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Abstract
Leucine-rich repeats containing 4 (LRRC4, also named netrin-G ligand 2 [NGL-2]) is a member of the NetrinGs ligands (NGLs)
family. As a gene with relatively high and specific expression in brain, it is a member of the leucine-rich repeat superfamily and has
been proven to be a suppressor gene for gliomas, thus being involved in gliomagenesis. LRRC4 is the core of microRNA-dependent
multi-phase regulatory loops that inhibit the proliferation and invasion of glioblastoma (GB) cells, including LRRC4/NGL2-
activator protein 2 (AP2)-microRNA (miR) 182-LRRC4 and LRRC4-miR185-DNA methyltransferase 1 (DNMT1)-LRRC4/
specific protein 1 (SP1)-DNMT1-LRRC4. In this review, we demonstrated LRRC4 as a new member of the partitioning-defective
protein (PAR) polarity complex that promotes axon differentiation, mediates the formation and plasticity of synapses, and assists
information input to the hippocampus and storage of memory. As an important synapse regulator, aberrant expression of LRRC4
has been detected in autism, spinal injury and GBs. LRRC4 is a candidate susceptibility gene for autism and a neuro-protective
factor in spinal nerve damage. In GBs, LRRC4 is a novel inhibitor of autophagy, and an inhibitor of protein–protein interactions
involving in temozolomide resistance, tumor immune microenvironment, and formation of circular RNA.
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Introduction

In 2002, leucine-rich repeats containing 4 (LRRC4) was
first reported as a gene with relatively high and specific
expression in the brain, which is located on human
chromosome 7q31–32.[1] In 2003, LRRC4 was found to
resemble the NetrinG1 ligand (NGL1/LRRC4C).[2] In
2006, LRRC4 was recognized as the ligand of NetrinG2
and namedNGL2, which directly interacts with the neural
adhesion molecule NetrinG2 in an isoform-specific
manner.[3] Subsequently, the other protein with similar
structures to NGL1 and NGL2 was designated as NGL3
(also named LRRC4B).[3] To date, the NGL family is
mainly comprised of three members, NGL1 (LRRC4C),
NGL2 (LRRC4), and NGL3 (LRRC4B), which are all
located in the postsynaptic membrane, they share the same
domain structure as a typical type I transmembrane
protein, and bind to different neural cell adhesion
molecules in the presynaptic membrane to promote the
formation and maturation of synapse, such as NetrinG1
binding to NGL1 (LRRC4C), NetrinG2 binding to NGL2
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(LRRC4), and the leukocyte common antigen-related
protein (LAR) binding to NGL3 (LRRC4B).[3,4] Interest-
ingly, the interaction between NetrinG1 or NetrinG2
located in axons and NGL1 or NGL2 located in dendrites
not onlypromotes the formationof axon-dendritic synaptic
structure, but also medicates the localization of NGL1 or
NGL2 in specific segments of dendrites via the NetrinG-
dependent way. For example, NGL1 is concentrated in
dendritic segments corresponding to the termination of
netrinG1-positive axons, and NGL2 is concentrated in
distinct dendritic segments corresponding to the termina-
tion of netrinG2-positive axons.However,NGL1orNGL2
demonstrated a diffuse dendritic distribution in mice with
NetrinG1 or NetrinG2 deletion.[5]

Previous studies have reportedLRRC4 as a suppressor gene
of glioma. LRRC4 expression is negatively correlated with
the degree of glioma malignancy. LRRC4 inhibits the
phosphatidylinositol 3-kinase/protein kinase B (AKT)/
nuclear transcription factor-kB (NF-kB), K-Ras/c-Raf/
extracellular signal-regulated kinase (ERK)/mitogen acti-
vated protein kinase (MAPK), c-Jun N-terminal kinase 2
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(JNK2)/c-Jun/mutant P53 (mP53), 70 kDa ribosomal
protein S6 kinase (p70S6K)/protein kinase C (PKC), signal
transducer and activator of transcription 3 (STAT3), and
stromal cell-derived factor 1a (SDF-1a)/C-X-C chemokine
receptor type 4 (CXCR4) signaling pathways to prevent
glioma cells proliferation and invasion, in which LRRC4 is
the core of microRNA (miRNA)-dependent multi-phase
regulatory loops, including LRRC4/NGL2-activator pro-
tein 2 (AP-2)-microRNA (miR)-182-LRRC4 and LRRC4-
miR-185-DNA methyltransferase 1 (DNMT1)-LRRC4/
specific protein 1 (SP1)-DNMT1-LRRC4.[6]

In this review, we mainly discuss the effects of LRRC4 on
memory by promoting the formation of excitatory
synapses and long-term potentiation (LTP), the effects
of LRRC4 mutation on psychoneurosis, and the new
mechanism of LRRC4 in GB genesis and progression.
LRRC4 and Memory

Brain regions related to learning and memory mainly
include the temporal lobe, prefrontal lobe, diencephalon,
amygdala, cerebellum, Meynert basal ganglia, and
striatal-limbic regions. The hippocampus is now widely
considered the memory center of the brain, which
mediates learning and memory performance. As early as
1957, the hippocampus was noted to play an important
role in memory formation. The study has reported a case
of a patient with epilepsy who had anterograde amnesia
and retrograde amnesia after undergoing resection of most
of the hippocampus, lost a significant amount of old
memories, and was unable to form new memories.[7]

Another study has reported that LRRC4 is involved in the
hippocampal memory function and the molecular mecha-
nism for memory formation and storage.[8] The hippo-
campus receives information from the cerebral cortex to
complete information processing and memory formation.
Memory is then stored in the hippocampus through
synaptic plasticity. LRRC4/NGL-2 is highly expressed in
the cerebellum, cerebral cortex, occipital pole, frontal
lobe, temporal lobe and putamen. At present, relevant
research on how LRRC4 mediates memory is also focused
on the hippocampus. However, the role of LRRC4 in
mediating learning and memory in other brain regions has
not yet been reported. In this review, we discussed the
correlation between LRRC4 and memory function in the
hippocampus. A growing body of evidence supports that
the deletion of LRRC4 can impact synaptic plasticity and
the information input pathway in the hippocampus.[8,9]
LRRC4 promotes the formation of excitatory synapses

The synapse is an important node of the neuron
connection network, which consists of presynaptic
membrane, postsynaptic membrane, and synaptic cleft.
The presynaptic membrane is mainly formed by axons,
and can also be formed by dendrites, such as the dendro-
dendritic synapses in the olfactory bulb and thalamus. The
postsynaptic membrane is generally formed on dendritic
spines, dendritic shafts and neuronal soma.[10] Axon can
also be assembled as postsynaptic membranes to form
axo-axonic synapses. The axo-axonic synapses play an
important role in presynaptic inhibition.[11] Most presyn-
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aptic neurons release either excitatory neurotransmitters
(e.g., glutamate) or inhibitory neurotransmitters (e.g.,
gamma-aminobutyric acid [GABA]), which functionally
subdivide synapses into excitatory and inhibitory synap-
ses. A type of dual glutamatergic-GABAergic neuron has
been detected in the lateral habenular area of the mouse
brain, which co-releases glutamate and GABA from
distinct synaptic vesicles at an independent synapse.[12,13]

Generally, when axon is polarized and differentiated into
presynaptic structure, synaptic cell adhesion molecules
serve as a “glue” to connect the axon with the dendrite or
soma of another neuron to complete the assembly of the
synaptic structure. Presynaptic and postsynaptic proteins
are recruited via the interaction of synaptic cell adhesion
molecules, thereby promoting the functional maturation
of the synaptic structure.

LRRC4, a typical synaptic cell adhesion molecule,
mediates the polarization of axons, synaptic formation,
and stabilization of the synaptic structure, especially in the
axon-dendrite synapse [Figure 1]. Hippocampal neurons
from embryonic day (E) 16 rats cannot form synapses
under in vitro culture conditions, whereas E18 hippocam-
pal neurons form complete synapses under the same
conditions.[14] Interestingly, LRRC4 is not expressed
before E12 during mouse brain embryonic development,
and its expression gradually increases after E16, which is
consistent with the time when mouse embryonic hippo-
campal neurons can form synapses.[15] LRRC4 plays a
significant role in the formation of excitatory synapses.
The deletion of LRRC4 causes a structural deficit in the
first synapse of the spiral ganglion of the auditory nerve in
LRRC4 knockout mice.[16] Then, LRRC4 is enriched in
axons at the end of the rat hippocampal neurons, which
can mediate axon differentiation.[17] Axon differentiation
is not only a milestone in the process of neuronal
polarization, but also an important stage to form synapses
between neurons.[18] LRRC4 is a new member of the
partitioning defective (PAR) polarity complex that is
involved in axon differentiation. LRRC4 binds directly to
the PDZ domain of PAR6 through the PDZ-binding
domain and forms LRRC4-PAR6-PAR3-atypical protein
kinase C (aPKC) polar complexes. The polar complexes
activate the microtubule affinity regulating kinase 2
(MARK2) signaling pathway, thereby regulating tubulin
stability and promoting the axonal differentiation of
hippocampal neurons.[17] In the outer plexiform layer of
the retina, LRRC4 is selectively located at the tips of
horizontal cell axons. The absence of LRRC4 inhibits the
formation of synapses between the axons of horizontal
cells and rod photoreceptors, leading to specific develop-
mental disorders of the outer retinal pathways.[19]

Furthermore, LRRC4 can mediate the growth of axons
in the retinal horizontal cells. The removal of LRRC4
from horizontal cells in developing or mature retinal
neural circuits, results in abnormal axon growth and
synaptic reduction.[20] When LRRC4 is re-expressed in
knockout mice, the horizontal cell axon and synapse
numbers are restored.[20] These findings demonstrate that
LRRC4 mediates the polarization of axons. Furthermore,
the postsynaptic scaffold postsynaptic density 95 (PSD95)
is a prominent binding partner of the NGL family
members, which links NetrinGs–NGLs cross-synaptic
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Figure 1: LRRC4 mediates axonal development and synaptic formation. LRRC4 is a new member of the PAR polarity complex, which promotes axon differentiation. The interaction
between NetrinGs and NGLs promotes the formation of synaptic structure. The postsynaptic scaffold PSD95 protein completes the recruitment of synapse-associated proteins (such as
NMDAR and AMPAR). AMPAR: a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; aPKC: Atypical protein kinase C; ELKs/ERC: Glutamine/leucine/lysine/serine-rich protein;
LAR: Leukocyte common antigen-related protein; LRRC4: Leucine-rich repeats containing 4; MARK2: Microtubule affinity regulating kinase 2; NGL: NetrinGs ligand; NMDAR: N-methyl-D-
aspartate receptor; P: Phosphorylation; PAR: Partitioning-defective protein; PSD95: Postsynaptic density 95; Rim: Rab3 interacting molecule.
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adhesion events with postsynaptic protein recruitment
events. PSD95 has a total of three PDZ domains. TheNGL
family members located in the postsynaptic membrane
bind to the first two PDZ domains of PSD95 through the
PDZ-binding domain of the C-terminus. Meanwhile, the
last PDZ domain of PSD95 binds to postsynaptic-related
proteins (such as N-methyl-D-aspartate receptor
[NMDAR] and a-amino-3-hydroxy-5-methyl-4-isoxazo-
lepropionic acid receptor [AMPAR]), thereby recruiting
them to the postsynaptic membrane. It is worth noting
that NetrinG1 and NetrinG2 are glycosylphosphatidyli-
nositol-anchored proteins lacking cytoplasmic regions,
and LAR is a transmembrane protein on the postsynaptic
membrane.[21] The interaction between NGL3 and LAR
6

can lead to accumulation of the related presynaptic
protein liprin a, which then causes liprin a to link with
synaptic vesicles through the glutamine/leucine/lysine/
serine-rich protein (ELKs) and Rab3 interacting molecule
(Rim), regulating the release of synaptic vesicles.[4]

However, information on the mechanisms of NetrinG1
and NetrinG2 regulating presynaptic protein assembly
remains scarce. TheNetrinG2–NGL2 interaction has been
suggested to regulate glutamate release from presynaptic
neurons through NMDAR-dependent LTP. In brief,
LRRC4 can promote presynaptic and postsynaptic
connection and can promote the accumulation of
postsynaptic protein NMDAR, resulting in the formation
of excitatory synapses.
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LRRC4 mediates information input to hippocampus

The hippocampus is mainly divided into three areas: CA1,
CA3, and the dentate gyrus. The CA1 area receives various
sensory and spatial information from the entorhinal
cortex to complete information processing and memory
storage through direct and indirect channels. The
entorhinal cortex is directly connected to distant dendrites
of the stratum lacunosum-moleculare (SLM) in the CA1
area through the temporoammonic axon, which is termed
the direct channel. The entorhinal cortex is connected to
the dentate gyrus through the perforant pathway. The
dentate gyrus is projected to the CA3 through the mossy
fiber, and the CA3 is further projected to the proximal
dendrites of stratum radiatum (SR) in the CA1 area
through the Schaffer collateral axons, which is termed the
indirect channel. Destroying the direct channel does not
affect the formation of the initial memory, but affects the
conversion of short-termmemory into long-termmemory.
The lesion of the indirect channel affects the animal’s
spatial learning and memory tasks. Studies have reported
that temporal ammonia axons mainly express NetrinG1,
and Schaffer collateral axons mainly express NetrinG2.
LRRC4C (NGL1) is restricted to SLM in the CA1 area and
LRRC4 is restricted to SR in the CA1 area.[5,22] The
deletion of LRRC4 significantly reduces the frequency of
miniature excitatory postsynaptic currents and synaptic
density in the SR region, rather than the SLM region.
Thus, LRRC4 regulates only the formation of Schaffer
collateral synapses in the SR, thereby mediating the
indirect channel of CA1 information input.[8] Thus,
LRRC4 regulates the indirect channel of information
input to the hippocampus by mediating the formation of
Schaffer collateral synapses and affects the formation and
storage of memory [Figure 2].
LRRC4 enables LTP of hippocampal CA1 region

Synaptic plasticity is defined as the change in the strength
of synaptic connections between neurons, and it has been
widely considered an important method of memory
storage.[23] LTP and long-term depression are main
synaptic plastic processes. The mechanism of LTP
production is closely related to the synaptic basis of
memory storage.[24] LTP is divided into early-phase LTP
and late-phase LTP according to the stimulus intensity.
Through a short period of tonic stimulation, the
presynaptic membrane in the CA1 area is activated to
release glutamate, and some NMDARs on the postsynap-
tic membrane receive glutamate and are activated. The
activated NMDAR causes the influx of Ca2+, and the
increased intracellular Ca2+ combines with calmodulin,
which further activates calcium/calmodulin dependent
protein kinase II (CaMKII). CaMKII phosphorylates
AMPAR and increases their sensitivity to glutamate,[25,26]

while promoting the synthesis of nitric oxides (NO, a
retrograde messenger), NO diffuses to presynaptic
membrane to promote the release of glutamate, thereby
enhancing the efficiency of synaptic transmission. How-
ever, due to insufficient stimulation intensity, such LTP
can only last for 1–3 h, so it is called early phase LTP.With
an increase in stimulation intensity, based on early LTP,
the continuous Ca2+/calmodulin signal enters the dendrite
7

from the dendritic spine, and activates adenylyl cyclase
(AC). And then, AC promotes the production of the cyclic
adenosine monophosphate (cAMP), which further phos-
phorylates protein kinase A (PKA). The phosphorylated
PKA further activates MAPK and promotes it to enter the
nucleus to phosphorylate cAMP response element binding
protein (CREB1), then initiates transcription program,
leading to the formation of new synaptic structures.[27]

Additionally, the continuous Ca2+/calmodulin signal acti-
vates protein kinase Mz, which promotes the formation of
new AMPAR. This process is called late-phase LTP, and it
further improves the efficiency of synaptic transmission and
can be maintained for a longer period.[28,29] Overall, the
Ca2+ influx into postsynaptic neurons mediated by
NMDARactivation is considered a sufficient and necessary
condition, thusNMDARis considered tobea trigger for the
induction of LTP. The NMDAR consists of seven subunits
as follows: GluN1, GluN2A/2B/2C/2D, and GluN3A/
3B.[30] Notably, the production of LTP requires the
activation of the GluN1, GluN2A, and GluN2B subunits,
especially GluN2A and GluN2B.[28]

LRRC4 is associated with LTP [Figure 2].[9] LRRC4 can
bind to the GluN1, GluN2A, andGluN2B subunits.When
GluN1, GluN2A or GluN2B are heterologously expressed
in neurons alone, all of them can bind to LRRC4. LRRC4
then recruits NMDAR to the postsynaptic membrane via
PSD95, thus forming the LRRC4/NMDAR/PSD95 com-
plex. GluN2A and GluN2B contain PDZ-binding
domains, resulting in their binding to LRRC4 through
the PDZ domain of PSD95. GluN1 lacks a PDZ-binding
domain, and is likely associated with LRRC4 through
PSD95-independent mechanisms, but the specific mecha-
nism is unclear. LRRC4 knockout inhibits LTP in the
hippocampal CA1 region; however, this inhibitory effect
can be neutralized by NMDAR drug activation.[9]
LRRC4 and Psychoneurosis

Abnormalities in synaptic structures and functions are the
pathological characteristics of many central nervous
system (CNS) diseases.[31] LRRC4 is closely related to
the formation of synaptic structures and maintenance of
synaptic function. Therefore, the aberrance of LRRC4 is
thought to be associated to the occurrence of some central
nervous system diseases, such as autism and spinal cord
injury.
LRRC4 is a candidate susceptibility gene for autism

Autism spectrum disorder (ASD) is a neuropsychiatric
disorder affecting 1% of the world’s population and is
characterized by repetitive behaviors and impairments in
social affiliative behaviors.[32] An epidemiological investi-
gation has demonstrated that patients with ASD have
several genetic characteristics.[33] Genomic analysis has
revealed that autism-related genes were mainly enriched in
the following three common biological pathways: chro-
matin remodeling, synaptic cell adhesion, and neuronal
development.[32,34] In a genetic analysis of 4504 patients,
23 autism syndrome candidate genes have been identified,
including LRRC4, neurexins, neuroligins, synCAM1,
CHL1, ZWILCH, MSL2, and CAPRIN.[35,36]
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Figure 2: LRRC4 mediates information input pathway and synaptic plasticity in the hippocampal CA1 region. (A) Information input pathway pattern of the hippocampal CA1 region. (B) The
deletion of LRRC4 impairs the formation of indirect channel by mediating the formation of Schaffer collateral synapses. LRRC4 mediates NMDAR-dependent synaptic plasticity (LTP) by
binding to the subunits of NMDAR (GluN1, GluN2A, and GluN2B). AC: Adenylyl cyclase; AMPAR: a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; ATP: Adenosine
triphosphate; cAMP: Cyclic adenosine monophosphate; CaMKII: Calcium/calmodulin dependent protein kinase kinase II; CREB1; cAMP response element binding protein; LRRC4: Leucine-
rich repeats containing 4; LTP: Long-term potentiation; MAPK: Mitogen-activated protein kinase; NMDAR: N-methyl-D-aspartate receptor; P: Phosphorylation; PKA: Protein kinase A;
PKMz: Protein kinase Mz; SLM: Stratum lacunosum-moleculare; SR: Stratum radiatum.
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The LRRC4 gene was detected as a missense mutation of
C238G by whole genome sequencing in a patient with
ASD.[37] Coincidentally, the deletion mutation of LRRC4
was also detected in a 4-year-old boy with autistic
characteristics.[38] Umet al[9] investigated the effect of
LRRC4 deletion (LRRC4�/�) on the zoologica behavior
8

of mice and concluded that the LRRC4�/� mice exhibit
typical autistic characteristics, such as defects in social
interaction and repetitive behaviors. Both LRRC4 re-
expression and NMDAR activation normalize social
interaction and self-grooming in LRRC4�/� mice. Further
research has revealed that the deletion of LRRC4 impairs
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excitatory transmission by mediating NMDAR dysfunc-
tion, which leads to ASD.
LRRC4 is a spinal cord neuron protective factor

Multiple sclerosis (MS) is an autoimmune disease
characterized by demyelination the central nervous
system. Its clinical symptoms include muscle weakness,
abnormal gait, fatigue, vision problems, language barriers,
and ataxia, whichmay eventually lead to paralysis.[39] The
known pathogenesis of MS is mainly mediated by T cells.
Peripheral T cells, especially CD4+ T cells, stimulated by
antigens infiltrate the CNS to activate microglia and
macrophages and induce the death of oligodendrocytes
and the loss of myelin sheath around nerve fibers, coupled
with nerve damage.

Experimental autoimmune encephalomyelitis (EAE) is an
internationally recognized animal model for studying MS,
and is mainly divided into three stages as follows:
induction period, symptom period, and recovery period.
The time for mice to experience each period is uncertain
and depends on the inducer and individual differences.
The mice in the induction period had no evident
symptoms, whereas the mice in the symptom period
began to exhibit symptoms of limb weakness or paralysis.
After the effect period, the mice entered the recovery
period and gradually returned to their normal state.

The mice were intra-peritoneally injected with myelin
oligodendrocyte glycoprotein to establish an animal
model of EAE. The expression of LRRC4 in spinal cord
tissue was significantly downregulated during the symp-
tom period in the EAEmice (the 15th day after injection of
myelin oligodendrocyte glycoprotein). The deletion of
LRRC4 exacerbated disease progression and promoted
infiltration of leukocytes into the spinal cord, resulting in
neuro demyelination in the EAE model constructed using
LRRC4 knockout mice. Meanwhile, the ectopic expres-
sion of LRRC4 alleviated the clinical symptoms of EAE
mice and protected the neuron from immune damage,
suggesting that LRRC4 plays a protective role in the
pathogenesis of EAE and protects the neuron from
immune damage.[40]

Neurorehabilitation, especially appropriate locomotor
training, has long been known to contribute to the
recovery of motor function after spinal cord injury.
However, the clear mechanisms remain poorly under-
stood. To reveal the specific mechanism, rats subjected to
spinal cord hemisection injury were placed on a level
treadmill, and the treadmill speed began at 9 cm/s and was
gradually increased to 21 cm/s. The rats were trained 7
days/week for 35min/session for 18 days starting at 4 days
post-operatively. Compared with untrained rats, 36
synapse-related genes were upregulated in trained rats,
with LRRC4 being the most highly expressed.[41] Further
research revealed that training increases the number of
LRRC4-positive synaptic puncta in the L1 spinal cord
after hemisection. Locomotor training promotes the
reconstruction of the neuronal network by enhancing
the expression of LRRC4 in injured spinal cord
neurons.[41,42]
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LRRC4 and GB

GB is the most common malignant brain tumor in the
CNS. Despite maximal surgical resection, diffuse inva-
sion of tumor cells into the surrounding brain tissue is
responsible for treatment failure or relapse, and the poor
prognosis of patients has not improved significantly in
the past decade.[43]LRRC4 has been identified as a tumor
suppressor gene in gliomas. LRRC4 is highly specific in
grade I gliomas, and it is reduced in grade II–III gliomas
and absent in GB (grade IV gliomas). LRRC4 expression
is significantly lower in recurrent tumors than in primary
gliomas. The expression of LRRC4 is closely related to
the malignant degree of gliomas, and the loss of LRRC4
expression may directly increase the malignant degree
and promote the recurrence of gliomas. Thus, the use of
LRRC4 as a marker of degree of malignancy and
prognosis in gliomas has been suggested. Hyper-meth-
ylation of the promoter region is a frequent event of
LRRC4 low expression in gliomas, and LRRC4 was also
inhibited as a direct target gene of miRNA-182 and
miRNA-381,[6] as well as an indirect target gene
suppressed by miRNA-101 by reducing the enrichment
of LRRC4 core promoter H3K2me3 by targeting
enhancer of zeste homolog 2 (EZH2), embryonic
ectoderm development, and DNMT3a [Figure 3].[44]

LRRC4 is a novel inhibitor of autophagy for GB

Autophagy is an evolutionarily conserved catabolic
process that involves sequestration and transport of
damaged organelles and misfolded and dysfunctional
proteins to lysosomes for degradation.[45] Normal
autophagy plays an important physiological role in
human health, while abnormal autophagy leads to the
development of various diseases. Appropriate autophagy
acts as a cytoprotective mechanism leading to tumor cell
apoptosis resistance and drug resistance;[46] however,
excessive autophagy promotes tumor cell death. In
LRRC4 knockdown mice, the expression levels of the
autophagy markers Beclin-1 and microtubule associated
protein 1 light chain 3B (LC3B) in the brain tissue and
spinal cord tissue were significantly higher than those in
wild-type mice, and the over-expression of LRRC4
significantly inhibited GB cell autophagy, suggesting
LRRC4 as a negative regulator of autophagy
[Figure 3].[47]Many drugs cannot penetrate intracranial
lesions because of the presence of the blood–brain
barrier.[48] Therefore, temozolomide (TMZ) is the first-
line drug for patients with GB in clinical practice. TMZ
resistance is the main reason for poor prognosis in
patients with GB.[49] Excitingly, the LRRC4 can enhance
the sensitivity of glioma cells to TMZ by inhibiting
autophagy. Combining the re-expression of LRRC4 and
TMZ treatment prolonged the survival of mice with
tumor xenografts, indicating the potential of LRRC4 as a
prognostic marker for TMZ sensitivity in patients with
GB.[47]

LRRC4 is an inhibitor of protein–protein interactions in GB

LRRC4 is a leucine-rich protein that contains extracellular
leucine rich repeat (LRR) domains, immunoglobulin C2
(IgC2) domain, transmembrane domain, and PDZ-binding
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Figure 3: Recent research progress of LRRC4 in glioma. miRNA-101 reverses the hypermethylation modification of the promoter region of LRRC4 by targeting EZH2, EED, and DNMT3a,
thereby restoring the expression of LRRC4 in glioma cells. The interaction between LRRC4 and DEPTOR promoted the ubiquitination modification and degradation of DEPTOR, which leads to
the phosphorylation of mTOR protein, resulting in inhibiting the activity of downstream protein ULK1, and then inhibiting the occurrence of autophagy. LRRC4 and MEK1/2 competitively bind
to ERK1/2, thereby blocking ERK1/2 entry into the nucleus, and inhibiting the transcription of downstream genes. LRRC4 directly interacts with PDPK1 and HSP90 to phosphorylate
IKKbSer181, resulting in activating the NF-kB signaling pathway to facilitate cytokine secretion, thereby reprogramming the glioma immune microenvironment. LRRC4 binds to Sam68 to
form a complex, which prevents Sam68 from binding to CD44 pre-mRNA, and promotes the binding between eIF4a3 and CD44 pre-mRNA, thereby promoting the formation of circCD44.
CCL2: Chemokine (C-C motif) ligand 2; Circ-CD44: CircRNA-CD44; CUL3: Cullin-3; DEPTOR: DEP domain containing mTOR interacting protein; DNMT3A: DNA methyltransferase 3A; EED:
Embryonic ectoderm development; EGF: Epidermal growth factor; EGFR: Epidermal growth factor receptor; eIF4A3: Eukaryotic initiation factor 4A3; ERK: Extracellular-signal-regulated
kinases; EZH2: Enhancer of zeste homolog 2; HSP90: Heat shock protein 90; IFN-g: Interferon-g; IL-6: Interleukin 6; IkB-a: Inhibitor of NF-kB; IKKb: Inhibitor of NF-kB kinase subunit beta;
LRRC4: Leucine-rich repeats containing 4; MEK1/2: Mitogen-activated protein kinase kinase 1/2; miR: MicroRNA; miRNA: MicroRNA; mRNA: Messenger RNA; mTOR: Mammalian target of
rapamycin; NF-kB: Nuclear factor-kB; P: Phosphorylation; PDPK1: 3-Phosphoinositide dependent protein kinase 1; pre-mRNA: Pre-messenger RNA; SAM68: Signal transduction associated
protein 68; SMAD6: Mothers against decapentaplegic homolog 6; Teff: Effector T cell; TF: Transcription factor; Treg: Regulatory T cell; ULK1: Unc-51 like autophagy activating kinase 1.
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domain in the cytoplasm. LRRC4 is mainly involved in
cell signal transduction through protein–protein inter-
actions. DEP domain containing mammalian target of
rapamycin (mTOR) interacting protein (DEPTOR), a
pro-autophagy factor and mTOR inhibitor, promotes the
phosphorylation of unc-51 like autophagy activating
kinase 1 (ULK1) by inhibiting mTOR activity, resulting
in autophagy.[50] The PDZ-binding domain of LRRC4
can bind to the C-terminal PDZ domain of DEPTOR,
thereby blocking the interaction between DEPTOR and
mTOR, activating the activity of mTOR protein,
10
inhibiting GB cell autophagy and increasing the sensitivi-
ty to TMZ.[47] The over-expression of LRRC4 directly
interacts with phosphoinositide dependent protein kinase
1(PDPK1) and heat shock protein 90 (HSP90) to
phosphorylate IKKbSer181 (inhibitor of NF-kB kinase
b), in which the N domain and C domain of HSP90 bind
to LRRC4 to stabilize the binding of LRRC4 and PDPK1,
activate nuclear factor-kB (NF-kB) signaling pathway to
facilitate cytokine secretion, inhibit the infiltration of
Treg cells (CD4+CD25+Fxop3+ cells), and promote the
expansion of Teff cells (CD4+CD44+CD62L+ cells).[44]
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Additionally, the D domain of LRRC4 competitively
binds to the CD domain of ERK1/2 with mitogen-
activated protein kinase kinase (MAPKK; MEK1/2) to
anchor ERK1/2 in the cytoplasm and inhibits mitogen-
activated protein kinase signaling pathway activation.[51]

Signal transduction associated protein 68 (Sam68) can
bind to the V5 exon of CD44 pre-messenger RNA (pre-
mRNA) and mediate the splicing of CD44 pre-mRNA
into mature CD44 mRNA.[52] The eukaryotic initiation
factor 4A3 (eIF4A3) can combine with pre-mRNA and
promote the pre-mRNA cyclization to form circRNA.[53]

Both Sam68 and eIF4A3 have binding sites on CD44 pre-
mRNA and are close to each other, suggesting that
Sam68 and eIF4a3 can competitively bind to CD44 pre-
mRNA, whereas LRRC4 can form a complex with
Sam68, preventing Sam68 from binding to CD44 pre-
mRNA and promoting the combination of eIF4A3 and
CD44 pre-mRNA as well as the formation of circRNA-
CD44 (circCD44).[54] CircCD44, acts as a competing
endogenous RNA, and adsorbs miR-330-5p and miR-
326, thereby facilitating the expression of the SMAD6
gene, and the over-expression of SMAD6 can inhibit
glioma cell proliferation and invasion [Figure 3].
Conclusion and Perspectives

LRRC4 is a key factor for regulating synapse formation,
stability and excitatory transmission, and is involved in
brain development, memory formation and storage. The
absence of LRRC4not only damages the auditory and optic
nerves to a certain extent but also impacts the formation of
hippocampalneural circuits and synaptic plasticity, thereby
mediating the formation and storage of memory. Deletion
or missense mutation of LRRC4 has been detected in
genetic testing of patients with ASD. LRRC4 can act as a
neuro-protective factor to promote the recovery of
damaged spinal cord neurons and protect them from
immune damage, which makes LRRC4 a promising
therapeutic target for spinal cord diseases. LRRC4 is
expected to become a potential therapeutic target for spinal
cord diseases. In addition, LRRC4 mediates protein–
protein interactions, plays an important role in various
signaling pathways, and inhibits GB cell proliferation and
invasion. LRRC4 not onlymediates the biological behavior
of GB cells but also influences the GB immune microenvi-
ronment. Most importantly, LRRC4 enhances the sensitiv-
ity of GB cells to TMZ by inhibiting autophagy.
Furthermore, LRRC4 also functions as a tumor suppressor
in other tumors. LRRC4 has been confirmed to be missing
in nasopharyngeal carcinoma and thus may be a tumor
suppressor gene in nasopharyngeal carcinoma.[55] In
ovarian cancer, LRRC4 is also considered a tumor
suppressor gene, and its expression is down-regulated.[56]

Subsequently, the hypermethylation events of the LRRC4
promoter region were not only observed in GB but also in
hepatocellular carcinoma, and promoted the occurrence of
hepatocellular carcinoma.[57] Considering that LRRC4
plays an important role in brain development, mental
diseases, and tumorigenesis, in-depth exploration is neces-
sary. In conclusion, LRRC4 has potential as a diagnostic
marker of mental diseases and tumors, and up-regulating
the expression of LRRC4 may be a method for treating
mental diseases and tumors in the future.
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