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Abstract
Ingesting marine plastics is increasingly common in cetaceans, but little is known about their potential effects. Here, by 
utilizing 16S rRNA gene sequencing, we profiled the intestinal bacterial communities of a stranded Risso’s dolphin (Gram-
pus griseus) which died because of the ingestion of rubber gloves. In this study, we explored the potential relationships 
between starvation raised by plastic ingestion with the dolphin gut microbiota. Our results showed significant differences 
in bacterial diversity and composition among the different anatomical areas along the intestinal tract, which may be related 
to the intestinal emptying process under starvation. In addition, the intestinal bacterial composition of the Risso’s dolphin 
showed both similarity and divergence to that of other toothed whales, suggesting potential roles of both host phylogeny and 
habitat shaping of the cetacean intestinal microbiome. Perhaps, the microbiota is reflecting a potentially disordered intestinal 
microbial profile caused by the ingestion of macro-plastics which led to starvation. Moreover, two operational taxonomic 
units (0.17% of the total reads) affiliated with Actinobacillus and Acinetobacter lwoffii were detected along the intestinal 
tract. These bacterial species may cause infections in immunocompromised dolphins which are malnourished. This prelimi-
nary study profiles the intestinal microbiota of a Risso’s dolphin, and provides an additional understanding of the potential 
relationships between starvation raised by ingesting macro-plastics with cetacean gut microbiota.
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Introduction

Human-derived plastic debris in the ocean is ubiquitous 
and poses health risks to marine wildlife globally (Caruso 
et al. 2022; De Stephanis et al. 2013). Since cetaceans act 
as sentinel and indicator species for marine ecosystem 
assessment, there is no doubt that they are also threatened by 

marine plastic pollution. The effects of plastics on cetaceans 
are closely correlated with their species-specific diving 
and feeding behavior (Eisfeld-Pierantonio et al. 2022). For 
example, large filter-feeding baleen whales tend to intake 
microplastics (< 5 mm) when they engulf large amounts of 
water and mud, or from trophic transfer, while odontoceti 
predators are prone to ingest macro-plastics (25–1000 mm) 
when they capture plastic-shaped squids and fishes (Alava 
2020; Alexiadou et al. 2019). According to the latest review, 
about 67.8% of cetacean species have been reported to 
interact with marine plastics, and the number of species 
has grown in the last decade (Eisfeld-Pierantonio et al. 
2022). Specifically, compared to being entangled (34.4%; 
31 species), a larger proportion of cetaceans was found to 
have ingested plastics (63.3%; 57 species), with macro-litter 
being the main issue for all. Even a tiny amount of ingested 
macro-plastic can have a huge impact on cetacean health, 
through blocking the gastrointestinal tract, followed by 
satiation, starvation, and malnutrition, and ultimately death 
can result. Even if the animal is able to survive a reduced 
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quality of life, reproductive capacity can result (Eisfeld-
Pierantonio et al. 2022; Gregory 1978, 1991). Moreover, 
the degradation of macro-plastics into micro-plastics can 
increase the ecotoxicological hazards, inducing the intestinal 
microbiota dysbiosis, in fish (Liao et al. 2022) and birds 
(Wang et al. 2021). The consequences of ingesting macro-
plastics in cetaceans are becoming increasingly more serious 
as the ongoing COVID-19 pandemic has accelerated marine 
plastic pollution, like disposable face masks and gloves 
(Prata et al. 2020). Since the gut microbiota plays a critical 
role in host nutrition absorption, energy intake, and immune 
defense (Krajmalnik‐Brown et al. 2012; Takiishi et al. 2017), 
recent research has highlighted the possible adverse effects 
of starvation and malnutrition on the gut microbiota (Million 
et al. 2017; Vera-Ponce de León et al. 2021). The absence 
of the normal intestinal flora could trigger the susceptibility 
of a host to bacterial infections (Nell et al. 2010). Therefore, 
gut microbial dysbiosis may aid in our understanding on 
how ingesting macro-plastics influences cetacean fitness. 
However, up to now, little is known about the potential 
relationships between plastic ingestion with the cetacean 
gut microbiota.

The Risso’s dolphin (Grampus griseus), one of the largest 
toothed whales, is the sole species of the genus Grampus 
(family Delphinidae) and preys almost entirely on squids 
(Blanco et al. 2006). It has a cosmopolitan distribution, with 
a large range in water temperature (10–30 °C), water depth 
(under 10 m to deeper than 3800 m), and latitude (Jeffer-
son et al. 2014; Kiszka et al. 2007). In China waters, the 
Risso’s dolphin is widely distributed from the South China 
Sea and Taiwan waters, to the East China Sea and the Yel-
low/Bohai Sea. It is currently listed as the national second-
class protected animal. Even though a recent retrospective 
study indicated numerous stranding events (n = 62) of Ris-
so’s dolphins in China waters from 1950 to 2018, there is 
still a lack of understanding about their cause of death and 
potential threats to their health (Liu et al. 2022). One exam-
ple is the case of a female adult Risso’s dolphin which was 
stranded on the coast of the South China Sea near Zhanjiang 
City, Guangdong Province, in 2019 (Zeng et al. 2020). It 
was confirmed the dolphin ingested macro-plastics. How-
ever, as far as we know, the ingesting macro-plastics has 
not been described as a key issue for the conservation of 
the Risso’s dolphin, due to insufficient information on the 
potential physical and pathogenic effects of macro-plastics 
on cetaceans.

In this study, to follow up a previous report (Zeng et al. 
2020), we profiled the intestinal bacterial communities of a 
Risso’s dolphin (Grampus griseus) stranded in South China 
Sea, and explored the potential relationships with starvation 
raised by macro-plastic ingestion.

Materials and methods

The Risso’s dolphin and intestinal content sampling

On July 10, 2019, a female Risso’s dolphin was stranded 
alive near Shimajiao waters in Xuwen County, Zhanjiang 
City, Guangdong Province, and died a half hour after being 
found (Zeng et al. 2020). The dolphin was then weighed, 
measured, and necropsied after death. As described by Zeng 
et al. (2020), the dolphin was emaciated, with extremely 
thin subcutaneous blubber; no apparent fatal traumas were 
detected, but two rubber gloves (> 30 cm) were found in the 
forestomach, and sands were detected in both the respiratory 
tract and esophagus. Moreover, the gastrointestinal tract was 
totally empty. It has been speculated that starvation and fee-
bleness, following gastric blockage by rubber gloves, led to 
the live stranding and subsequent airway obstruction, which 
may have resulted in suffocation and finally death.

The intestinal tract was divided equally into three seg-
ments as the foregut, midgut, and hindgut. The luminal 
content from each intestinal segment was collected follow-
ing the procedures outlined in a previous study (Wan et al. 
2018). Three replicates from each intestinal segment were 
collected, resulting in a total of nine samples. All intestinal 
samples were stored in − 80 °C until DNA extraction.

DNA extraction, sequencing, reads processing, 
and statistical analysis

The metagenomic DNA from all the intestinal samples were 
extracted using the ZR fecal DNA kit (Zymo Research Incor-
porated, CA, USA), and then the concentration of extracted 
DNA was measured by a Nanodrop spectrophotometer. 
Qualified DNA products were amplified using the universal 
primers (338F: 5′-CCT AYG GGR BGC ASC AG-3′ and 
806R: 5′-GGA CTA CNN GGG TAT CTA AT-3′), targeting 
the V3–V4 regions of the bacterial 16S rRNA gene. PCR 
products from each sample were then combined for library 
construction using TruSeq Nano DNA LT Library Prep Kit, 
and sequenced by the Miseq Illumina platform (Majorbio 
Company, Shanghai, China) (2 × 250 bp paired ends). The 
raw sequencing reads were preprocessed as described in 
Wan et al. (2021). In brief, after removing sequencing reads 
of poor quality and chimeras, the 16S rRNA gene sequences 
were clustered into operational taxonomic units (OTUs) 
with USEARCH (Edgar 2010) on the Galaxy platform at 
97% nucleotide identity. Taxonomic affiliations were then 
assigned through the RDP classifier with a threshold of 0.7 
(http:// rdp. cme. msu. edu/). All sequences were randomly 
resampled to the minimum depth of 27,623 sequences per 
sample. Phylogenetic trees were constructed using FastTree 
tools (Price et al. 2009). The alpha-diversity indices were 
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calculated using the Picante package in R, and compared 
between groups using the Wilcoxon rank sum test. Prin-
cipal component analysis based on Bray–Curtis distances 
was further computed to evaluate the difference of microbial 
composition between groups. To identify biomarkers in each 
group, the linear discriminant analysis effect size (LEfSe, 
p < 0.05 and LDA score > 3.0) was analyzed online (http:// 
hutte nhower. sph. harva rd. edu/ galaxy/). To predict potential 
pathways from the 16S rRNA gene reads, the Functional 
Annotation of PROkaryotic TAXa (FAPROTAX) database 
was used (Louca et al. 2016).

Results and discussion

Overall microbial community structure and core 
microbiota

After rarefaction to 27,623 reads per sample, we obtained 
62 OTUs in total, which is comparable with that from 
another stranded Risso’s dolphin (67 OTUs) found in 
Korea waters (Kim et al. 2019). The dominate phyla were 
Firmicutes (83.03%), followed by Fusobacteria (12.50%) 
and Bacteroidetes (4.28%), with five rare phyla account-
ing for the remaining 0.19% of the total sequencing reads 
(Fig. 1a). The five most abundant genera were Peptostrep-
tococcus (40.60%), Paraclostridium (31.36%), Fusobac-
terium (11.76%), Vagococcus (5.94%), and Bacteroides 
(4.27%), which together were 93.93% in relative abun-
dance (Fig. 1b). The top four abundant genera were also 
present in all intestinal samples, constituting of the abun-
dant “core microbiota” of the Risso’s dolphin’s intesti-
nal bacterial community. This is quite distinct from the 

microbial information of the Risso’s dolphin stranded in 
Korea waters, which was predominately Photobacterium 
(89.4%) (Kim et al. 2019). The Risso’s dolphin shared 
common gut microbial members associated with Firmi-
cutes with a wide range of toothed whales, including the 
Chinese white dolphin (Sousa chinensis) (Wan et al. 2021), 
Yangtze finless porpoise (N. a. asiaeorientalis) (Wan et al. 
2016), bottlenose dolphin (Tursiops truncatus) (Wan et al. 
2022), melon-headed whales (Peponocephala electra) (Bai 
et al. 2022), short-finned pilot whales (Globicephala mac-
rorhynchus) (Bai et al. 2021), pygmy (Kogia breviceps), 
and dwarf (K. sima) sperm whales (Erwin et al. 2017), 
whereas at the genus level, the Risso’s dolphin diverged 
from other toothed whales. For example, unlike Halo-
monas, Photobacterium, and Cetobacterium, detected as 
abundant taxa in the marine dolphins and porpoises (Wan 
et al. 2018, 2021, 2022), the Risso’s dolphin contained 
higher proportions of Vagococcus (5.94%) and Bacteroides 
(4.27%) (Fig. 1b). This may suggest that host phylogeny 
and habitat can help shape diverse gut microbial communi-
ties in different cetacean species, or that it may reflect the 
disordered intestinal microbial profile of the Risso’s dol-
phin which died of ingesting macro-plastics and starvation. 
Starvation may alter the morphology of intestinal epithe-
lial cells and function of the gastrointestinal tract, and thus 
affect the microbiota colonized there (Okada et al. 2013). 
Therefore, physiological changes of the gastrointestinal 
tract during starvation may help explain how macro-plastic 
ingestion affect the microbial composition and diversity 
of the dolphin. However, the conclusion should be drawn 
with caution as only one individual was investigated in 
the present study.
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Fig. 1  Overall bacterial composition (relative abundance) of the intestinal samples. a Phylum level. b Genus level
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Variations of bacterial diversity and composition 

in different intestinal regions

In general, the alpha diversity, estimated by five indi-
ces (Table 1), was not significantly different among the 
three intestinal regions (p > 0.05), which could be due to 
the limited sample size. However, Sobs (the number of 
observed OTUs), Chao 1, ACE, and Faith’s PD showed 
the highest values in the midgut, followed by the foregut 
and then the hindgut (Table 1). This is different with 
what was detected in a stranded Chinese white dolphin, 
which showed relatively higher diverse bacterial com-
munities in the hindgut than the foregut and midgut (Wan 
et al. 2021). This difference between the Risso’s dolphin 
and the Chinese white dolphin may reflect differences 
in their intestinal emptying processes. Specifically, it is 
speculated that the Risso’s dolphin died not long after 
eating a prey item, after digesting her previous meal and 
emptying it to the midgut, leading to a higher midgut-
associated bacterial diversity, whereas the Chinese white 
dolphin might have starved for a few days in the inland 
river, and emptied its chyme to the rectum. Therefore, 
the variation trend of the microbial diversity may change 
with host species or even with different nutritional sta-
tuses of the individuals. This may at least partly explain 
why there is currently no universal changing pattern of 
the intestinal microbial diversity of different cetacean 
species (Wan et al. 2018, 2021).

In agreement with previous findings (Wan et al. 2021), 
the bacterial community residing in the intestinal tract of 
the Risso’s dolphin exhibited stratifications among the 
foregut, midgut, and hindgut regions (Fig. 2). These three 
regions harbored distinct bacterial genera communities 
(Fig. 2a, b). Typically, Bacteroides and Porphyromonas, 
both belonging to Bacteroidota, were significantly enriched 
in the foregut, while Delftia (belonging to Proteobacteria) 
and Hathewaya (belonging to Firmicutes) were abundant in 
the midgut (Fig. 2c, d) (p < 0.05). The hindgut, the propor-
tion of Rhizobiales (belonging to Proteobacteria), was sta-
tistically higher than that in the other two regions (Fig. 2c, 
d) (p < 0.05). This intestinal region-specificity of bacterial 
communities may be correlated with the different micro-
environments present in different intestinal regions. For 
example, oxygen tension decreases greatly from the small 

to the large intestine, which help make the caecum and rec-

tum of the large intestine favorable for enterohaemorrhagic 
Escherichia coli under anaerobic conditions (Woodward 
et al. 2019).

Functional potentials

Instead of exploring the general functional pathways of 
microbial communities along the intestinal tract, here we 
mainly focused on the potential pathogens, as well as plas-
tic degradation-associated functions. In total, only 2 OTUs 
(0.17% of the total reads) affiliated with Actinobacillus 
(identity 99.53%) and Acinetobacter lwoffii (identity 100%), 
respectively, were potentially pathogenic by FAPROTAX 
analysis. The pathogenicity of these organisms has been 
experimentally verified in the literature. Specifically, Act-
inobacillus species (belonging to Pasteurellales) can cause 
actinomycosis, potent septicaemia, and fatal pneumonia 
in mammals (Rycroft and Garside 2000). And A. lwoffii 
(belonging to Pseudomonadales) can cause chronic gastritis 
(Rathinavelu et al. 2003). It’ is noticeable that the extremely 
low abundance of potential pathogens may be due to the 
low biomass of intestinal bacteria in the starving dolphin. 
Interestingly, in the present study, two rare OTUs, belong-
ing to Delftia tsuruhatensis and A. lwoffii, respectively, were 
detected, both of which are related to plastic-degradation 
(Liang et al. 2008; Shigematsu et al. 2003). These bacterial 
species may be involved in the utilization of microplastics in 
the dolphin’s gut, but further research is necessary to verify 
this possibility.

In conclusion, this study profiled the bacterial commu-
nity composition and predicted functions along different 
intestinal regions of an adult Risso’s dolphin which died of 
ingesting rubber gloves, leading to starvation and malnu-
trition. Even though more stranding cases are necessary to 
obtain reliable results, this report provides the first microbial 
identification in the different intestinal regions of the Risso’s 
dolphin, which is associated with the potential relationships 
with starvation raised by ingesting macro-plastics. This 
result could serve as a reference for exploring the interac-
tions between gut microbial dysbiosis and ingesting macro-
plastics. This study highlights the dangers of the ingestion of 
plastics by cetaceans, especially since there is an increase in 
the disposable of plastics due to the COVID-19 pandemic.

Table 1  The alpha diversity 
estimators (mean ± standard 
deviation) of bacterial samples 
from three different intestinal 
regions

Sobs, the number of observed OTUs. Faith’s PD, Faith’s phylogenetic diversity

Index Sobs Chao 1 Shannon ACE Faith’s PD
Region

Foregut 34.00 ± 2.00 37.01 ± 2.21 1.46 ± 0.05 41.67 ± 4.82 3.61 ± 0.12
Midgut 41.33 ± 6.11 48.55 ± 6.02 1.14 ± 0.05 52.89 ± 4.46 4.20 ± 0.46
Hindgut 31.00 ± 3.61 32.81 ± 6.34 1.56 ± 0.12 33.12 ± 4.87 2.85 ± 0.37
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