc > 0. Note that selection
coefficients are now computed with respect to the aneuploidy individual.
These two sequential events are known to take place through the so-called
“stochastic tunneling” process (75, 76), that makes possible progression through
intermediate deleterious alleles without the population ever experiencing the
transient decline in fitness that would necessarily occur with sequential fixation.
Hence, in the presence of stress, the offset rate is equal to the tunneling
rate (75–78)

lstress(ng) ' 2Nµoff
a µm

σc

σ intra
b − σc

∝ c0ng +O(c2
0), [28]

where we used the expression σ intra
b as in Eq. 8.

While the exact form of the equilibrium distribution will differ if considering
persisting/nonpersisting stress conditions after the fixation of aneuploidy, it
can be expressed in general terms as a scaling law (vs s the number of genes
contained in the aneuploid chromosome ng) that is valid in both conditions and
takes the form

Xeq(ng, k) ∝
e−k ng

ng
, [29]

where k ≡ c0
1−r is defined in terms of the condition-specific fitness cost per gene

(c0) and the mutational bias toward the generation of aneuploidy individuals
r = µm/µa (Main Text). To account for the variability of the growing conditions,
which reflects in the variability of the parameter k, we assume the set of
environmental stresses to be described by a uniform distribution fork ∈ [0, 2κ],

where 2κ is an upper bound for k. By averaging Eq. 29 over this distribution,
we find

Xeq(ng) ∝
e−κ ng

ng
+O(κ2), [30]

whose normalized form corresponds to Eq. 9. The value of the parameter κ is an
effective fitness cost per gene, which is proportional to the max value of c0 of the
set of growing conditions considered. We note that the numerical value of c0 is
expected to be lower than the inverse of the typical chromosome size (the longest
chromosome in yeast has ng ' 600 genes), supporting the approximations
taken in Eqs. 28 and 29. This approximation is also validated a posteriori, by the
numerical values obtained in the model fit (SI Appendix, Table S3).

Data, Materials, and Software Availability. Code used for the simulation of
the model and used for the data analysis are available at Mendeley (https://data.
mendeley.com/datasets/v5w4nvh9vx/1) (79). Other study data are included in
the article and/or SI Appendix.
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