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Abstract

Nutritional interventions often rely on subjective assessments of energy intake (EI), but these are 

susceptible to measurement error. To introduce an accelerometer-based intake-balance method for 

assessing EI using data from a time-restricted eating (TRE) trial. 19 participants with overweight/

obesity (25–63 years old; 16 females) completed a 12-week intervention (NCT03129581) in a 

control group (unrestricted feeding; n=8) or TRE group (n=11). At the start and end of the 

intervention, body composition was assessed by dual-energy X-ray absorptiometry (DXA), and 

daily energy expenditure (EE) was assessed for two weeks via wrist-worn accelerometer. EI was 

back-calculated as the sum of net energy storage (from DXA) and EE (from accelerometer). 

Accelerometer-derived EI estimates were compared against estimates from the body weight 

planner of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Mean 

EI for the control group declined by 33 and 104 kcal/day for the accelerometer and NIDDK 

methods, respectively (both p ≥ 0.38), versus 300 and 351 kcal/day, respectively, for the TRE 

group (both p < 0.01). At follow-up, the accelerometer and NIDDK methods showed excellent 

group-level agreement (mean bias of −71 kcal/day across arms; standard error of estimate 252 

kcal/day) but high variability at the individual level (limits of agreement from −577 to +436 kcal/

day). The accelerometer-based intake-balance method showed plausible sensitivity to change, and 
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EI estimates were biologically and behaviorally plausible. The method may be a viable alternative 

to self-report EI measures. Future studies should assess criterion validity using doubly labeled 

water.
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Introduction

Caloric restriction is essential for weight loss in humans, but many barriers prevent 

individuals from adhering to a low-energy diet (e.g., cost, frustration, and lack of support(1)). 

Interventions focused on intentional caloric restriction only produce desired weight loss 

in 30%–50% of participants(2, 3). Thus, there is growing interest in alternative behavioral 

approaches that can potentially yield better results. Time-restricted eating (TRE) is a 

promising example that focuses on restriction of meal timing rather than calories. Prior 

studies have shown that TRE (ad libitum intake during an 8–10 hour window each day, 

followed by 14–16 hours of fasting) aids weight loss by reducing eating occasions by 22%(4) 

and daily energy intake (EI) by ~8%–20%(5, 6).

As with other areas of nutrition research, assessment of EI is a key component of TRE 

research. Prior studies have used a range of techniques, from seven-day food diaries(5) to 

retrospective estimations based on photo and text diaries(6). These methods can be highly 

subjective, which is a common limitation when measuring EI(7–9), sometimes entailing 

>30% error(10–12). Therefore, there is a need to investigate more accurate methods for 

assessing EI in TRE research.

One such promising method is the ‘intake-balance’ or ‘expenditure/balance’ method(13–16). 

This method infers EI from highly accurate measurements of net energy storage (ES) and 

energy expenditure (EE). Specifically, since the net ES (i.e., change in body composition 

over time) is defined as EI minus EE, it is possible to rearrange the equation and infer EI 

by summing the measured values of EE and net ES(16). Typically, EE is assessed via doubly 

labeled water, and net ES is assessed via dual X-ray absorptiometry (DXA). However, the 

use of doubly labeled water limits this approach, due its cost-prohibitive, labor-intensive, 

and highly technical nature. Thus, the standard intake-balance method has limited scalability 

for widespread use.

To improve the scalability of the intake-balance method, doubly labeled water could 

potentially be replaced with a surrogate EE measure, particularly an accelerometry-based 

method(17, 18). Although some measurement error would result from this change, the 

degree of error would potentially be lower than the errors observed with self-reported 

EI(19–21). Thus, it is important to investigate the utility of accelerometer-based intake 

balance methods, which has not been done in the setting of a TRE intervention, nor with 

open-source and research-grade accelerometry solutions that may also benefit other areas of 

nutrition research. Therefore, the purpose of this paper is to provide proof-of-concept for an 

accelerometer-based intake-balance method.
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Experimental Methods

Participants and Ethical Approval

This is a secondary analysis of data from a prior study, for which full methods have been 

presented elsewhere(4). Participants were adults (age 18–65 years) who were overweight 

or obese at baseline. This study was conducted according to the guidelines laid down 

in the Declaration of Helsinki and all procedures involving human subjects/patients were 

approved by the Institutional Review Board of the University of Minnesota on March 21, 

2017 (Project identification code number: 1701M06001). Use of the myCircadianClock 

app (Salk Institute, La Jolla, CA, USA) was approved by the Institutional Review Board 

at the Salk Institute for Biological Studies (Project identification code number: 15–0003). 

Written informed consent was obtained from all subjects/patients. The study is registered on 

ClinicalTrials.gov (#NCT03129581).

Study Design/Intervention

The intervention duration was 12 weeks with two-week assessments beforehand (Pre) and 

during the final two intervention weeks (Post). All potential participants first underwent a 

screening procedure in which they were asked to document their food intake (i.e., meal 

timing and food type) for ≥ 1 week using a smartphone application (myCircadianClock). 

Those who had a daily eating window ≥ 14 hours were enrolled and randomized into one 

of two intervention arms, namely unrestricted eating (control) or TRE. The participants in 

the control group were instructed to continue their usual eating habits while tracking all 

meal timing and food types via the myCircadianClock application. The participants in the 

TRE group self-selected a daily 8-hour eating window, which they were asked to keep 

consistent throughout the 12-week intervention. During the window, ad libitum food intake 

was permitted. Outside the window, participants were instructed to limit their oral intake to 

medications and water.

Procedures/Measures

For the Pre and Post assessments, each participant had their anthropometric variables and 

study endpoints measured, along with wearing an accelerometer (ActiGraph GT9X Link, 

ActiGraph LLC, Pensacola, FL, USA) for two weeks.

Anthropometric Variables and Study Endpoints.—Body composition was assessed 

using a GE Lunar iDXA system (GE Healthcare, Chicago, IL, USA) and analyzed by the 

enCore™ software (Version 16.2). The resulting variables were gross ES, fat mass (FM), 

fat-free mass (FFM), and total mass (i.e., the sum of FM and FFM). Automated quality 

assurance checks were performed at the start of each day the system was operated. Full body 

scans were performed for all participants, and symmetrical estimations were applied if a 

portion of the participant’s body fell outside the 198×66 cm scanning area. The radiation 

dose was 3–6 μGy per scan. Participants fasted for at least 8 hours before each DXA scan.

Accelerometer.—Wrist accelerometry was used to quantify EE at the Pre and Post 

assessments. Each participant wore the GT9X on the non-dominant wrist. The devices were 

initialized to sample at 30 Hz with the Bluetooth and inertial measurement unit features 
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disabled, and with idle sleep mode enabled. This configuration allowed a single battery 

charge to last the full 14 days. For the Pre assessment, GT9X data were collected for two 

weeks ending just before randomization (i.e., the start of Week 1). For the Post assessment, 

GT9X data were collected from the start of Week 11 to the end of Week 12 (end of study). 

On both occasions, participants were asked to wear the monitors continuously to the greatest 

extent possible.

Data Processing

Accelerometer data were read into R using the AGread package(22). Two broad tasks 

were performed that each used a different data format: First, EE was calculated from 

raw acceleration data (in gravitational units, 30 Hz resolution); and second, non-wear and 

sleep periods were determined from filtered and aggregated data (activity counts, minute-

by-minute resolution). Activity counts are a proprietary unit of cumulative acceleration 

calculated at regular intervals(23), in this case every minute (i.e., counts·min−1).

Calculating EE.—For each sample, the Euclidian norm minus one (ENMO) was 

calculated from the individual axes ENMO = x2 + y2 + z2 − 1 , with negative values 

rounded to 0. The output was then averaged each second, converted to milli-gravitational 

units (i.e., multiplied by 1000), and used to calculate oxygen consumption (VO2). The 

Hildebrand non-linear method was used (Eq. 1), as described by Ellingson et al.(24). The 

method includes a floor value of 3.0 ml/kg/min to account for the lack of intercept in 

the model. It was selected instead of its linear counterpart(25) because it outperformed the 

latter method in the validation study by Ellingson et al.(24), yielding mean estimates within 

0.05–0.23 metabolic equivalents (0.2–0.8 ml/kg/min) of indirect calorimetry for sedentary 

and light intensity behaviors, and within 0.8–2.4 metabolic equivalents (2.8–8.4 ml/kg/min) 

for moderate and vigorous intensity behaviors. For the present analysis, VO2 values were 

converted to kcal/kg/min assuming a respiratory quotient of 0.85 (4.862 kcal/L O2)(26). 

Finally, the data were reduced to minute-by-minute resolution by averaging the values each 

minute.

V O2 ml/kg/min = 0.901 ⋅ ENMO0.534 (Eq. 1)

Non-Wear and Sleep Classification.—The minute-by-minute activity count data were 

first analyzed using the non-wear detection algorithm of Choi et al.(27, 28) to verify 

compliance with the wear protocol, as discussed later. After applying the non-wear 

algorithm, the wear time periods were analyzed to identify sleep using the algorithm of 

Tracy et al.(29, 30). The prior steps resulted in each minute being labeled as either awake, 

asleep, or non-wear. These labels (derived from activity counts) were then merged with 

the EE estimates (derived from raw acceleration data) to obtain a complete set of minute-by-

minute accelerometer data. For non-wear and sleep periods, a basal EE value was imputed 

based on the Schofield equations(31). The original prediction units (MJ/day) were converted 

to kcal assuming a thermochemical kilocalorie (239.006 kcal/MJ).
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Cleaning and Aggregation of EE Data.—Cleaning procedures involved discarding 

data from days with < 22 h of wear time, then excluding participants if they had < 4 

d remaining at either time point. These steps ensured the aggregation procedures would 

draw from sufficiently compliant data. For each participant, aggregation involved calculating 

mean daily EE (kcal/day) from each valid day during the two weeks before randomization 

(EEpre) and during Weeks 11–12 (EEpost).

Calculating ES, Energy Balance, and EI.—Based on the DXA measurements of FM 

and FFM (both in kg), gross ES was calculated using Eq. 2 for baseline (ESpre) and Weeks 

11–12 (ESpost)(17, 18). Daily net ES was calculated using Eq. 3 before determining EI. For 

the baseline assessment, individuals were assumed weight stable, and thus accelerometer 

data were used to determine EI (i.e., EIpre = EEpre). For the follow up assessment, EI was 

calculated as the sum of EE and net ES (i.e., EIpost = EEpost + net ES).

GrossES (kcal) = 1020 ⋅ FFM + 9500 ⋅ FM (Eq. 2)

NetES(kcal/day) = ESpost − ESpre

daysbetweenscans (Eq. 3)

Comparison Measure of EI.—Alternative EI predictions were obtained using the 

National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Body Weight 

Planner(32). This was done through the online interface (https://www.niddk.nih.gov/bwp) in 

expert mode with advanced controls activated. Specifically, the following variables were 

inputted for each participant: sex, age, height, baseline body mass, baseline resting EE (from 

Schofield’s equations; see(31)), baseline physical activity level (total EE divided by resting 

EE), baseline body fat percentage (assessed by DXA), “goal weight” (i.e., body mass at the 

end of the intervention), number of days between assessments, and percentage change in 

physical activity level from baseline to the end of the intervention (based on accelerometer 

data). The system produced a baseline caloric intake (i.e., EIpre) commensurate with 

maintaining the original weight, as well as a daily caloric intake (i.e., EIpost) commensurate 

with losing the observed amount of weight in the observed amount of time. The purpose of 

including the NIDDK estimates was to allow comparison of the accelerometer-based method 

against an established method that uses similar information. The key difference between the 

two methods is that the NIDDK method is primarily for individualized and prospective use, 

while the accelerometer-based intake-balance method will allow scalable batch processing in 

retrospective analyses.

Analysis

Statistical Tests.—Paired T-tests were used to compare Pre and Post energy balance 

values (ES, EE, and EI) within each group. To assess agreement between the accelerometer-

based intake-balance method and the NIDDK method, we used tests of statistical 

equivalence (± 100 kcal/day tolerance) for each group and timepoint(33). Additional analyses 

were conducted to test agreement for the Post assessment, where individuals were not 

assumed to be weight stable. These included regression-based and Bland-Altman analyses 
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to examine individual-level error and systematic bias(34, 35). For the regression model, the 

key performance metrics were intercept and slope with 95% confidence intervals (CIs), as 

well as standard error of the estimate (SEE). Perfect agreement would be represented by an 

intercept of 0 and a slope of 1 (i.e., following the line of identity). Regression coefficients 

were tested statistically using the equivalence methods suggested by Dixon et al.(33), namely 

by centering both variables on the mean of the accelerometer-based intake-balance method, 

and by using specific equivalence zones for the intercept (±10% of the intake-balance mean) 

and slope (0.9 to 1.1). To account for the number of statistical tests, all p-values were 

adjusted using the false discovery rate correction(36).

Data Loss and Statistical Power.—20 of 22 participants were retained through the full 

intervention(4). One participant did not meet the valid data requirements for this analysis 

(i.e., lacked ≥ 4 days with ≥ 22 h of wear time at both the Pre and Post assessments), and 

thus the analytic sample included 19 participants (n = 8 control; n = 11 TRE). The sample 

size in each group allowed detection of an effect size (d) of 1.4, with α = 0.05 and β = 

0.80(37).

Results

Participant characteristics are shown in Table 1. Hereafter, summary statistics are given as 

mean ± SD. The time between the Pre and Post visits was 94 ± 7 days (control group) and 

96 ± 6 days (TRE group).

Changes in Energy Balance

Table 2 shows summary statistics for energy balance variables, and individual values are 

plotted in Figure 1. Mean ES decreased from Pre to Post in both groups, by a small amount 

in the control group (6.8 megacalories; p = 0.39) and a more substantial amount in the TRE 

group (16.8 megacalories; p = 0.01). Mean relative EE changed by only ± 0.2 kcal/kg/day 

in either group (p = 0.85–0.93), but individual trends were variable (Figure 1B). Thus, the 

small mean changes were attributable to cancellation, with some participants increasing their 

relative EE and others decreasing it. For the accelerometer-based intake balance method, 

mean EI decreased slightly in the control group (33 kcal/day; p = 0.85), while it decreased 

more considerably for the TRE group (300 kcal/day; p = 0.01). Similarly, the NIDDK 

method showed a decrease of 104 kcal/day for the control group (p = 0.38), versus 351 

kcal/day for the TRE group (p < 0.001).

Agreement of Accelerometer and NIDDK Methods

The accelerometer and NIDDK methods showed strong agreement for EIpre in both the 

control group (mean separation of 22 ± 48 kcal/day; equivalence p = 0.01) and the TRE 

group (mean separation of 36 ± 54 kcal/day; equivalence p = 0.01). At the Post assessment, 

the accelerometer and NIDDK methods remained similar, but there was greater variability 

(separations of 49 ± 333 kcal/day in the control group, and 86 ± 205 kcal/day in the TRE 

group; equivalence p = 0.56 and 0.57, respectively). The same was true for Pre-to-Post 

changes in EI (separations of 71 ± 294 kcal/day in the control group, and 51 ± 177 kcal/day 

in the TRE group; equivalence p = 0.57 and 0.38, respectively).
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Figure 2 shows individual-level data for EI predictions at the Post assessment. There, the 

accelerometer and NIDDK methods were related with a regression intercept of −71 kcal/day 

(95% CI = [−193, 51]; equivalence p = 0.01) and slope of close to one (B = 0.88; 95% CI 

= [0.69, 1.06]; equivalence p = 0.76). The model had SEE of 252 kcal/day. Bland-Altman 

analysis showed a small mean bias (−71 kcal/day, consistent with the regression model 

intercept) but wide limits of agreement spanning a range of 1013 kcal/day (i.e., [−577, 436]). 

There was negligible evidence of systematic error, with the trendline having slope of −0.05 

and explaining < 2% of variance.

Discussion

In this study, we provided proof-of-concept for an accelerometer-based intake-balance 

method. This was done in the setting of a TRE intervention, but the method may have 

utility in other settings as well. Although we did not have criterion values against which 

we could compare our estimates, the findings nevertheless suggest the accelerometer-based 

technique can detect enough meaningful EI signal to warrant further study and application. 

In particular, we observed comparable EI reductions for the TRE group when using the 

accelerometer-based method (9.9% ± 6.4%) and the NIDDK method (12.3% ± 2.9%). 

Furthermore, the accelerometer-based estimates were comparable with prior studies showing 

TRE produces EI reductions of 8%–20%(5, 6).

The accelerometer-based intake-balance method is a promising alternative to self-reported 

EI, which many have recommended abandoning for estimation of true EI(9, 38, 39). A further 

advantage is that it can be refined over time as innovation continues in the fields of body 

composition assessment and accelerometry(40). Many current innovations in accelerometry 

use open-source tools to streamline usage and increase accessibility for end-users(41). In 

keeping with the latter trend, we have provided sample code and commentary to facilitate 

using our method (see paulhibbing.com/TREaccel).

To our knowledge, this is the first study to present an open-source, accelerometer-based 

intake-balance method in the setting of a TRE intervention. Shook et al.(17) were among 

the first to use a general device-based approach, including a comparison of their predictions 

against values derived from doubly labeled water. They showed outstanding utility of the 

SenseWear Armband, but the latter device was closed-source and has now been discontinued 

for several years(42). Today, ActiGraph devices are among the most commonly used in 

research(43), with an abundance of ongoing work being devoted to improving their utility 

for EE assessment(44). Thus, our use of an ActiGraph device represents a logical starting 

place for developing an open-source accelerometer-based method. Consumer devices have 

may also have utility in this space(45–47), although concerns still exist, many relating to the 

proprietary nature of the underlying algorithms(48). Overall, our method provides a starting 

point from which future studies can begin refining the use of accelerometers for determining 

EI.

Strengths and Weaknesses Compared to the NIDDK Body Weight Planner

In addition to providing proof-of-concept for the accelerometer-based method, our analysis 

compared the accelerometer-based intake-balance method to the existing NIDDK Body 
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Weight Planner method. While the planner is primarily intended for prospective use, data 

can also be entered retrospectively to infer caloric intake over a particular period (e.g., the 

duration of an intervention). As discussed below, the NIDDK method may be advantageous 

to use in some settings while the accelerometer-based method is advantageous to use in 

others.

Accessibility is a major strength of the NIDDK method. This is true in both a literal sense 

(the method is freely available without needing to purchase an accelerometer or related 

software) and an abstract sense (the online interface is easy to navigate). Furthermore, the 

NIDDK method is based on a model that accounts for adaptations to weight loss over 

time, making it a highly useful tool for both weight loss and weight maintenance. These 

advantages make the NIDDK method especially useful in clinical and consumer settings. A 

limitation of the method is that the web interface currently requires manual data entry. This 

creates a logistical barrier for research at scale, and also increases the risk of data entry error. 

Furthermore, the method requires that users provide information about their physical activity 

level, which must either be measured independently or self-reported through a two-item 

submodule. These characteristics may make the NIDDK method less advantageous for use 

in research than for clinical and commercial use.

The accelerometer-based method’s strengths and weaknesses broadly complement the 

NIDDK method. As noted previously, a major strength of the accelerometer-based method 

is its open-source setup and potential for ongoing refinement. Furthermore, the ability 

to automate the accelerometer-based method for batch processing enhances its scalability 

and consequent utility for research. That is, the accelerometer-based method can reduce 

burden on participants and researchers alike by eliminating the need to complete and score 

self-report instruments or similar tools such as the NIDDK method. Automation would 

also enhance quality control by reducing the risk of data entry errors. While these are 

certainly strengths of the accelerometer-based method in research settings, they may not be 

as applicable in commercial and clinical settings. This is due to both the cost barrier of 

obtaining an ActiGraph device, and the procedural barrier of processing the data in R (even 

with the sample code mentioned earlier). Furthermore, the accelerometer-based method is 

designed primarily for retrospective use and does not account for adaptations to weight 

loss like the NIDDK method. Thus, the accelerometer-based method should be considered 

primarily a tool for research, with a need for ongoing investigation in terms of its long-term 

utility for studies on weight maintenance and adaptations to weight loss.

Assumptions and Implications

While the intake-balance method finds its theoretical basis in the First Law of 

Thermodynamics(49), some additional assumptions were necessary to implement the method 

in the form described above. The key assumptions were that 1) participants were weight 

stable at baseline, and 2) there was linear change in ES from Pre to Post (see Eq. 3). 

These assumptions made it possible to infer daily net ES for each two-week measurement 

period, despite having only one DXA scan at each time point. For the Post assessment, a 

third, minor assumption accompanied the previous two, namely that the daily net ES values 
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(derived from change throughout the intervention) and the mean daily EE values (derived 

from valid days in the final two weeks) were comparable enough to support calculating EI.

The prior assumptions have implications for interpreting the present results and designing 

future studies. For the present results, the assumed linear change in ES implies that a 

constant energy balance was maintained throughout the intervention (i.e., that EI and EE 

maintained a consistent subtractive relationship). While this does not require that EI and EE 

were constant from day to day, it does require that they were offset by a consistent amount to 

keep net ES stable. In practice, the latter assumption was able to withstand minor day-to-day 

deviations, provided they canceled out over the course of the intervention. Nevertheless, it is 

important to consider this characteristic of the method when interpreting the results.

In terms of study design, it should be noted that future study protocols could incorporate 

mid-trial assessments of ES and EE to facilitate different (e.g., non-linear) approaches 

to predicting EI. This would be an especially promising use for accelerometry, since a 

similar approach with doubly labeled water would face many feasibility barriers. Future 

studies could also perform two DXA scans at each time point, which would ensure exact 

concurrence of EE and net ES measurements. This would sidestep the assumption of linear 

change in ES, but it could also be too short of a measurement window for DXA to detect 

meaningful changes(50, 51).

Further implications for interpretation and design may arise when considering the duration 

of the intervention. A longer intervention would result in greater separation between the Pre 

and Post assessments, potentially amplifying the impact of an assumed linear change in ES. 

A longer intervention could also elicit metabolic adaptations that are modeled in the NIDDK 

method, but not the current version of the accelerometer-based method. Refined versions 

of the accelerometer-based method could be developed to address this, but more research 

and development are needed to attain this. In the meantime, results must be interpreted with 

careful attention to the unique design features of each study.

Strengths and Limitations of This Study

The present study had strengths and limitations. Its main strength was the presentation 

of an innovative accelerometer-based intake-balance method applicable to a widely used, 

wrist-worn activity monitor (GT9X). Participants were also exceptionally compliant with 

wearing the device, which was another strength. The main limitations were the small 

sample size and lack of data from criterion measures or self-report methods. Additionally, 

estimates of agreement may have been inflated when comparing the accelerometer-based 

and NIDDK methods, as there was partial overlap of the information used in each approach. 

This issue is discussed in more detail in the supplementary material. Overall, there is a 

clear need for more research to test the criterion validity of this accelerometer-based intake-

balance approach. However, our study provides proof-of-concept and preliminary evidence 

to suggest the method is a feasible and scalable option with great potential to enhance 

ongoing work. Future studies should directly compare the method against values obtained 

from self-reported EI as well as objective measures such as doubly labeled water.
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Conclusions

The accelerometer-based intake-balance method showed promising utility when applied to 

data from a TRE intervention. This strong proof-of-concept calls for ongoing refinement 

and validation of the method. Such efforts have the potential to increase the quality and 

consistency of EI measurements, while also reducing their burden on participants and 

researchers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spaghetti plot of changes in energy storage (ES; panel A), relative energy expenditure (EE; 

panel B), absolute EE (panel C), and energy intake (EI; panel D). Gray lines are individual 

participants, and heavy black lines are group means. Solid lines represent the control group 

while dashed lines represent the time restricted eating (TRE) group.
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Figure 2. 
Comparison of estimated energy intake (kcal/day) between the accelerometer-based intake-

balance method and the NIDDK bodyweight planner. Values are from the Post assessment 

where, unlike the Pre assessment, individuals were not assumed to be weight stable. A) 
Scatterplot showing line of identity (solid) and line of best fit (dashed, from least-squares 

regression), where both variables are centered on the mean of the accelerometer-based 

intake-balance method to ensure a non-extrapolated intercept with a null-hypothesized value 

of 0; B) Bland-Altman plot showing limits of agreement (horizontal dashed lines), mean 

bias (solid horizontal line), and systematic bias (dot-dashed trendline from least squares 

regression) - Note: NIDDK, National Institute of Diabetes and Digestive and Kidney 

Diseases; TRE, time restricted eating.
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