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Pose estimation and motion 
analysis of ski jumpers based 
on ECA‑HRNet
Wenxia Bao 1, Tao Niu 1, Nian Wang 1* & Xianjun Yang 2*

Ski jumping is a high-speed sport, which makes it difficult to accurately analyze the technical motion 
in a subjective way. To solve this problem, we propose an image-based pose estimation method for 
analyzing the motion of ski jumpers. First, an image keypoint dataset of ski jumpers (KDSJ) was 
constructed. Next, in order to improve the precision of ski jumper pose estimation, an efficient 
channel attention (ECA) module was embedded in the residual structures of a high-resolution network 
(HRNet) to fuse more useful feature information. At the training stage, we used a transfer learning 
method which involved pre-training on the Common Objection in Context (COCO2017) to obtain 
feature knowledge from the COCO2017 for using in the task of ski jumper pose estimation. Finally, the 
detected keypoints of the ski jumpers were used to analyze the motion characteristics, using hip and 
knee angles over time (frames) as an example. Our experimental results showed that the proposed 
ECA-HRNet achieved the average precision of 73.4% on the COCO2017 test-dev set and the average 
precision of 86.4% on the KDSJ test set using the ground truth bounding boxes. These research results 
can provide guidance for auxiliary training and motion evaluation of ski jumpers.

Ski jumping is a Winter Olympic sport in which it is challenging to establish effective measurement and kinematic 
analysis, due to the complex outdoor environments, high speeds, wide range of motion, and safety1,2 and health3 
considerations. The traditional manual image annotation method, in which kinematic analysis software is used 
to annotate each keypoint of an athlete in continuous images and the annotated data are then used to calculate 
kinematic elements, is time-consuming and labor-intensive. However, it can be used to collect kinematic data 
without hindering the motion of the athlete when participating in regular training or competition, and has 
value as a method of motion analysis. Current methods of motion analysis primarily rely on wearable devices4,5 
(for example based on inertial measurement units). This method provides accurate data, but the devices are 
cumbersome to wear and can affect an athlete’s performance to some extent. In recent years, computer vision 
techniques have evolved rapidly, and machine learning has been used to train a human pose estimation model 
to detect human keypoints from images. This approach can replace the manual annotation process, and can 
significantly reduce the data processing time needed for technicians to manually annotate athletes and then 
analyze the motion (also known as manual digitization6). Hence, the task of ski jumper pose estimation using 
computer vision techniques has strong research significance and application value.

Currently, two types of deep learning technique are widely used in vision-based human pose estimation. The 
first category is top-down methods, in which object detection of all human bodies in the image is carried out, 
and each human body is then cropped into single images. Single-person pose estimation is then applied to each 
cropped image. Classical models include Hourglass7, CPN8, SimpleBaseline9, HRNet10, and others. In particular, 
there are two main methods for human object detection for images: two-stage (i.e., region proposal) methods 
and one-stage (i.e., regression) methods. In a two-stage method, a region is first generated called the region 
proposal (RP) box, and is fed into the network to extract the features. Then, the category of each proposal box is 
predicted and optimized. The most common models include R-CNN11, Fast R-CNN12, and Faster R-CNN13. The 
one-stage approach is an end-to-end method that simultaneously predicts the class and location of the object 
after extracting the features in the network, without the need for a suggested region. Commonly used models are 
SSD14 and YOLO15. Of these two methods, the two-stage approach has higher accuracy, while one-stage models 
have significantly higher detection speed and efficiency.

The second category of human pose estimation methods are based on bottom-up approaches. These meth-
ods first detect keypoints for all of the people in an image and then cluster them to different individuals by 
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post-processing, thus eliminating the need for object detection networks, such as OpenPose16, HigherHRNet17, 
etc. A comparison of the two human pose estimation methods shows that the first type is usually more accurate, 
whereas the second gives speeds that are closer to real time.

In recent years, human pose estimation based on computer vision technology has been gradually applied 
to sports analysis and performance prediction. Fani et al.18 proposed an improved hourglass network for pose 
estimation of hockey players, and demonstrated the effectiveness of their method for automatic action recogni-
tion in the hockey field. Huang19 used OpenPose15 as a human keypoint detection model to perform human pose 
recognition on two-dimensional (2D) image signals. The detected keypoint data were converted to clinical test 
indices to correct sports pose with the aim of reducing athletic injuries and the difficulty of traditional manual 
angle measurement at the same time. Fei Lei et al.20 enhanced the precision of human keypoint detection on a 
public dataset by improving a stacked hourglass network, and applied it to pose estimation in complex environ-
ments (images of single divers). Erwin et al.21 employed a residual convolutional neural network to estimate the 
continuous 2D upper-body pose of a table tennis player. A recurrent long short-term memory (LSTM) network 
was then used to learn the player’s serve motion and to predict the landing point of the table tennis ball.

The human pose estimation methods described above have achieved some significant research results when 
applied to sports. However, the high-speed motion means that images of ski jumping experience a motion blur-
ring phenomenon, which makes estimating the athletes’ poses more challenging. To date, very few studies have 
applied this technique to the field of ski jumping or other winter sports (such as freestyle skiing, etc.) to analyze 
the motion of skiers. Nam et al.22 proposed a hybrid framework that combines HigherHRNet17 in human pose 
estimation method with model-based force calculation to predict ski jumping forces from recorded motion vid-
eos. Ludwig et al.23 used Mask R-CNN24 in human pose estimation method for pose estimation and skis detection 
to evaluate the flight parameters for ski jumpers. Within the angle threshold of 5 degrees, 98.0% of the flight 
parameters could be correctly identified. Elfmark25 used a differential GNSS and a pose estimation system based 
on EfficientPose26 to measure kinematic and kinetic parameters from the in-run phase to the landing phase for 16 
national ski jumpers, and assessed the consistency of the two methods. Furthermore, the study demonstrated the 
feasibility of applying both methods to analyze the kinematic and kinetic characteristics of ski jumping practice.

To achieve a more accurate motion analysis, we employ a top-down method of human pose estimation in 
this study to estimate the keypoints of the ski jumpers. Since YOLOv327 represented an improvement on YOLO 
and YOLOv228, with greatly improved detection precision, it has been applied to many engineering applications. 
Hence, YOLOv3 was selected for the object detection network in this study. HRNet, which was proposed by 
Sun et al.10, is a top-down method with two significant advantages over other human pose estimation methods: 
the use of parallel connection and repetitive multi-scale feature information fusion. These two advantages are 
important for ski jumping images with motion blur. We therefore improve HRNet for ski jumper pose estima-
tion. The main contributions of this work are as follows:

	 i.	 Using video data obtained by high-speed cameras, we constructed a dataset of keypoint images of ski 
jumpers called KDSJ, which contained images representing the five phases of ski jumping (in-run, take-
off, early flight, stable flight, and landing). The keypoints of the ski jumpers in these images were labeled 
under the guidance of an experienced technician, meaning that this dataset could be effectively used to 
test the performance of ski jumper pose estimation methods.

	 ii.	 A ski jumper keypoint detection method called ECA-HRNet was proposed. An ECA29 module was embed-
ded in the multiscale feature extraction process of HRNet to break the independence between the key-
points of the athlete. It can link the connectivity between athlete keypoints in blurred images through the 
interaction of local cross-channel information, thus improving the precision of athlete keypoint detection.

	 iii.	 A transfer learning strategy was used in which feature knowledge from the public dataset COCO2017 was 
transferred to the task of ski jumping. The ECA-HRNet model was then fine-tuned using KDSJ to obtain 
the model with the best precision. At the same time, transfer learning improved the generalization ability 
of the network, speeding up the training efficiency and preventing overfitting.

	 iv.	 By detecting the keypoint data of ski jumpers from continuous images, we calculated trend graphs for the 
hip and knee angles over time (frames) and made training recommendations.

Data acquisition and processing
Commissioning of the ski jumping equipment took place in February, 2021, and the test was carried out in 
February, 2021. The collection site was the K50 ski jumping site of Jilin Beidahu Ski Resort. A panoramic view 
of the race track is shown in Fig. 1. The acquisition equipment included a Germany Simi Motion high-speed 
camera (with sampling frequency 200 Hz, fixed-focus shooting, and image resolution of 1200 × 800 pixels), and a 
Fastcam Mini WX100 high-speed camera (a small, lightweight, anti-vibration high-speed camera with a sampling 
frequency of 500 Hz, fixed-focus shooting, and image resolution of 2000 × 2000 pixels).

In Fig. 2b, the actual length of the calibration bar from top to bottom is 1 m. We used the Labelme tool to 
label the top and bottom of the bar. To reduce the error, the labeling tool was used to label the two endpoints 
by partially enlarging them, and then the distance on the chart of the calibration bar could be calculated using 
the law of right triangles.

Video data were collected on five professional ski jumpers, including their name (referred to here as S1–S5), 
gender, years of experience, sporting level, height, weight and ski length. These five athletes performed a total of 
ten ski jumps (with two, three, three, one and one jumps for skiers S1 to S5, respectively), and the results were 
recorded. The motion video data on the ski jumpers were captured by the calibrated high-speed camera, and 
were converted into RGB image format for storage through Simi Motion software for frame-by-frame extraction. 
Examples of these images are shown in Fig. 3. The collected video data consisted of five phases of ski jumping 
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(the in-run, take-off, early flight, stable flight and landing phases). We then constructed the keypoint dataset, 
called KDSJ. The data on athletes S1 to S3 in KDSJ were used to construct the training set, the data on athlete S4 
were used to create the validation set, the data on athlete S5 were used to create the test set. There were 607, 315 
and 200 images in the training set, validation set and test set, respectively. The visible keypoints and bounding 
boxes of the ski jumpers in the images were annotated using the Labelme (https://​github.​com/​wkent​aro/​label​
me, version: 4.5.13) under the guidance of experienced technicians. The original image and the locally labeled 
keypoints of the ski jumpers are shown in Fig. 2a. The important keypoints were the shoulder, elbow, wrist, hip, 
knee and ankle on both the left and right sides6. The labeled data format was made into the file format of the MS 
COCO 2017 dataset30 with the json format.

Figure 1.   Panoramic view of the race track.

Figure 2.   (a) Original image and local labeled keypoints of ski jumpers; (b) calibration bar.

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
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Method
HRNet architecture.  HRNet10 is a classical top-down method for human pose estimation that can main-
tain a high-resolution representation. The first stage contains high-resolution subnetworks, and the later stages 
gradually add subnetworks from high-to-low resolution. The multi-resolution subnetworks are connected in 
parallel. The parallel high-to-low resolution representations are repeatedly fused at multi-scales to obtain more 
high-resolution representations, so that the keypoint heatmap is predicted more accurately and is spatially more 
precise. The architecture of the original HRNet is shown in Fig. 4.

Compared with HRNet, the downsampling and upsampling operations used by methods such as Hourglass7, 
CPN8 and SimpleBaseline9 in the process of multi-scale feature extraction result in some feature information 
being lost. HRNet has two significant advantages. Firstly, the parallel connection method is used instead of the 

Figure 3.   Examples of acquired images.

Figure 4.   Architecture of the original HRNet10.
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serial method to connect subnetworks from high-to-low resolution, which can maintain high resolution rather 
than recovering high resolution, and hence can reduce the loss of feature information and predict more accurate 
heatmaps. Secondly, by repeatedly performing multi-scale fusion, the high-resolution representation is enhanced 
by using the low-resolution representation of the same depth, to obtain a rich, high-resolution representation.

The high-speed motion of ski jumping causes motion blur, and it is therefore essential for HRNet to main-
tain high resolution for the accurate prediction of keypoints in images. In order to capture local cross-channel 
information and interact with local feature information of different channels, we propose a method called ECA-
HRNet on the basis of HRNet for keypoint detection of ski jumpers.

Architecture of ECA‑HRNet.  The proposed ECA-HRNet is based on HRNet-W32, a lightweight back-
bone network in HRNet. The term “W32” represents the feature dimensions of the branch with the highest 
feature map resolution among the parallel branches. The feature dimensions of the other parallel branches are 
64, 128 and 256, in that order. The architecture of ECA-HRNet is shown in Fig. 5.

ECA-HRNet starts with a stem consisting of two 3 × 3 convolutions with a step size of 1, in which the resolu-
tion of the feature map is reduced to 1/4 of the input image resolution. As shown in Fig. 5, the backbone network 
consists of four main stages. The first contains four residual units, each consisting of an ECA-Bottleneck (in which 
ECA module is embedded into a bottleneck) with a width of 64 and a 3 × 3 convolution to reduce the width of the 
feature map. The second (third, fourth) stage contains one (four, three) multi-resolution modules. Each multi-
resolution module has two parts, consisting of parallel multi-resolution convolutions and multi-resolution fusion, 
as follows: (i) branches of different resolutions are connected in parallel, where each branch contains four residual 
units and each unit consists of an ECA-BasicBlock (where the ECA module is embedded into a BasicBlock); (ii) 
branches with different resolutions perform feature fusion to complete the exchange of information. Specifically, 
the transition from low-to-high resolution is achieved by bilinear upsampling, and from high to low by one or 
more cross-step convolutions (3 × 3 convolution layers with a step size of 2).

At the end of each stage (except the fourth), a 3 × 3 convolutional layer with a step size of 2 is applied to reduce 
the resolution, as the beginning of the new branch. Overall, the resolution is reduced by half (1, 1/2, 1/4, and 
1/8) in each of the four branches from top to bottom, and the number of channels is doubled accordingly (32, 
64, 128, and 256). Finally, a heatmap of 17 keypoints is obtained by a 1 × 1 convolution layer with a step size of 1.

Efficient channel attention.  Channel attention has brought significant improvements in the performance 
of deep convolutional neural networks31. Most of the existing methods are devoted to achieving more com-
plex attention for better performance, which also increases the complexity of the model. To achieve a balance 
between performance and complexity, efficient channel attention (ECA)29 performs local cross-channel interac-
tion without dimensionality reduction, which significantly reduces the model complexity while maintaining 
performance.

The structure of the ECA module is shown in Fig. 6a. Since the size of the feature map input is C ×H ×W , 
it becomes C × 1× 1 after a global average pooling (GAP) layer. Because HRNet is a deep network and has 
many intermediate layers, which determine the feature extraction and fusion capability of the HRNet10, small 
convolution kernels can extract more features. Moreover, in pose estimation, the connectivity of human joints is 
related to the front and rear joints, but not to other joints. Therefore, the convolution kernel K of one-dimensional 
convolution is set to 3. The Sigmoid function are used to generate the corresponding channel weights, which 
represent the importance of each channel feature, the input features are weighted by multiplication to complete 
the recalibration of the features.

The deep convolutional neural network embedded with the ECA module is called ECA-Net, as shown in 
Fig. 6b,c. The output of the ECA module can be fed directly into the subsequent network layers. Bottleneck and 
BasicBlock are the classical convolutional units commonly used in ResNet. The ECA module embedded into the 
Bottleneck convolution unit is called ECA-Bottleneck, as shown in Fig. 6c, while the ECA module embedded 

Figure 5.   Architecture of ECA-HRNet.
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into the BasicBlock convolution unit is called ECA-BasicBlock, as shown in Fig. 6b. Due to the simplicity of the 
ECA module, it can be directly embedded into existing network frameworks29.

Training strategies.  To further improve the precision of keypoint detection for ski jumpers, data augmen-
tation and transfer learning were used in the training process. ECA-HRNet is a heavyweight network, and the 
convolutional layer of the feature extraction module needs to be fully trained to extract key features from images, 
which requires a large amount of data support. Hence, data enhancement with random rotation [− 45°,45°], 
random flipping, random scaling [0.65,1.35] and half-body data augmentation was used. When training a large 
network, the results obtained from feature knowledge transfer are better than those from randomly initialized 
network parameters. This method alleviates problems such as overfitting caused by insufficient data, speeds up 
the training, and improves the generalization ability of the model at the same time.

At the training stage, MS COCO2017 was used as the source domain, and KDSJ as the target domain. First, 
ECA-HRNet was pre-trained on MS COCO2017, and the network parameters from the public dataset were then 
used to initialize ECA-HRNet to realize the transfer of feature knowledge. Finally, the hyperparameters of the 
network were dynamically fine-tuned in the target domain dataset to obtain a better keypoint detection model. 
The transfer learning strategy is illustrated in Fig. 7.

Method framework.  Figure  8 shows a schematic of the framework for the ski jumper pose estimation 
method. The main steps in the framework are image preprocessing, training and testing of the ECA-HRNet, and 
motion analysis. We used a high-speed camera to capture videos in a complex environment, and converted them 
into frame images. We then constructed a keypoint dataset of ski jumpers named KDSJ. ECA-HRNet was trained 
using a transfer learning method, and the final model obtained after fine-tuning was used as our ski jumper key-
point detection model. The specific steps in the ski jumper estimation method are as follows:

Figure 6.   Structure of the ECA module and improved basic residual blocks: (a) ECA module; (b) ECA-
BasicBlock; (c) ECA-Bottleneck.
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1.	 Videos of the ski jumpers’ training process were captured by high-speed cameras, and then converted into 
frames which were used to construct a keypoint dataset of ski jumpers, called KDSJ.

2.	 The images in KDSJ were divided into training set, validation set, test set in a 6:3:2 ratio.
3.	 Images were annotated using Labelme, and annotation information such as the bounding boxes and visible 

keypoints of the ski jumpers were saved as JSON files.
4.	 ECA-HRNet was constructed, and pre-trained on MS COCO2017 to acquire the initial parameters for feature 

knowledge transfer.
5.	 The ECA-HRNet parameters were fine-tuned on KDSJ to obtain the best model in terms of precision.
6.	 The application process of the ECA-HRNet was as follows: each frame of the live video was acquired in real 

time; the position of the athlete in each continuous frame image was detected using the YOLOv3 object 
detection method; the keypoints of the athletes were predicted using the trained ECA-HRNet model to 
achieve batch processing of the keypoint prediction; and finally, the keypoint data were saved.

7.	 The kinematic parameters of the athletes (using joint angles over time as an example) were analyzed using 
the keypoint data from the continuous frames.

Statement.  Written informed consent was obtained and agreed to by all participants before the manuscript 
was submitted. All participants agree to publish identifying information/images in an online open access pub-
lication.

Experimental results and analysis
Experimental environment and parameters.  The configuration of the hardware and software environ-
ments used in our experiments is shown in Table 1.

The learning rate of ECA-HRNet was adjusted during the training process by setting it to 1 × 10–4 and 1 × 10–5 
at the 170th and 200th epochs, respectively. The mean square error (MSE) loss function was used, as shown in 
Eq. (1). The other training parameters are shown in Table 2.

Figure 7.   Transfer learning strategy.

Figure 8.   Schematic framework of the ski jumper pose estimation.
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where N is the number of ground truth keypoints for each person instance, xi
′ is the heatmap of predicted key-

points, and xi is the ground truth heatmap.

Evaluation metric.  In the human keypoint detection task, the standard evaluation metric was based on 
object keypoint similarity (OKS), defined as shown in Eq. (2):

where di is the Euclidean distance between the detected keypoint and the corresponding ground truth, s is the 
object scale; vi is the visibility flag of the ground truth (where ’0’ means the keypoint is not visible and not labeled, 
’1’ means the keypoint is labeled but not visible, and ’2’ means the keypoint is both labeled and visible), and ki 
is a per-keypoint constant that controls the falloff.

Standard evaluation metrics used in the keypoint detection experiment included the average precision (AP) 
and average recall (AR) scores. AP was calculated as the mean score for 10 positions ( OKS = 0.50,0.55, …, 
0.90,0.95), and AR was also defined as the mean score for 10 positions ( OKS = 0.50,0.55, …, 0.90,0.95).

Validation results.  The AP and AR curves for HRNet and ECA-HRNet, calculated for the validation set of 
KDSJ for training over 210 epochs with both transfer learning strategies, are shown in Fig. 9a,b respectively. It 
can be seen from the figures that the AP and AR curves gradually tend towards smoothness. Both the AP and 
AR curves of ECA-HRNet were higher than those of HRNet. Hence, the ECA-HRNet model after 210 epochs 
was used as our keypoint detection model for ski jumpers.

Comparison of experimental results.  Comparison of experimental results on public data-
set.  COCO201730 contains more than 200 K images and 250 K person instances and is annotated with 17 key-
points. The training set used was the COCO train2017 dataset, which contained 57 K images and 150 K person 
instances. The validation set used was the val2017 dataset, which consisted of 5 K images.

To verify the effectiveness of the proposed ECA-HRNet method, we compared it with several mainstream pose 
estimation methods, such as the 8-stage Hourglass7, CPN8, SimpleBaseline9, and HRNet10. These mainstream 
methods were trained on the COCO2017 dataset, and the lightweight network framework HRNet-W32 was used 
in the experiments. The hyperparameter settings, input size (256 × 192), learning rate strategy and the number 
of training epochs were the same as those in10. Under the hardware and software conditions given in Table 1 
and the parameter settings listed in Table 2, we trained the model on a single 8G NVIDIA GeForce RTX 2070Ti 
GPU for about 5 days. We used the same Faster RCNN as in10, and some of the experimental results cited in10.

(1)MSE =
1

N

N∑

1

(xi − xi
′

)2

(2)OKS =

∑
i exp(−d2i /2s

2k2i )δ(vi > 0)∑
i δ(vi > 0)

Table 1.   Configuration of the hardware and software environments.

Platform Configuration

Operating system Ubuntu18.04 LTS 64-bits

CPU Intel(R) Core (TM) i7-9700

GPU NVIDIA GeForce RTX 2070Ti

GPU accelerator CUDA 10.2 and cuDNN 7.6.5

Deep learning frame PyTorch1.2

Compilers PyCharm and Anaconda

Scripting language Python 3.6

Table 2.   Configuration of the training parameters.

Parameter Value

Input size 256× 192× 3

Optimization algorithm Adam

Batch size 32

Training epochs 210

Base learning rate 0.001

Momentum 0.9

Weight decay 0.0001
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Results on COCO2017 validation set.  Table 3 shows a comparison of the results with those of other human 
pose estimation methods on the COCO2017 validation set. The proposed ECA-HRNet, which outperformed the 
other classical human pose estimation methods with the same input size, was trained from scratch and achieved 
an AP score of 74.4%. Several points should be noted:

	 i.	 Compared to the HRNet in10, the HRNet we trained achieved the same AP and the same number of 
parameters (Params), but with a 0.2% improvement in AR and a slight increase in GFLOPs (only 0.01 
GFLOPs).

	 ii.	 Compared with HRNet trained by us, the proposed ECA-HRNet showed a slight increase in the number 
of parameters and GFLOPs (3.24 × 10–4 M and 3.0 × 10–5 GFLOPs, respectively). Most importantly, the 
AP and AR of the proposed ECA-HRNet showed large improvements of 1.0% and 0.7%, respectively.

Figure 10 shows a visualization of the detection results for the proposed ECA-HRNet on the COCO2017 
validation set.

Results on COCO2017 test‑dev set.  Table 4 shows a comparison of the results with those of several mainstream 
human pose estimation methods on the COCO2017 test-dev set. The input size used in the experiment of the 
method proposed in this study is 256 × 192, which is different from the input size 384 × 288 in10. Because the lat-
ter requires larger training resources and the model obtained after training is larger, the calculation speed will 
be greatly reduced. The proposed ECA-HRNet, was trained from scratch and achieved an AP score of 73.4%, 
which outperformed the mainstream human pose estimation methods. In order to maintain the fairness of com-
parison, the test results given by HRNet are also trained from scratch. The proposed ECA-HRNet received 0.6 
improvements compared with HRNet in AP and AR, respectively.

Comparison of experimental results on the ski jumping dataset.  To further validate the effectiveness of the pro-
posed ECA-HRNet for ski jumper pose estimation, the experimental results were compared with those of the 
mainstream human pose estimation methods, i.e., the 8-stage Hourglass7, CPN8, SimpleBaseline9, and HRNet10, 
under transfer learning. The results were based on the ground truth bounding box and the same input size 
(256 × 192).

Figure 9.   AP and AR curves for HRNet and ECA-HRNet.

Table 3.   Comparison on the COCO2017 validation set (Pretra = backbone pretrained on the ImageNet 
classification task; OHKM = online hard keypoint mining8).

Method Backbone Pretra Params GFLOPs AP AR

8-stage Hourglass7 8-stage Hourglass N 25.1 M 14.3 66.9 –

CPN + OHKM8 ResNet-50 Y 27.0 M 6.20 69.4 –

SimpleBaseline9 ResNet-50 Y 34.0 M 8.90 70.4 76.3

SimpleBaseline9 ResNet-101 Y 53.0 M 12.4 71.4 77.1

SimpleBaseline9 ResNet-152 Y 68.6 M 15.7 72.0 77.8

HRNet10 HRNet-W32 N 28.5 M 7.10 73.4 78.9

HRNet (our implement) HRNet-W32 N 28.5 M 7.11 73.4 79.1

ECA-HRNet (our) HRNet-W32 + ECA N 28.5 M 7.11 74.4 79.8
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Results on KDSJ validation set.  The proposed ECA-HRNet achieved an AP score of 87.1%, which was better 
than the other classical human pose estimation methods for the same input size as shown in Table 5. Figure 11 
shows the results from the proposed ECA-HRNet on the KDSJ validation set. We note the following:

	 i.	 Compared to Hourglass, the AP score of the proposed ECA-HRNet showed an improvement of 39.3%.
	 ii.	 Compared to CPN, the proposed ECA-HRNet obtained a significant improvement of about 16 points.
	 iii.	 The proposed ECA-HRNet achieved an increase in the AP score of 5.7% compared to the SimpleBaseline 

model with the ResNet-50 backbone, and as shown in Table 5, the difference between these two methods 
in terms of the number of parameters and GFLOPs was very small. Compared to the SimpleBaseline with 

Figure 10.   Results from the proposed ECA-HRNet model on the COCO2017 validation set.

Table 4.   Comparisons on the COCO test-dev set. #Params and FLOPs are calculated for the pose estimation 
network, and those for human detection are not included.

Method Backbone Input size Params GFLOPs AP AR

Mask-RCNN24 ResNet-50-FPN – – – 63.1 –

CPN8 ResNet-Inception 384 × 288 – – 72.1 78.5

RMPE32 PyraNet 320 × 256 28.1 M 26.7 72.3 –

HRNet10 HRNet-W32 256 × 192 28.5 M 7.10 72.8 78.3

ECA-HRNet (our) HRNet-W32 + ECA 256 × 192 28.5 M 7.11 73.4 78.9

Table 5.   Comparison of results on KDSJ validation set (Pretra = backbone pretrained on the COCO2017 
keypoint task; OHKM = online hard keypoint mining8).

Method Backbone Pretra AP AR

8-stage Hourglass 8-stage Hourglass Y 47.8 –

CPN + OHKM ResNet-50 Y 71.0 –

Mask-RCNN ResNet-50-FPN Y 78.6 –

SimpleBaseline ResNet-50 Y 81.4 85.5

SimpleBaseline ResNet-101 Y 82.4 86.5

SimpleBaseline ResNet-152 Y 84.1 87.3

HRNet HRNet-W32 Y 84.6 88.3

ECA-HRNet (our) HRNet-W32 + ECA Y 87.1 90.7
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the ResNet-152 backbone, the AP score was increased by 3.0%, and as shown in Table 5, the numbers of 
parameters and GFLOPs were half as large.

	 iv.	 Compared to HRNet, the AP score of the proposed ECA-HRNet was improved by 2.5%, with almost no 
increase in the number of parameters and GFLOPs.

Results on KDSJ test set.  Table 6 shows a comparison of the results with those of several mainstream human 
pose estimation methods on the KDSJ test set. The proposed ECA-HRNet achieved an AP score of 86.4%, which 
was better than the other classical human pose estimation methods for the same input size. Compared to the 
HRNet with the same input size, the proposed ECA-HRNet received 2.8 and 2.4 improvements in AP and AR, 
respectively.

Due to the parallel connections between networks and the fusion of repetitive multi-scale feature informa-
tion, HRNet and the proposed ECA-HRNet methods can maintain high resolution10. From Table 6, compared 
to other mainstream methods, both of these two methods achieved higher accuracy for ski jumpers in blurred 
images compared to other mainstream methods. In addition, the proposed ECA-HRNet, which fuses more 
cross-channel feature information, had higher AP and AR scores. Hence, the proposed ECA-HRNet model was 
better than HRNet and was more suitable for keypoint detection of ski jumpers.

Figure 11.   Visualization of results on the KDSJ validation set.
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Ski jumping motion analysis
Most current research has focused on the take-off33–35and early flight phases36–38, as these are considered the most 
critical of the five phases in terms of their impact on performance35,39. In this study, the kinematic characteristics 
of the take-off and early flight phases for the athlete S4 (capture frequency 500 Hz, resolution 2000 × 2000 pixels) 
were analyzed using the keypoint information detected by the proposed ECA-HRNet. When using 2D images, 
the evaluation of the ski jumping motion mainly occurs in the sagittal plane4, which can be analyzed on the 
athlete’s one side based on the position of the high-speed camera.

When assessing ski jumping technique, the hip and knee joints play an important role in generating power 
in the two most critical phases35. A graph of variation in joint angle with the number of frames was calculated 
from the keypoint data detected by the proposed ECA-HRNet. In this graph, the number of consecutive frames 
is used as the horizontal axis (X-axis) and the joint angle as the vertical axis (Y-axis). The calculated angle was 
smoothed with a fourth-order Butterworth low-pass filter with a cutoff frequency of 3 Hz25,40. The hip angle ( θ1 in 
Fig. 12) is defined as the anterior angle between the trunk and the thigh, whereas the knee angle ( θ2 in Fig. 12) is 
defined as the angle between the thigh and the calf, as shown in Fig. 12. The angle vector through the keypoints 
is calculated as shown in Eq. (3):

where i denotes the hip or knee keypoint. The three keypoints are denoted as A(x1, y1) , B(x2, y2) and C(x3, y3) , 
respectively. Keypoint A is the hip or knee, θ1 is the angle made by the shoulder, hip and knee. θ2 is the angle 
made by the hip, knee and ankle.

The trends calculated for the hip and knee angles of athlete S4 versus the number of frames are shown in 
Fig. 13.

From the overall changes in joint angles shown in Fig. 13, athlete S4 maintains the in-run phase pose before 
take-off, so θ1 and θ2 remain almost constant, with both being similar to the horizontal line. After entering the 
take-off phase, the body pose is rapidly extended. Thus, both angles tend to rise, with the hip angle starting 
to rise earlier than the knee angle. The hip and knee angles continue to increase during the early flight phase. 

(3)θi = arccos
AB · AC

|AB||AC|

Table 6.   Comparison of results on KDSJ test set (Pretra = backbone pretrained on the COCO2017 keypoint 
task; OHKM = online hard keypoint mining8).

Method Backbone Pretra AP AR

8-stage Hourglass 8-stage Hourglass Y 46.9 –

CPN + OHKM ResNet-50 Y 70.1 –

Mask-RCNN ResNet-50-FPN Y 77.9 –

SimpleBaseline ResNet-50 Y 80.7 83.5

SimpleBaseline ResNet-101 Y 81.5 83.9

SimpleBaseline ResNet-152 Y 83.2 84.9

HRNet HRNet-W32 Y 83.6 86.1

ECA-HRNet (our) HRNet-W32 + ECA Y 86.4 88.5

Figure 12.   Diagram of the angles at the hip and knee.
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Unlike the hip joint, the knee angle tends to gradually stabilize in the later stages of early flight, while the hip 
angle continues to extend.

From the local changes in the joint angles in Fig. 13, we note the following:

1.	 During take-off, the change in vertical velocity is proportional to the vertical force35, and since the vertical 
position of the athlete at the end of the jump has a substantial effect on the initial conditions of the flight, this 
should enable the maximum vertical velocity to be achieved by maximizing the jumping force perpendicular 
to the jumping platform36. Furthermore, the amount of jumping force can be maximized by extending the 
knee joint at maximum speed during the jump. During the take-off by the athlete S4 in Fig. 13, both the knee 
and hip angles decrease and then increase. The point of descent of the knee is in frame 65, and the ascending 
point (the lowest point of the squat) is in frame 78, the point of descent of the hip is in frame 64, while the 
ascending point is in frame 69. The angles of the two joints are reduced by about 6° and 3°, respectively, and 
we therefore suggest training to improve the explosive power of the knee joint, such as squatting, jumping 
etc.

2.	 The take-off characteristics are mainly divided into two categories: one involves extending the knee angle 
first and then the hip angle, whereas the other involves extending the hip angle first and then the knee angle. 
Wind tunnel experiments have demonstrated that the increase in the air drag coefficient due to the hip angle 
is much larger than that due to the knee angle, meaning that the former take-off style is better than the latter. 
Figure 13 shows that the take-off of athlete S4 is characterized by first hip extension and then knee exten-
sion. This method increases the air resistance during the take-off and early flight phases, and we therefore 
recommend using the correct style of jumping, with knee extension first and then hip extension.

3.	 The main challenge in the early flight phase is to adjust the pose as quickly as possible to achieve stable 
flight. In this phase, athlete S4 rapidly extended the hip and knee angles within a very short time, reaching 
an approximate hip angle of 160°41and extending the knee joint as far as possible. From Fig. 13, it can be 
seen that the knee angle of athlete S4 tends to stabilize at about frame 300, reaching about 168°. Measured 
from the start of the jump, the hip extension lasts longer, and we therefore recommend increasing the speed 
of the hip extension.

Conclusions
In recent years, interest of people in skiing has increased. As one of the events of the Winter Olympics, ski jump-
ing has also received wide attention. However, since it is a high-speed sport, people find it difficult to analyze the 
motion of a ski jumper in a subjective way. To solve this problem, we combined the use of an ECA module with 
transfer learning to improve the HRNet. We proposed our ECA-HRNet for keypoint detection of ski jumpers 
and analyzed the motions involved in ski jumping.

First, video data were acquired from a calibrated high-speed camera and converted into images to construct 
a keypoint detection dataset called KDSJ, which was then divided into training set, validation set and test set 
in a 6:3:2 ratio. Next, ECA was embedded in the multi-scale feature extraction module of HRNet to enhance 
the interaction of feature information across channels and to improve the network feature extraction capabil-
ity. The accuracy of keypoint detection was improved with the AP achieving the average precision of 73.4% on 
COCO2017 test-dev set, which was higher than for the original HRNet. The feature knowledge from the public 
dataset was transferred to the task of ski jumping via transfer learning. The proposed ECA-HRNet outperformed 
other mainstream human pose estimation methods by achieving an AP of 86.4% under the ground truth bound-
ing box on the test set of KDSJ. Transfer learning was also used to improve the generalization ability of the model, 

Figure 13.   Changes in hip/knee angle versus frame number.
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avoid overfitting, and speed up the training of the model. Finally, YOLOv3 was used as the object detector to 
detect ski jumpers in images and the proposed ECA-HRNet model was applied to estimate the keypoints of the 
ski jumpers. For athlete S4, we analyzed the changes in the angles at the knee and hip joints over the frames of 
the in-run and early flight phases and training recommendations were made.

The proposed ECA-HRNet only deals with ski jumping data and is therefore only applicable to this single 
sport. In future work, we will add captured freestyle skiing and snowboarding data to increase the generalization 
capability of the proposed ECA-HRNet in order to allow it to be applied to more winter sports.

Data availability
The dataset of ski jumpers generated during the current study are available from the corresponding author on 
reasonable request.
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