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� Multi-omics reveals specific gut
microbes and fecal/serum/urinary
metabolites are closely related with
AMI.

� Combination of gut bacteria and
fecal/urinary metabolites provides an
effective and non-invasive biomarker
set for AMI.

� We provide a potential effective and
non-invasive biomarker set for the
prediction of AMI, thus contributing
to early warning of AMI for patients
with sCAD.
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Introduction: Acute myocardial infarction (AMI) accounts for the majority of deaths caused by coronary
artery disease (CAD). Early warning of AMI, especially for patients with stable coronary artery disease
(sCAD), is urgently needed. Our previous study showed that alterations in the gut microbiota were cor-
related with CAD severity.
Objectives: Herein, we tried to discover accurate and convenient biomarkers for AMI by combination of
gut microbiota and fecal/blood/urinary metabolomics.
Methods: We recruited 190 volunteers including 93 sCAD patients, 49 AMI patients, and 48 subjects with
normal coronary artery (NCA), and measured their blood biochemical parameters, 16S rRNA-based gut
microbiota and NMR-based fecal/blood/urinary metabolites. We further selected 20 subjects from each
group and analyzed their gut microbiota by whole-metagenome shotgun sequencing.
Results: Multi-omic analyses revealed that AMI patients exhibited specific changes in gut microbiota and
serum/urinary/fecal metabolites as compared to subjects with sCAD or NCA. Fourteen bacterial genera
and 30 metabolites (11 in feces, 10 in blood, 9 in urine) were closely related to AMI phenotypes and could
accurately distinguish AMI patients from sCAD patients. Some species belonging to Alistipes,
Streptococcus, Ruminococcus, Lactobacillus and Faecalibacterium were effective to distinguish AMI from
sCAD and their predictive ability was confirmed in an independent cohort of CAD patients. We further
selected nine indicators including 4 bacterial genera, 3 fecal and 2 urinary metabolites as a noninvasive
biomarker set which can distinguish AMI from sCAD with an AUC of 0.932.
Conclusion: Combination of gut microbiota and fecal/urinary metabolites provided a set of potential use-
ful and noninvasive predictive biomarker for AMI from sCAD.
� 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction Butyricimonas, Acidaminococcus, Desulfovibrio, and decreased Tyzzer-
Coronary artery disease (CAD) is the leading cause of mortality
worldwide [1], accounting for 18.6 million deaths annually in 2019
[2]. Based on the extent of arterial blockage, CAD is classified into
two major clinical subtypes, stable coronary artery disease (sCAD)
and acute coronary syndromes (ACS) [3]. The sCAD is a clinically
stable condition which is mainly caused by reversible, transient
episode of blood supply–demand mismatch correlated with
myocardial ischemia, whereas ACS manifests as sudden cardiac
death (SCD), acute myocardial infarction (AMI), or unstable angina
pectoris (UAP) in clinic [4]. Among these, AMI, including ST-
segment elevated myocardial infarction (STEMI) and non-ST-
segment elevated myocardial infarction (NSTEMI), accounts for
the majority of CAD deaths, leading to a considerable health-care
cost and societal burden [5]. Although great progress has been
achieved, early warning of the risk of AMI remains a big challenge.
Therefore, discovery of noninvasive and accurate biomarkers for
AMI is urgently needed.

No reliable and effective technique for the early warning of AMI
is currently available. Several diagnostic biomarkers for AMI have
been identified and used for the clinical diagnosis. The cardiac-
specific circulating biomarkers, cardiac troponins I (cTnI) and car-
diac troponins T (cTnT), are primary diagnostic markers for AMI
[6], but their distinguishing performance for AMI and sCAD is not
satisfied because cTnI usually increases in both sCAD and MI
patients [7]. Some other diseases are also accompanied by eleva-
tion of these two parameters, which may lead to the false predic-
tion of AMI. Recent investigations revealed that exosomal miR-1,
miR-1915-3p, miR-4507 and miR-3656, creatinine kinase myocar-
dial band (CK-MB), and creatine kinase (CK) are significantly higher
in AMI patients than in sCAD and healthy persons [8-11], but their
prediction accuracy is relatively low. Therefore, more biomarkers
with high sensitivity and specificity for AMI are desiderated to
nip the occurrence of AMI in the bud.

The gutmicrobiota and its metabolites are involved in the process
of AMI. Animals experiment showed that the families Lach-
nospiraceae, Syntrophomonadaceae, Eubacteriaceae and Dethiosul-
fovibrionaceae, and the genera Tissierella and Soehngenia are
significantlyhigher inAMI rats than theSHAMcontrols [12]. Inhuman
beings, AMI patients harbor higher abundance of Megasphaera,
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ella 3, Dialister, [Eubacterium] ventriosum group, Pseudobutyrivibrio
and Lachnospiraceae ND3007 than healthy controls [13]. Meanwhile,
an elevated plasma level of trimethylamine N-oxide (TMAO), a pro-
atherogenic and pro-thrombotic metabolite produced by gut micro-
biota, is independently associated with risk of major adverse cardiac
events in ACS patients [14]. In addition, downstream tryptophan
metabolites of the kynureninepathway are relatedwith an increasing
risk of AMI in patients with suspected sCAD [15]. Therefore, the gut
microbiota affects the composition and content of blood metabolites
in CAD patients [16], thus recognized as potential diagnostic markers
of AMI together with serummetabolites.

Our previous study showed that the typical changes of bacterial
co-abundance group (CAG) in thedifferent phases of coronary artery
disease (CAD)weredominatedbyRoseburia, Klebsiella, Clostridium IV
andRuminococcaceae [17]. Furthermore, the combinationof 24CAGs
and 72 serummetabotypes could effectively distinguish sCAD from
ACS with an AUC of 0.897 [17]. However, this prediction model was
quite complex and required invasive blood sampling and expensive
metabolomic analysis, which heavily limited its broad utilization in
clinic settings. Establishment of a simple and, importantly, non-
invasive prediction model is in great request.

To discover noninvasive, high-efficiency biomarkers of AMI, we
recruited190volunteers including93 sCAD, 49AMIand48NCAsub-
jects. We systemically measured their blood biochemical parame-
ters, 16S rRNA-based gut microbiota and NMR-based fecal/blood/
urinary metabolites. We analyzed and compared the profiles of
blood biochemical parameters, gut microbial community, and
fecal/blood/urinary metabolomics among different groups. Finally,
we obtained a noninvasive AMI biomarker set including four gut
genera (Alistipes, Streptococcus, Lactobacillus, Faecalibacterium),
three fecalmetabolites (formate,methionine, tyrosine) and two uri-
nary compounds (urea, galactose), which can accurately distinguish
AMI from sCAD with an AUC value of 0.932.

Material and methods

Ethics statement

This study was approved by the Ethics Committee of Fuwai
Hospital, Chinese Academy of Medical Sciences and Peking Union
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Medical College (Beijing, China) in accordance with the ethical
standards of the 1964 Declaration of Helsinki and its later amend-
ments (Approval no. 2018–995). Written informed consent was
obtained from all participants.

Participants and study design

This is a single-center cross sectional study. We continuously
recruited 190 participants under 65 years old with complete infor-
mation on medical history, clinical and biochemical parameters
from Fuwai Hospital between December 2016 and February
2017. The diagnosis was made on the basis of symptoms, labora-
tory tests, ECG and coronary angiographic results. 190 participants
including normal coronary artery (NCA group, n = 48), stable coro-
nary artery disease with the coronary artery stenosis � 70% (sCAD
group, n = 93) and acute myocardial infarction (AMI group, n = 49).
The criteria for AMI included: 1) symptoms of chest pain at rest
(>20 min); 2) ischemic electrocardiographic changes: ST-segment
changes and/or T-wave inversions; 3) significant increases in
myocardial enzyme levels. For sCAD, the criteria included: 1) chest
pain symptoms (<10 min) and electrocardiographic changes only
after activity; 2) normal myocardial enzyme level. The coronary
angiography was performed on all participants. Plaques or stenosis
was not found in age- and sex-matched control subjects. All
enrolled participants in the NCA, sCAD and AMI group who were
suspected of CAD underwent coronary angiography (CAG)and
had no history of unstable angina, myocardial infarction, stroke,
cancers, or coronary revascularization. The angiographic data were
confirmed independently by two observers in this study. The
blood, urine and feces samples were collected the first morning
after admission to the hospital. All collected samples were frozen
on dry ice within 30 min, and stored in � 80 �C freezers before fur-
ther analysis.

Nuclear magnetic resonance (NMR) sample collection and preparation

Serum（before the coronary angiography surgery）and urine
（early morning urinary）samples were collected and centrifuged
at 278 K (5 �C) at 3,000g for 10 min, the supernatants of samples
were stored at �80 �C for metabolic profile establishment and sta-
tistical analysis. Faeces samples were stored at �80 �C after homo-
genate with phosphate buffer (0.2 M NaH2PO4/K2HPO4, pH 7.4).
Samples were prepared using the previously reported method [18].

NMR spectra acquisition and processing

All NMR spectra were recorded at 298 K (25 �C) using a Bruker
Avance 500 MHz spectrometer (1H frequency: 500.13 MHz; Bru-
ker, Germany). The analysis of samples was in conformity with
previous study (Supplementary Methods).

NMR multivariate data analysis

Output data were processed with the SIMCA-P + 14.0 software
(Umetrics, Sweden) to elucidate patterns in metabolite concentra-
tion shifts. Statistical analysis was also conducted with SPSS19.0
(IBM; USA) using the two-tailed Student’s t-test. P-value of<0.05
was considered to be statistically significant between two groups.

Human faecal sample collection and DNA extraction

Fresh feces samples were collected from 190 subjects, and then
delivered from Fuwai Hospital to the laboratory in an ice bag using
insulating polystyrene foam containers. DNA was extracted using
an EZNATM stool DNA isolation kit (Omega Bio-Tek, VWR, Herlev,
Denmark). The DNA was then eluted in 50 lL of elution buffer
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and stored at �80 �C for further 16S rRNA-based metagenomic
analysis Additionally, 60 fecal DNA samples were selected ran-
domly (20 samples from each group) for whole-metagenome shot-
gun sequencing.

DNA library construction and sequencing

DNA library was constructed using the TruSeq Nano DNA LT
Library Preparation Kit (FC-121–4001, Illumina, San Diego, CA,
USA). The resulting libraries were sequenced on an Illumina HiSeq
4000 sequencer (Illumina, San Diego, CA, USA). The running mode
of metagenomics was paired-end of 150 bp and the running mode
of 16S rRNA sequencing was paired-end of 300 bp.

Sequencing data analysis

The sequencing data were analyzed using QIIME 2, and the
quality control was conducted using FastQC and MetaPhlAn
v2.662 as previous described (Supplementary Methods).

Statistical analysis

The wilcox test were used to analyze the differential clinical
indexes for continuous and categorical variables, respectively.
Spearman correlations between microbiota, metabolites and clini-
cal indexes were calculated using GraphPad Prism 8.0.1. The visual
presentation of multiple omics correlations was performed using
the pheatmap package in R.

Results

General characteristics of the study cohort

A total of 190 individuals were recruited in this study which
include 93 sCAD and 49 AMI patients, and 48 NCA subjects. Their
general demographics are shown in Supplementary Table S1. To
discover unique biomarkers for AMI, we systematically analyzed
the blood biochemical indices, fecal microbiota, and fecal/blood/
urinary metabolomics of each participant. (Supplementary
Table S2).

We then performed principal component analysis (PCA), inter-
group difference analysis, and correlation analysis with AMI (1 as
true and 0 as false) on 33 general blood biochemical indices to find
key biomarkers for AMI. PCA diagram displayed significant depar-
ture between AMI group and NCA/sCAD groups (Fig. 1a). The serum
levels of CRP, AST, CK and LDH in AMI group were significantly
higher while FT3 was significantly lower than the other two groups
(Fig. 1b, Supplementary Table S2). Among the 33 indices, CRP, CK,
AST, ALT and LDH were positive while FT3, TC, LDL-c, HDL-c were
negative to AMI occurrence (Fig. 1c). These results suggest that
LDH, AST, CRP, CK, ALT, FDP and FT3 may serve as biomarkers to
distinguish AMI from NCA/sCAD. Receiver operating characteristic
(ROC) curve displayed that combination of these 7 blood indices
could distinguish AMI from NCA with an AUC value of 0.923, but
its distinguishing ability for AMI and sCAD was relatively weak
(AUC = 0.822) (Fig. 1d).

Gut microbiota helps to distinguish AMI patients from sCAD patients

The gut microbiota is closely related to the etiology of heart dis-
ease [19], and our previous study showed that the gut microbial
composition differed from healthy controls to diverse coronary
artery disease subtypes [17]. To find efficient biomarkers that can
distinguish AMI from sCAD, we performed 16S rRNA-based
metagenomic analysis on fecal samples. Both alpha diversity



Fig. 1. The difference of general blood biochemical indices among subjects with NCA, sCAD and AMI. (a) Principal component analysis (PCA) of general blood biochemical
indices among three groups. (b) Boxplot of log fold change (AMI/NCA or AMI/sCAD) of 20 blood biochemical indices. (c) Heat map showing the correlation intensity between
blood biochemical indices and AMI occurrence. (d) Seven important features (CRP, ALT, AST, LDH, CK, FDP, FT3) to build the prediction model yielded an area under the curve
(AUC) based on ROC (receiver operating characteristic) analysis. FPR, false-positive rate; TPR, true positive rate. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Shannon and Simpson indices) (Fig. 2a) and beta diversity (princi-
pal coordinate analysis (PCoA)) (Fig. 2b) showed no significant dif-
ference among AMI, sCAD and NCA groups, suggesting that the
overall structure of the gut microbiota was not obviously changed
with the heart disease status. Detailed taxonomic analysis at the
phylum and genus levels displayed that the relative abundance
104
of specific taxa was markedly altered among groups (Fig. 2c and
d). Nine genera, i.e. Alistipes, Rothia, Oceanobacillus, Anaerotruncus,
Selenomonas, Escherichia, Bilophila, unclassified o_Streptophyta
and unclassified f_Planococcaceae, were significantly enriched in
AMI patients, while Butyricicoccus and Prevotella were more abun-
dant in NCA and sCAD groups (Fig. 2e).



Fig. 2. Gut microbiota helps to distinguish AMI patients from sCAD patients. (a) Alpha-diversity was assessed by Shannon index and Simpson index. (b) Beta-diversity was
assessed by principal coordinate analysis (PCoA) based on bray-curtis distance. (c)Phyla and (d) genera profile of the gut microbiota among three groups. (e) Boxplot of log
fold change (AMI/NCA or AMI/sCAD) of 11 genera. (f) Heat map showing the correlation intensity between 11 genera and 7 blood biochemical indices. (g) Fourteen specific
genera to build the prediction model yielded an AUC based on ROC analysis. *p < 0.05.
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We further correlated the relative abundance of individual
genus with the seven key blood biochemical indices to find key
bacteria that are closely associated with AMI occurrence. Strepto-
coccus, Alistipes, Rothia, Granulicatella, Lactobacillus, Actinomyces,
Anaerotruncus, Selenomonas and Olsenella were positive to AMI risk
indicators (CRP, AST, ALT, CK, LDH FDP), while Prevotella and [Pseu-
domonas] were negative to these indicators (Fig. 2f). In addition,
Prevotellawas also positive to FT3, an indicator that was negatively
associated with AMI occurrence (Fig. 2f). We finally selected 14
genera including Streptococcus, Alistipes, Lactobacillus, Clostridium,
Rothia, Oceanobacillus, Butyricicoccus, Selenomonas, Bilophila, [Pseu-
domonas], Anaerotruncus, Granulicatella, Prevotella and Actinomyces
as a gut bacterial biomarker set for AMI. ROC analysis revealed that
this gut bacterial set could distinguish AMI from sCAD and NCA
with AUC values of 0.831 and 0.810, respectively (Fig. 2g).
Although its predictive ability for AMI and NCA was lower than tra-
ditional blood biochemical parameters, this gut bacterial set exhib-
ited a slightly higher predicting potential to distinguish AMI from
sCAD patients (AUC 0.831 vs 0.822).
Specific gut bacterial species effectively distinguish AMI from sCAD

To further identify specific gut bacteria that can accurately pre-
dict AMI, we randomly selected 60 individuals from this cohort (20
Fig. 3. Specific species could effectively distinguish AMI and sCAD patients. (a) PCoA
NCA or AMI/sCAD) of 11 species. (c) Heat map showing the correlation intensity betwee
prediction model yielded an AUC based on ROC analysis. (e) Six specific species to build
***p < 0.001.
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participants from each group) and analyzed their gut microbiota by
whole-metagenome shotgun sequencing. PCoA analysis revealed
that AMI patients were significant separated from sCAD and NCA
participants, although there were overlaps between AMI and NCA
groups (Fig. 3a). The species belonging to Alistipes (A. putredinis,
A. onderdonkii, A. shahii, A. indistinctus and Alistipes sp_AP11), Strep-
tococcus (S. salivarius and S. vestibularis), Ruminococcus (R. torques
and R. bromii) and Lactobacillus (L. salivarius) were remarkably
enriched in AMI patients over sCAD and NCA subjects (Fig. 3b).
Correlation analysis between individual species and blood bio-
chemical biomarkers uncovered that A. indistinctus, R. torques, S.
parasanguinis, Faecalibacterium prausnitzii, R. bromii, S. salivarius,
L. salivarius, S. vestibularis Alistipes sp_AP11 and S. anginosus were
positively associated with at least one key AMI risk indicators
(Fig. 3c). Collectively, we selected 9 bacterial species including A.
shahii, A. indistinctus, Alistipes sp_AP11, S. salivarius, S. vestibularis,
R. torques, R. bromii, L. salivarius and F. prausnitzii as an AMI charac-
teristic gut species set. ROC curve showed this gut species set could
distinguish AMI patients from sCAD/NCA subjects with AUC values
of 0.928 and 0.878, respectively (Fig. 3d).

To validate the predictive ability of this gut species set for AMI,
we distinguished AMI from sCAD/NCA subjects using this species
set for an independent cohort which was enrolled in a different
medical center and included 44 sCAD, 37 MI and 44 NCA partici-
analysis of gut microbiota among three groups. (b) Boxplot of log fold change (AMI/
n 12 species and 7 blood biochemical indices. (d) Nine specific species to build the
the prediction model yielded an AUC based on ROC analysis. *p < 0.05, **p < 0.01,
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pants [17]. In the gut microbiota data of that study, 6 out of the 9
characteristic gut species (A. shahii, A. indistinctus, S. vestibularis, R.
bromii, L. salivarius and F. prausnitzii) were detected. We took these
six species as a predict set to distinguish AMI from sCAD/NCA
which showed an AUC value of 0.720 and 0.624, respectively
(Fig. 3e). Although it showed some potential to distinguish AMI
from sCAD, the accuracy of this gut species set was largely
decreased in this independent cohort, which might be partially
due to the undetected key species (Alistipes sp_AP11, S. salivarius
and R. torques) and indicated that more types of classifiers are
needed to improve the prediction accuracy.

Combination of gut microbiota and fecal metabolites provides a better
separation of AMI from sCAD

The low prediction ability of gut microbiota for AMI may be due
to the weak linkage between bacterial taxonomy and their actual
Fig. 4. Blood metabolomics analysis of AMI and sCAD patients. (a) PCA analysis of bloo
sCAD) of 8 blood metabolites. (c) Heat map showing the correlation intensity betwe
metabolites to build the prediction model yielded an AUC based on ROC analysis. *p < 0
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functions. Several studies have reported that the metabolites of
the gut microbiota are closely related to the occurrence of CAD
[17]. Therefore, we analyzed the fecal metabolomics to find more
effective predictors that could distinguish AMI from sCAD (Supple-
mentary Fig. S1).

As gut bacteria were intrinsically linked with fecal metabolites,
we hypothesized that combination of gut microbiota and fecal
metabolites might enhance the prediction performance. Correla-
tion between individual gut genus and fecal butyrate content
revealed that the most fecal butyrate-related genera were shown
in Supplementary table S3.

Blood metabolomics analysis of AMI and sCAD patients

Our previous research revealed that the blood metabolite mod-
ules detected by HPLC-MS exhibited potential diagnostic value for
differentiating patients with different CAD subtypes [17]. To get
d metabolites among three groups. (b) Boxplot of log fold change (AMI/NCA or AMI/
en 10 blood metabolites and 7 blood biochemical indices. (d) Ten specific blood
.05, **p < 0.01, ***p < 0.001.



Fig. 5. Combination of gut bacterial and fecal/urinary metabolites provides an
effective and non-invasive biomarker set for AMI. A non-invasive biomarker set
consisted of four gut bacterial genera (Alistipes, Streptococcus, Lactobacillus and
Faecalibacterium), three fecal metabolites (formate, methionine and tyrosine) and
two urine metabolites (urea and galactose) was established.
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more convenient biomarkers for AMI, we analyzed the blood meta-
bolomics of each participant by NMR methods. A total of 33 serum
metabolites were detected. Although no significant difference pre-
sented in the overall blood metabolites among three groups
(Fig. 4a), the AMI patients showed significantly decreased level of
glycine, betaine, citrate, alanine, isobutyrate, isoleucine and propy-
lene glycol, whereas the lactate and 3-hydroxybutyrate were sig-
nificantly raised (Fig. 4b). Correlation analysis of serum
metabolites with key blood biochemical biomarkers revealed that
N-Ac, lactate and phenylalanine were positive to AMI risk indica-
tors (CRP, AST, ALT, CK, LDH, FDP) and negative to FT3, while gly-
cine, betaine, citrate, alanine, isobutyrate, isoleucine and
propylene glycol were negative to AMI risk indicators (Fig. 4c).
We selected 10 blood metabolites (glycine, alanine, betaine, citrate,
isobutyrate, isoleucine, propylene glycol, N-Ac, lactate and pheny-
lalanine) as blood AMI biomarker metabolites, which could distin-
guish AMI from sCAD or NCA with an AUC value of 0.966 for both
(Fig. 4d).

Urine metabolomics analysis of AMI and sCAD patients

We also analyzed the NMR-based urine metabolomics for each
participant (Supplementary Fig. S2).

Combination of gut bacterial and fecal/urinary metabolites provides
an effective and non-invasive biomarker set for AMI

Although the present and previous studies demonstrated that
the blood metabolites were effective to distinguish AMI from other
CAD subtypes [17,20], the intrinsic invasiveness largely restricted
its clinical application. Based on our systemic measurements of
gut microbiota and blood/fecal/urinary metabolomics, we set up
a set of non-invasive biomarkers that may effectively and conve-
niently distinguish AMI patients from sCAD patients. This non-
invasive biomarker set contained four gut bacterial genera (Alis-
tipes, Streptococcus, Lactobacillus and Faecalibacterium), three fecal
metabolites (formate, methionine and tyrosine) and two urine
metabolites (urea and galactose). The ROC curve showed this
non-invasive biomarker set distinguished AMI from NCA with an
AUC of 0.766 and distinguished AMI from sCAD with an AUC as
high as 0.932 (Fig. 5), revealing a promising utility for prediction
of AMI from sCAD patients.

Relationship between the gut microbiota and serum/fecal metabolites
in AMI

We subsequently correlated the gut microbiota with fecal/blood
metabolites to further explore the characteristics of microbiota in
patients with AMI. As bacteria act as functional groups (guilds) in
the gut ecosystem [21], we constructed a co-abundance network
based on SparCC correlation coefficients and clustered the gut gen-
era into 7 closely related CAGs (r > 0.3, p < 0.01) (Fig. 6a). The CAG2
was mainly composed of potential butyrate-producers such as
Roseburia, Butyricicoccus and Faecalibacterium, while CAG4 was
solely consisted of Alistipes. Of these, CAG1, CAG4, CAG5 and
CAG7 was increased in AMI patients compared with the sCAD
and NCA subjects, while CAG6 was significantly decreased in AMI
patients compared with sCAD patients.

Given an FDR of 5%, the 7 CAGs were significantly correlated
with 18 fecal metabolites, as analyzed by Spearman correlation
coefficients (Fig. 6b). CAG2, mainly consisted of butyrate-
producers, was positive to fecal butyrate and nicotinate, partially
validating this correlation analysis. CAG4, CAG5 and CAG7,
enriched in AMI group, were positively correlated with multiple
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fecal metabolites, such as malonate, sarcosine, isovalerate,
dimethylamine, phenylacetate, methionine and p-cresol, but nega-
tively correlated with glucose and o-phosphocholine. CAG1 was
negative to methylamine and propionate, CAG3 was negative to
hypoxanthine and xanthine, while CAG6 was positive to xanthine
and acetate (Fig. 6b).

The fecal metabolites were further correlated with the blood
metabolites. Eight blood metabolites, i.e. mannose, tyrosine,
citrate, methionine, threonine, glycerol, N-Ac, propylene glycol,
were closely related with above fecal metabolites (p < 0.05 but
FDR > 0.05). Among these, blood mannose was negatively related
with fecal contents of isovalerate, dimethylamine, phenylacetate,
xanthine, propionate and methylamine, and it was positive to
AMI risk factor CRP. Blood citrate was negative to fecal nicotinate
and it was also negative to AMI risk factors CRP, ALT and AST. Blood
threonine was positive to fecal phosphocholine and glucose and it
was negative to ALT and AST. In contrast, blood N-Ac was negative
to fecal phosphocholine and glucose and positive to ALT and AST.
Blood propylene glycol was positive to fecal hypoxanthine and it
was negative to AMI risk factors AST and FDP but positive to FT3
(Fig. 6b).

Correlation analysis between CAGs and various blood AMI risky
factors revealed that CAG1 was positive to FDP and CRP and nega-
tive to FT3, CAG5 were positive AST, while CAG7 was positive to
FT3 (Fig. 6c). Systemic correlation among CAGs, fecal and blood
metabolites showed that the positive relationship between CAG1
and CRP might be mediated by fecal propionate, methylamine
and blood mannose. The positive correlation between CAG4/5 with
AST might be mediated by fecal phosphocholine, glucose and blood
threonine, N-Ac. CAG6 (Bifidobacterium, Prevotella and
unclassified_o_Lactobacillales) was negative to AMI risky factors
(FDP, CRP, ALT, AST, LDH) and positive to FT3, eventually negative
to AMI occurrence. However, its correlation with AMI-related fac-
tors cannot be linked by fecal and blood metabolites (Fig. 6b and c).



Fig. 6. Relationship between the gut microbiota and serum/fecal metabolites in AMI. (a) The co-abundance network based on SparCC correlation coefficients. (b) The
correlation between CAGs and serum/fecal metabolites. (c) Correlation between CAGs and key blood AMI indices.
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Discussion

The pathophysiology of CAD is atherosclerotic plagues in coro-
nary arteries coupled with or driven by inflammatory reactions
[22], and the lesions of vulnerable atherosclerotic plagues are
responsible for the clinical conversion from sCAD to deadly AMI
[23]. Current clinical examinations are detecting cardiac ischemia
or coronary artery stenosis, and do not directly optimize preventa-
tive strategies to the CAD patients who would suffer an AMI. Fur-
thermore, the ‘‘gold standard” for the diagnosis of CAD is still
rested with coronary angiography, which is invasive and along
with lethal side effects [24]. Therefore, it still remains a challenge
for the accurate prediction and timely intervention of coronary
atherosclerosis patients to prevent the occurrence of AMI. This
comprehensive analysis based on blood biochemical indicators,
gut microbiota, and blood, urinary and fecal metabolomics data
uncovered that the gut microbiota is closely related to the occur-
rence of AMI, which will facilitate clinical diagnosis of AMI. At
the same time, we identified a simple, non-invasive prediction
model that distinguished AMI from sCAD accurately, thus greatly
facilitating patients with AMI and doctors to monitor the risk of
MI recurrence at any time. Although the clinical predictive efficacy
of this model still needs to be verified among a larger population, it
still has great clinical value.

Regular testing of pathological indicators in sCAD patients is
clinically needed to assess the progression and risk of AMI. The
pathological indicators current used are as follows. (1) Myocardial
injury factors, including creatine kinase (CK), lactate dehydroge-
nase (LDH), cardiac troponin I (cTnI) and myoglobin, are signifi-
cantly higher in AMI patients than in normal individuals [25].
Among above factors, LDH and CK levels are closely related with
AMI occurrence with the AUC value more than 0.9 [26]. (2) The
coagulation-related parameters such as FDP and fibrin D-dimer,
which are correlated with a greater risk of MI/CHD (coronary heart
disease) death [27]. (3) Thyroid hormones, T3 and FT3, are impor-
tant to evaluate cardiac function during AMI. The TSH was also
positively related with cardiac ejection fraction [28]. (4) The other
indicators AST and AST/ALT ratio are considerably associated with
the mortality of AMI, among which AST/ALT ratio is a strong and
independent predictor for long-term mortality after AMI [29].
Additionally, a diagnostic model including AST and CK is estab-
lished to differentiate AMI patients from AP patients with an
AUC value of 0.975 [26]. The inflammatory biomarkers CRP is also
powerful to predict MI death [27]. The complex of MI occurrence
and less specificity of above various factors urged us to find more
markers to improve the accuracy of prediction. In present study,
seven factors including CRP, AST, ALT, CK, LDH, FDP and FT3 were
proved to be closely related to the occurrence of AMI. Combination
of them distinguished NCA from AMI with the AUC value of 0.923,
but the effectiveness of distinguishing sCAD from AMI is relatively
weak with AUC value of 0.822. These may be due to the similar
pathological basis of both diseases, causing the reduced specificity
of blood biochemical factors. Therefore, new factors or models are
urgently needed to improve the accuracy of the prediction for AMI.

The serum metabolites can comprehensively reflect the state of
MI, and therefore possess a better ability to predict AMI. Study
revealed that high level of serum dimethylglycine was related with
the mortality in CHD patients, thus improving risk prediction of
CHD [30]. Additionally, serum level of choline was also signifi-
cantly lower in patients with a history of AMI than those without
AMI history [31]. Other studies revealed that lactate level is related
to the development and prognosis of AMI [32]. Although the serum
metabolites can well predict the AMI occurrence or recurrence, it
needs to perform specialized serum metabolomics analysis, which
is expensive and needs long time, as well as difficult to be widely
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used in clinical detection. Our study simplified serum metabolites
related to AMI occurrence and found 10 serum metabolites includ-
ing glycine, betaine, citrate, alanine, isobutyrate, isoleucine, propy-
lene glycol, N-Ac, lactate and phenylalanine accurately
distinguished AMI from NCD and sCAD with AUC value of both
0.966.

The gut microbiota is closely related to the occurrence and pro-
gression of MI. Our previous study showed that the composition of
gut microbiota varies greatly in patients with different stages of
CAD [17]. The changes of relative abundance of genera Treponema
2, Rikenellaceae RC9 group, Prevotellaceae UCG-003, and Bacteroides
may contribute to the pathogenesis of AMI [33]. In this study,
Streptococcus and Alistipes were significantly increased in patients
with AMI. Existing study showed that Streptococcus oralis caused
infective endocarditis and aortic valves, then developed into AMI
manifested by chest pain and dyspnoea with cardiovascular col-
lapse [34]. Meanwhile, the genus of Alistipes can produce
trimethylamine-N-oxide (TMAO), thus promote the development
of MI [35]. Additionally, bacteria such as Butyricicoccus [36], Prevo-
tella [37] were also involved in the development of MI. In our
study, combination of 14 genera including Streptococcus, Alistipes,
Butyricicoccus, Prevotella et al. can distinguish AMI from sCAD with
an AUC of 0.831. More interestingly, specific species of Streptococ-
cus and Alistipes possessed the ability to distinguish AMI from sCAD
with the AUC value up to 0.963. Further verification for this predic-
tion model in another publicly available population data showed
that it distinguished AMI from sCAD with AUC reached to 0.738.
Although this value is not as high as 0.963 in present study, it is
higher than their original AUC value of 0.695 calculated by 72
blood metabolites and 24 CAGs. Therefore, our specific species still
possess a strong ability to distinguish AMI from sCAD in different
populations, and have high predictive values for AMI recurrence.

Since the bacterial metabolites are more closely related to their
function. We therefore further examined the relationship between
fecal metabolome and AMI occurrence, and then correlated fecal
metabolites with gut microbiota. We found methionine signifi-
cantly increased in AMI patients, which was in accordance with
existing study shown that the methionine metabolite homocys-
teine (Hcy) linked to atherothrombosis [38] and may cause the
development of MI. Additionally, phenylalanine and tyrosine levels
were also significantly correlated with increased risk of CAD [39].
In present study, 11 fecal metabolites set better distinguished
AMI from sCAD with AUC value up to 0.831. Combination fecal
metabolites and gut microbiota enhanced the predictive ability
with the AUC value reached to 0.961. Thus, gut microbiota and
fecal metabolites are closely related to the occurrence of AMI and
can be used as predictive indicators.

Another important finding of our study is that the urine meta-
bolome is extremely associated with AMI occurrence. Nine urine
metabolites accurately distinguished AMI from sCAD with AUC
value up to 0.935. Even just urea alone can accurately distinguish
AMI from sCAD. Previous studies showed that the prediction model
consisting of age, CRP, eGFR, myoglobin, and urea can predict car-
diac death with an AUC of 77.5%[29]. Moreover, urea can be quan-
tified accurately and quickly using a general urea kit in routine
tests, so it is of great clinical value. Of course, this finding still
needs to be supported by more and larger clinical research data.

AMI usually requires lifelong medication and lifelong monitor-
ing. Current clinical tests need patients to provide their blood sam-
ples, which are not suitable for frequent and long-termmonitoring.
To address this problem, the non-invasive, convenient and accu-
rate monitoring indicators are clinically needed. In this study, four
bacterial genera, two urine metabolites, and three fecal metabo-
lites were used to establish model to predict AMI recurrence. The
predictive model confers each parameter a weight coefficient
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based on training data and gives a prediction value for each person.
A cut-off value (i.e. 0.5) can be set to determine whether a subject
is in dangerous AMI prophase. Although it does not require all
parameters to be detected in a special person, we recommend,
based on our experience, to detect least 6 of them to guarantee
the accuracy of the prediction. For more convenience, feces are also
enough to predict AMI based on gut microbiota and/or fecal
metabolites. This model is non-invasive, easy to collect and test,
and suitable to design as kits to monitor the recurrence of AMI in
a convenient manner. It is quite suitable for regular monitor of
AMI, especially for patients having difficulties to visit hospital/doc-
tor frequently. Although its efficacy needs to be confirmed by more
clinical trials, a new idea is proposed for predicting the recurrence
of AMI through non-invasive testing methods such as gut micro-
biota, urine and fecal metabolites to facilitate the daily monitoring
of AMI.

Conclusion

In conclusion, our study and further analysis showed that blood
metabolites work better for the early warning of AMI, which con-
sistent with the results of our previous research. However, detec-
tion for blood metabolites is an invasive manner. To address this
problem and gain high accurate of prediction for AMI, we found
combinations of bacterial genera, fecal metabolites and urine
metabolites are not only a good prediction model for early warning
of AMI recurrence, but also a method with convenient detection
merit. Furthermore, we found the specific combinations of species
of gut microbiota that are equally good for early warning of AMI.
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