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Aims Screening for atrial fibrillation (AF) is recommended in the European Society of Cardiology guidelines. Yields of detection can 
be low due to the paroxysmal nature of the disease. Prolonged heart rhythm monitoring might be needed to increase yield 
but can be cumbersome and expensive. The aim of this study was to observe the accuracy of an artificial intelligence (AI)- 
based network to predict paroxysmal AF from a normal sinus rhythm single-lead ECG.

Methods 
and results

A convolutional neural network model was trained and evaluated using data from three AF screening studies. A total of 478  
963 single-lead ECGs from 14 831 patients aged ≥65 years were included in the analysis. The training set included ECGs 
from 80% of participants in SAFER and STROKESTOP II. The remaining ECGs from 20% of participants in SAFER and 
STROKESTOP II together with all participants in STROKESTOP I were included in the test set. The accuracy was estimated 
using the area under the receiver operating characteristic curve (AUC). From a single timepoint ECG, the artificial intelli
gence–based algorithm predicted paroxysmal AF in the SAFER study with an AUC of 0.80 [confidence interval (CI) 
0.78–0.83], which had a wide age range of 65–90+ years. Performance was lower in the age-homogenous groups in 
STROKESTOP I and STROKESTOP II (age range: 75–76 years), with AUCs of 0.62 (CI 0.61–0.64) and 0.62 (CI 0.58– 
0.65), respectively.

Conclusion An artificial intelligence–enabled network has the ability to predict AF from a sinus rhythm single-lead ECG. Performance 
improves with a wider age distribution.

* Corresponding author. Tel: +46 73 768 6964. E-mail address: tove.hygrell@regionstockholm.se
† Shared first authorship.
© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits 
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Europace (2023) 25, 1332–1338 
https://doi.org/10.1093/europace/euad036

CLINICAL RESEARCH

https://orcid.org/0000-0003-2936-9998
https://orcid.org/0000-0001-9093-3303
https://orcid.org/0000-0001-5142-6069
https://orcid.org/0000-0003-3836-8655
https://orcid.org/0000-0001-5106-749X
https://orcid.org/0000-0002-9531-0268
https://orcid.org/0000-0001-5786-1301
https://orcid.org/0000-0002-6413-0870
mailto:tove.hygrell@regionstockholm.se
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/europace/euad036


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Graphical Abstract

a

Neural network under training

ECG data

Trained model

Training Testing

Training dataset Separate testing dataset

No AFAF

100% of STROKESTOP I 
participants 

20% of STROKESTOP II 
participants 

20% of SAFER Feasibility
participants 

AUC = 0,62 AUC = 0,62 AUC = 0,80

80% of STROKESTOP II 
participants 

80% of SAFER Feasibility
participants 

Input layer

Output layer

Multiple 
hidden 
layers

Keywords Artificial intelligence • Atrial fibrillation • Screening • Intermittent ECG

What’s new?

• Artificial intelligence may be used to identify individuals that can 
benefit from prolonged screening for paroxysmal AF using single- 
lead ECG recordings.

• Using a single timepoint single-lead ECG machine learning can iden
tify individuals at risk of undetected paroxysmal AF, with increasing 
performance in age-diverse populations.

Introduction
Atrial fibrillation (AF) is the most common cardiac arrhythmia. One of 
the most feared complications in patients with AF is ischaemic stroke. 
Untreated AF is associated with a five-fold increase in stroke risk; initi
ation of stroke-protective oral anticoagulation treatment is therefore 
of importance in most individuals with AF.1 However, the arrhythmia 
is often asymptomatic and intermittent, making it challenging to identify 
with a single electrocardiogram (ECG). The European Society of 
Cardiology recommends that systematic screening for AF should be 
considered for high-risk patients.2

Several strategies have been used to reduce the numbers needed to 
screen and still detect AF in those with a high risk of stroke. The 
CHA2DS2-VASc score is used to predict stroke risk but has been 
used to direct screening efforts towards individuals with an increased 
risk of having AF.3 Measuring plasma levels of the biomarker 
N-terminal B-type natriuretic peptide (NT-proBNP) can be helpful in 
identifying individuals at high risk of previously undetected AF. Using 

NT-proBNP with a cut-off of ≥125 ng/L (with a sensitivity of 75% 
and specificity of 37%) decreased the number of patients that needed 
prolonged ECG screening in a large screening study for AF.4,5 

Nevertheless, venipuncture is invasive, relatively expensive, and 
impractical.

Growing attention is paid to artificial intelligence (AI) within the field 
of medicine, since it has the potential to automate human tasks and 
identify patterns beyond human capabilities.6,7 It has been shown that 
an AI-enabled network can be used to predict AF from a normal sinus 
rhythm 12-lead ECG.8 Although, when studied, AI has not been shown 
to improve prediction for stroke, major bleeding, or death in patients 
with AF.9

Developing a machine-learning algorithm designed to predict AF 
from a single-lead ECG instead of a standard 12-lead ECG could poten
tially provide an important contribution to simplified screening for AF. 
Single-lead ECGs can be easily obtained using clinical or consumer de
vices, and without clinical supervision outside of healthcare institutions. 
In the current study, we set out to study the accuracy of an AI-based 
network to predict paroxysmal AF from a normal sinus rhythm single- 
lead ECG.

Methods
Study population
The ECGs used in our analysis derive from three prospective 
screening studies: STROKESTOP I, STOKESTOP II, and SAFER. 
STROKESTOP I was a large AF screening study randomizing all 75- and 
76-year olds living in Stockholm and Halland region in a 1:1 fashion into 
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an AF screening group and a control group. In the STROKESTOP I study, all 
participants in the screening group performed intermittent ECG recordings 
for 2 weeks.10,11 In STROKESTOP II, using a similar randomization of all 
75-/76-year olds in Stockholm, stepwise screening was performed. All rando
mized to screening had NT-proBNP levels measured, and only in the case of 
elevated levels (≥125 ng/L), prolonged screening was performed using inter
mittent ECG recordings.5,12 In the SAFER Feasibility Study, ISRCTN 
16939438, general practitioners across England invited patients aged 65 years 
or over to take part in screening using intermittent ECG for 1–4 weeks. A 
comparison of the screening studies included is shown in Supplementary 
material online, Table S1.

Patients with a previous AF diagnosis, or an inconclusive diagnosis, were 
removed. All participants with AF on their index ECG were also removed 
from the study.

Ethics
The study complies with the Declaration of Helsinki. The protocol was ap
proved by the regional ethics committee in Stockholm (2011/1363-31, 
2020-01211, 2015/2079-31, 2020-01436) and London Central NHS 
Research Ethics Committee (18/LO/2066). All participants provided in
formed consent before inclusion in the three screening studies.

Intermittent electrocardiogram
In all three AF screening studies, ECGs were recorded at home using a va
lidated single-lead hand-held device, Zenicor ECG-2 (Zenicor Medical 
Systems, Stockholm, Sweden).13 A recording is performed by placing the 
thumbs on two electrodes, and each ECG registration of lead I has a dur
ation of 30 s. In STROKESTOP I, the participants were instructed to record 
ECGs twice daily. In STROKESTOP II and SAFER, participants were in
structed to record ECGs four times daily. In STROKESTOP I, all ECGs 
were manually annotated. In STROKESTOP II and SAFER, a validated com
puterized algorithm was used to discriminate between sinus rhythm and 
potential arrhythmias.14 All ECGs deemed as abnormal by the algorithm 
were reviewed by trained nurses and medical doctors.

Participants were classified into the AF group if they had at least one ECG 
with AF for 30 s. In addition, in STROKESTOP I, participants with two ECG 
recordings with >10 s of AF activity were regarded as having AF and in
cluded in the AF group.

The artificial intelligence model
Deep learning is a type of machine learning where neural networks with 
multiple layers are used to learn a relation between a set of inputs and a 
set of outputs. In the current study, we used a specialized type of neural net
work called a convolutional neural network (CNN). The connectivity pat
tern between the neurons in a CNN makes it a suitable choice for signal 
processing and image recognition and classification. The model used was 
a CNN with a binary cross entropy loss function and optimized to separate 
patients with AF diagnosed during the study from patients with no AF diag
nosis. The CNN architecture used has similarities with the ReSE-2-Multi 
architecture developed by Lee et al.15 This architecture was modified to ac
commodate the longer length of 1 kHz 30 s ECGs and had seven blocks 
each consisting of two 1D convolutions, with kernel size three, plus a 
squeeze-and-excite step and residual connections. The three final block 
outputs were concatenated before a fully connected layer and a final linear 
classifier layer. Hyperparameter optimization was performed using 
Bayesian optimization.16 Further details on model architecture and hyper
parameters can be found in supplementary technical details, 
Supplementary material online, Figure S1 and Table S2, respectively.

Handling of electrocardiograms
Raw data of 30 s long ECG recordings sampled at 500 Hz were used. 
Following upsampling to 1 kHz, baseline wander was removed and pre- 
filtering was applied, smoothing the ECGs to reduce noise inherent from 
the measurement process using the ECG Parser software from 
Cardiolund (Lund, Sweden).14 To eliminate noise caused by poor equip
ment handling in the beginning and end of the registration, the initial 
5000 samples (5 s) and final 5400 samples (5.4 s) were removed. The result
ing data set subsequently consisted of 20 000 samples long (20 s) ECGs. In 
the training set, 15 s random crops from the 20 s window were used, 

whereas in the test set, the ECGs were cropped to the final 15 s of the ori
ginal 20 s. Electrocardiograms that the ECG Parser software deemed to be 
of poor quality were removed because of a lack of clear ECG signal. In add
ition, ECGs tagged by the software as containing irregular sequences were 
removed due to correlation with intermittent AF. The training and testing 
samples were then normalized individually by first min–max scaling them to 
the interval [0, 1] and then shifting them to have Mode 0.

Multiple ECGs from the participants were used for training and testing of the 
AI model. Electrocardiograms were placed in the positive class if they came 
from a patient that was diagnosed with AF during the study, and in the negative 
class otherwise. When combining the studies, the results from each study were 
equally weighted. In addition, to mimic a screening setting, a sensitivity analysis 
was performed using only the first ECG recorded for each patient.

Data sets for training and evaluation
To construct the model training set, ECGs belonging to 80% of the patients 
from SAFER and 80% of the patients from STROKESTOP II were used. 
The remaining 20% of the patients from these two studies were placed in 
the test set, together with all ECGs from STROKESTOP I (Figure 1). 
Stratified sampling was employed to ensure equal class distribution in the 
training and testing data sets. We chose to train the algorithm solely on 
two of the data sets, completely excluding the data from STROKESTOP I 
to minimize the risk of overfitting of the model. The reason for choosing 
STROKESTOP I was that this population was age homogenous, with the 
least selection bias. To avoid problems due to the class imbalance, a fully ba
lanced training data set was constructed by downsampling the number of 
negative class examples to the number of positive examples. Given that 
the number of ECGs per patient varies in both the training and testing 
data sets, a uniform weight of one was assigned to each patient, which 
was then distributed across their respective ECGs. In the training process, 
the training set was first split into 80% training and 20% validation sets. The 
split was done on patient level, and stratified sampling was employed to en
sure class distributions. Model performance results from the validation set 
were used to tune the hyperparameters.

Statistics
The model was developed using TensorFlow and Kerasin Python. Statistical 
evaluation of the model was done using scikit-learn 0.23. The model was de
veloped and trained on a workstation with 4 RTX 2080 Ti Nvidia graphics pro
cessing units. Matplotlib 3.3.3. in Python 3 was used to generate graphs of area 
under the receiver operating characteristic curve (AUC), sensitivity, and speci
ficity. Sensitivity was set to 75% by thresholding the model output score and 
specificity, and F1 scores were calculated. Specificity at increasing sensitivity le
vels for AF detection in the different test groups was also explored. In addition, 
in order to measure the robustness of the model classifications on a patient 
level, Cohen’s kappa was computed by comparing the classification for the in
dex ECG with the classifications for the kth ECGs of index k (k = 1, 2, …, 5). 
Cohen’s kappa measures the inter-classifier reliability between two classifiers, 
correcting for agreement happening by random chance, which makes it a more 
robust metric than the more simplistic per cent overlap agreement. The range 
of Cohen’s kappa is [−1, 1] where 1 corresponds to perfect agreement, 0 to 
random agreement, and −1 to perfect disagreement. Uncertainty estimations 
were calculated using non-parametric bootstrapping.

Results
Of the 7165 participants from STROKESTOP I, n = 617 were excluded 
due to a previous AF diagnosis, or an inconclusive diagnosis. From the 
STROKESTOP II, n = 663 out of 6869 were excluded, and for SAFER 
68 of 2146.

In total, 535 295 intermittent ECGs belonging to 14 832 AF screen
ing participants were identified. Of those, 56 332 ECGs were excluded, 
the majority due to irregular sequences or baseline disturbances. The 
unbalanced data set consisted of 248 964 ECGs from 6658 patients. 
After training set class balancing, 14 464 ECGs from 3623 patients re
mained, which were used in training. It was found that adding more 
negative examples in training did not improve the model. The test set 
consisted of 229 999 ECGs from 8173 participants (Figure 1).
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From a single timepoint ECG, the AI–based algorithm predicted cur
rent paroxysmal AF with an AUC of 0.62 [95% confidence interval (CI) 
0.61–0.64] in STROKESTOP I. The algorithm was naïve to the ECGs 
from STROKESTOP I, as they were not used to train the algorithm. 
As the AI model is constructed to be used as an interim step in identi
fying individuals that might benefit from screening, we aimed for a high 
sensitivity. Specificity at increasing sensitivity levels for AF detection in 
the different test groups is shown in Table 1. With a 75% sensitivity for 
AF detection, the specificity was 41% (95% CI 0.38–0.44) with an F1 
score of 0.099 (95% CI 0.092–0.106) in STROKESTOP I. The ability 
of the AI model to predict AF from a sinus rhythm ECG was also eval
uated for the two other screening studies separately. The outcome in 
STROKESTOP II was similar to STROKESTOP I, with an AUC of 0.62 
(95% CI 0.58–0.65), F1 score of 0.074 (95% CI 0.063–0.088), and spe
cificity of 38% (95% CI 0.33–0.44) when sensitivity was set to 75%. The 
AI model performed best on the ECGs from the SAFER data set, where 
the age distribution was wider, with an AUC of 0.80 (95% CI 0.78– 
0.83), F1 score of 0.097 (95% CI 0.072–0.133), and specificity of 71% 
(95% CI 0.65–0.77) at 75% sensitivity. Combining the test sets for 
the different studies gave an AUC of 0.66 (95% CI 0.64–0.67), F1 score 
of 0.080 (95% CI 0.072–0.087), and a specificity of 46% (95% CI 0.43– 
0.49) at sensitivity 75%. These results are shown in Figure 2.

In a sensitivity analysis, the ability to predict AF using only the index 
ECG of the patient was used to mimic a true screening situation. There 
was no difference in the predictive abilities in the algorithm for 
STROKESTOP I with an AUC of 0.63 (95% CI 0.60–0.66) and F1 score 
of 0.099 (95% CI 0.087–0.113), nor for STROKESTOP II with an 
AUC of 0.61 (95% CI 0.54–0.69) and F1 score of 0.083 (95% CI 
0.056–0.115) or SAFER with an AUC of 0.88 (95% CI 0.76–0.96) and 
F1 score of 0.186 (95% CI 0.045–0.360). Similar performance was mea
sured when performing a sensitivity analysis based on the second sinus 
rhythm ECG (see Supplementary material online, Table S3). In order to 
quantify patient-level classification robustness, Cohen’s kappa was 
computed by comparing the index ECG classification against the classi
fications of the kth ECG (k = 1, 2, …,5). The results range from 0.273 
(0.179–0.365) for k = 5 in STROKESTOP II to 0.396 (0.258–0.543) for 
k = 3 in SAFER (see Supplementary material online, Table S4).

Discussion
The main finding of the present study is that an AI-enabled single-lead 
ECG algorithm can predict AF from normal sinus rhythm with an ac
ceptable accuracy for an age-homogenous cohort (AUC 0.62), but 
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Figure 1 Flow chart of participants and electrocardiograms for each atrial fibrillation screening study and their allocation to training and test set. AF, 
atrial fibrillation; ECG, electrocardiogram.
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Table 1 Specificity at different sensitivity levels

Sensitivity All, weighted, specificity 
(95% CI)

STROKESTOP I, specificity 
(95% CI)

STROKESTOP II, specificity 
(95% CI)

SAFER Feasibility, specificity 
(95% CI)

0.75 45 (45–46) 41 (41–41) 38 (36–40) 70 (69–70)

0.80 38 (38–39) 36 (35–36) 32 (31–34) 64 (63–65)

0.90 23 (22–24) 21(21–22) 16(14–17) 49(49–50)

CI, confidence interval.
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with substantial improvements if an age-diverse cohort is studied 
(AUC 0.80).

Our results are in line with an earlier study conducted by Attia 
et al.,8 in which an AI-enabled 12-lead ECG was able to detect pres
ence of AF during normal sinus rhythm with an AUC of 0.87 for a sin
gle ECG. We have several explanations for obtaining lower AUC 
values in the current study. Comorbidities may influence the out
come with regard to algorithm performance. In Attia’s study, the 
12-lead ECGs were obtained in clinical practice for a medical 
indication, which may create referral bias towards ECG abnormal
ities. In systematic screening programmes like STROKESTOP I, 
STROKESTOP II, and SAFER, there might be less bias, but still parti
cipants tend to be healthier than non-participants.17 In Attia’s study, 
all patients aged 18 years or older with at least one 12-lead normal 
sinus rhythm ECG performed at the Mayo Clinic during a specific 
time span were included, leading to heterogeneity in terms of age, 
while in our study, the developed AI algorithm was tested on ECGs 

from patients aged exclusively ≥65 and mainly 75–76 years. It is 
well known that AF is highly correlated with age, and previous 
work has shown that ECGs can predict heart age.18 Consequently, 
it is conceivable that previously identified age-related patterns, in 
addition to AF-specific changes in the ECGs, could explain the high 
accuracy. This could also potentially explain why our algorithm per
formed better in SAFER, including patients with a wider age distribu
tion, compared with that in STROKESTOP I and II. The results 
indicate that the method developed in this work has a comparable 
performance as the model developed on a 12-lead ECG when pa
tients in the same age group are compared.19 A 12-lead ECG contains 
more data compared with the single-lead ECG possibly making mod
elling more precise. Using a single-lead ECG in ambulatory settings 
makes the model more susceptible to noise compared with a multi- 
channel lead ECG performed in the office setting. Comparing the re
ported F1 scores to the results of Attia et al.,8 the lower reported va
lues are due to the lower prevalence of AF in the test data set. 
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Figure 2 (A) The receiver operating characteristic (ROC) curve displaying performance of the AI model in STROKESTOP I. (B) Sensitivity and spe
cificity for atrial fibrillation (AF) detection during evaluation of the artificial intelligence (AI) model in STROKESTOP I. The dotted vertical line indicates 
the specificity at 75% sensitivity. (C) The ROC curve displaying performance of the AI model in STROKESTOP II. (D) Sensitivity and specificity for AF 
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Specifically, proper F1 score comparison depends on equal 
prevalence.

The ability to select individuals that are at risk for having undetected 
AF from a single-lead sinus rhythm ECG could have important implica
tions for AF screening. A single-lead ECG is inexpensive and easy to use. 
The algorithm could be used as a first selection step in AF screening to 
decide which patients would benefit most from prolonged AF screening 
using intermittent ECG. In such a setting, high sensitivity is more im
portant than specificity. As there is no optimal method available for 
the selection of individuals who would benefit the most from AF 
screening, a combined approach using also  population discriminators 
could increase specificity.

Over the last 20 years, several efforts have been made to predict AF 
by analysing P-wave morphology and other ECG features, but no re
sults have been strong enough to be deemed usable in clinical prac
tice.20 Atrial fibrillation activity causes myocyte changes that lead to 
inflammation resulting in atrial fibrosis.21 The tachycardia caused by 
AF leads to decreased contractility in the atria that eventually leads 
to atrial dilatation.22 Atrial fibrosis and enlargement as well as distorted 
movement patterns in the left atrium caused by low-amplitude electric
al activity may give rise to subtle ECG changes that can be discerned by 
the AI model, but not by the human eye or the earlier used methods.23

A limitation of our study is that intermittent ECGs only monitor 
heart rhythm for a brief time period. Hence, it is possible that there 
are patients deemed as free of AF in our study in whom a more con
tinuous ECG method would have detected AF. This introduces false ne
gatives in the labels and causes noise in the model.

The most important limitation of the study is the low number of in
dividuals diagnosed with AF in the ECG database, in particular from 
STROKESTOP II and SAFER. With more positive findings, the model 
might have improved. Data from STROKESTOP II were collected 
with a bias towards high-risk patients (with NT-proBNP ≥125 ng/L), 
which may negatively impact the ability of the algorithm to predict 
AF in patients without structural heart disease. Nonetheless, the algo
rithm performed equally well in the test set consisting of ECGs col
lected from STROKESTOP I, where the blood test had not been 
used to pre-screen patients, as in the STROKESTOP II study. The inclu
sion of only elderly individuals, within two regions of northern Europe, 
may affect the external validity of the study. However, our cohorts 
were well balanced from a gender perspective.

Conclusion
In conclusion, an AI-enabled network can predict paroxysmal AF from a 
sinus rhythm single-lead ECG with reasonable accuracy in an age- 
homogenous group. In a screening programme, the algorithm may be 
used as an interim step to identify individuals that might benefit from 
prolonged screening. This would reduce the number of individuals re
quiring prolonged screening and increase feasibility.
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