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INTRODUCTION

In this paper, we present a methodology for meta-analysis of 
diagnostic test accuracy (DTA) studies when the individual stud-

ies have multiple effect sizes according to multiple cut-off values 
(thresholds). The proposed method allows the use of all the infor-
mation without omission in cases of multiple thresholds and mul-
tiple effect sizes. Therefore, this study requires basic understand-
ing of meta-analysis of DTA studies as well as prior knowledge in 
relation to statistical models for calculation of summary statistics 
by referring to existing works [1-4]. 

In the case of general pairwise meta-analysis, one effect size is 
calculated, whereas in meta-analysis of DTA studies, two paired 
effect sizes are combined simultaneously; for example, the esti-
mates of sensitivity and specificity are calculated at the same time. 
In the meta-analysis of DTA studies, it is assumed that the cut-off 
values (thresholds) of the target studies are similar; however, in 
practice, the cut-off values are not identical, which may be an im-
portant risk factor of heterogeneity in the summary receiver op-
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erating characteristic (SROC) curve [1].
A number of existing systematic reviews have investigated the 

methods for calculating effect sizes according to multiple thresh-
olds in meta-analysis of DTA studies [5-9]. In these prior studies, 
the Youden index has been used, in which a point where the sum 
of the specificity and sensitivity has the maximum value is derived 
through the simple formula of “sensitivity+specificity−1.” In the 
receiver operating characteristic (ROC) curve of a single study, a 
single cut-off value, the highest, is selected and a bivariate model 
is used, whereas the cut-off values that are not selected are dis-
carded. In this way, although there are multiple effect sizes for 
multiple cut-off values, only one effect size is selected. In this case, 
incomplete reporting occurs by choice, which is a contradictory 
consequence. Thus, it is not possible to use all the available infor-
mation. 

To address this problem, previous research works on meta-
analysis of DTA studies have used all the effect sizes according to 
multiple cut-off values [10-17]. We introduce a method for esti-
mating the optimal cut-off value, sensitivity, and specificity, which 
is based on the total summary statistics and the SROC curve by 
using the distribution functions of the diseased and non-diseased 
groups, respectively [17]. 

MATERIALS AND METHODS

Diagnostic test summary statistics and models
DTA studies are typically represented by summary statistics 

and a summary line of a basic 2× 2 table consisting of true posi-
tive (TP), false positive (FP), false negative (FN), and true nega-
tive (TN) values. In general, representative summary statistics in-
clude sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). An example of a summary line 
for summary statistics is the SROC curve. 

For calculation of the summary statistics of DTA studies, an 
appropriate model needs to be selected, as in the case of the gen-
eral pairwise meta-analysis. Models with simultaneous considera-
tion of sensitivity and specificity include the bivariate and hierar-
chical models. 

In the bivariate model, a binominal distribution that directly 
models the sensitivity and specificity is assumed for within-study 
variations and a bivariate normal distribution is assumed for be-
tween-study variations. The hierarchical model assumes a binom-
inal distribution for within-study variations; for between-study 
variations, a hierarchical distribution is assumed for the parame-
ters included in the logistic model by applying the logistic regres-
sion model to determine the probability of a binominal distribu-
tion [1,4]. However, both models are similar to the random effect 
model of a general pairwise meta-analysis, and the two models 
produce the same value mathematically when there is no covari-
ate [18,19]. 

In this study, estimation of the values will be performed using 
the “meta”, “mada”, and “diagmeta” packages of the R software, and 
these packages need to be installed before running the software. 

• install.packages(“meta”)
• install.packages(“mada”)
• install.packages(“diagmeta”)

Data coding and loading
As sample data for meta-analysis of DTA studies (Table 1), 13 

DTA studies on prostate cancer (34 effect sizes including total 
cut-offs) were collected. In the table, the biomarkers indicate di-
agnostic markers for each test, and the cut-off indicates the thresh-
old. The Youden index was calculated according to the formula of 
“sensitivity+specificity−1”, and if there were two or more cut-offs 
within the same study, the variable of Youden index choice (Y.c) 
value corresponding to the highest cut-off was coded as 1.

In univariate and bivariate analyses using meta and mada func-
tions, one threshold with the highest Youden index was selected 
in a single study for analysis. In bivariate analysis using the diag-
meta function, all thresholds were included in the analysis and 
the optimal threshold was estimated.

Ethics statement 
This study used publicly available data and did not include hu-

man participant research. Therefore, this study was not submitted 
for institutional review board approval and did not require informed 
consent procedures.

RESULTS

Univariate analysis
The “metaprop” function from the “meta” package calculates 

the total effect size when there are a number of events (event) and 
a number of samples (n) in the proportion-type data.

In sensitivity analysis, the number of events is TP and the num-
ber of samples (n) is TP+FN. Among the methods for calculating 
the effect size in proportion-type data, the method based on logit 
transformation and then back transform was used (the logit 
transformation and Clopper–Pearson method). When the as-
sumptions of the statistical model are properly applied for consist-
ency and considering the symmetry and distribution of the data, 
it is preferable to transform (log transformation or logit transfor-
mation) the proportion-type data because this produces conserv-
ative results through the transformation. The inverse variance 
method is a basic method of meta-analysis, which utilizes the in-
verse variance of the applicable study when calculating the 
weights of individual studies, and the tau value, which is the be-
tween-study variance, was calculated using the DerSimonian–
Lair estimator in a random effect model.

The sensitivity was 0.844 in the common effect model and 0.862 
in the random effect model, whereas the specificity was 0.535 in 
the common effect model and 0.484 in the random effect model, 
indicating a low specificity in the latter model. The heterogeneity 
I2 of both models was 79.5% in sensitivity and 96.7% in specifici-
ty; thus, it is reasonable to converge to the random effect model 
(Figure 1). 
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Bivariate analysis using one cut-off within a study
Calculation of summary statistics

The reitsma function from the “mada” package, which is suitable 
for a bivariate model, was used. In the reitsma function, 13 data 
extracted from a single cut-off value with the highest Youden in-
dex for each study were entered, and because calculation is not 
possible if there is ‘0’ in a data cell, 0.5 was entered into all cells of 
the study (correction.control= “all”) or only the cells of the corre-
sponding study (horizontal) (correction.control=“single”) were 
corrected to prevent error in the calculation. In the options, it is 
possible to adjust to an arbitrary value such as “correction= 0.5,” 
where 0.5 is the default value. For models using the reitsma func-
tion, “fit” was assigned.

Examining the result values through summary(fit), the values 
of sensitivity 0.863 and specificity 0.483 (= 1−0.517 FP rate) were 
obtained. The area under the curve (AUC) value of 0.794 can be 
observed in the middle of the console window, and values corre-
sponding to the HSROC model are also shown (Figure 2).

The SROC curve uses the object calculated with the reitsma 
function. When a graph is drawn on the order of a command, the 
SROC curve first drawn with the “plot” function is temporarily 
saved in the computer memory, so individual studies are addi-
tionally indicated with the “points” function.

The function “plot” draws graphs. In the function, the set model 
was entered into “fit,” and “sroclwd= 2” represented the thickness 
of the SROC curve. The units of the x and y axes were adjusted by 

Table 1. Data sample for diagnostic test accuracy

Name Study Cut-off TP FP FN TN Biomarker Youden Y.c

Babajide2021_PHI 1 26 51 95 1 11 PHI 0.08 0
Babajide2021_PHI 1 32 48 86 4 20 PHI 0.11 0
Babajide2021_PHI 1 35 47 78 5 28 PHI 0.17 1
Benchikh2010_4K 2 20 175 333 12 480 4K 0.53 1
Braun2016_4K 3 4 206 707 3 84 4K 0.09 0
Braun2016_4K 3 6 200 634 8 158 4K 0.16 0
Braun2016_4K 3 8 195 569 13 223 4K 0.22 0
Braun2016_4K 3 10 192 498 16 294 4K 0.29 0
Braun2016_4K 3 12 184 434 24 358 4K 0.34 1
Bryant2015_4K 4 4 127 607 6 260 4K 0.25 0
Bryant2015_4K 4 6 119 453 14 414 4K 0.37 0
Bryant2015_4K 4 8 110 332 23 535 4K 0.44 0
Bryant2015_4K 4 10 103 258 30 609 4K 0.48 1
de la Calleo2015_PHI 5 24 112 191 10 82 PHI 0.22 1
Guazzoni2011_PHI 6 30.9 237 58 24 31 PHI 0.26 1
Hansen2013_PCA3 7 35 94 186 43 369 PCA3 0.35 0
Hansen2013_PCA3 7 24 115 258 22 297 PCA3 0.37 1
Leyten2014_PCA3 8 35 79 153 36 175 PCA3 0.22 0
Leyten2014_PCA3 8 25 95 182 20 146 PCA3 0.27 1
Loeb2015_PHI 9 31 136 301 24 178 PHI 0.22 1
Loeb2015_PHI 9 28.6 144 335 16 144 PHI 0.20 0
Loeb2015_PHI 9 24.1 152 401 8 78 PHI 0.11 0
Nordstrom2015_PHI 10 26 254 661 12 73 PHI 0.05 0
Nordstrom2015_PHI 10 39 240 464 26 270 PHI 0.27 0
Nordstrom2015_PHI 10 47 200 350 65 385 PHI 0.28 1
Parekh2015_4K 11 6 218 487 13 294 4K 0.32 0
Parekh2015_4K 11 9 207 371 24 410 4K 0.42 1
Parekh2016_4K 12 12 199 300 32 491 4K 0.48 0
Parekh2016_4K 12 15 183 238 48 543 4K 0.49 1
Punnen2017_4K 13 6 131 171 2 62 4K 0.25 0
Punnen2017_4K 13 7.5 127 159 4 76 4K 0.29 0
Punnen2017_4K 13 9 126 149 5 86 4K 0.33 0
Punnen2017_4K 13 12 120 132 11 103 4K 0.35 0
Punnen2017_4K 13 15 114 118 17 117 4K 0.37 1

TP, true positive; FP, false positive; FN, false negative; TN, true negative; Y.c, Youden index choice within a study; PHI, prostate health index; PCA, 
prostate cancer; 4K, 4-kallikrein.
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adjusting “xlim” and “ylim”, respectively. The current graph shows 
the range from a minimum of 0 to a maximum of 1. The informa-
tion of individual studies is entered in “points.” “fpr()” and “sens()” 
respectively represent the FP rate and sensitivity of individual stud-
ies, and “pch= 2” indicates the shape. Different numbers indicate 
different shapes as follows: rectangle (0), circle (1), triangle (2), 
cross (3), scissors (4), rhombus (5), inverted triangle (6), star (8), 
and black dot (20). The shape that allows the best discrimination 
was selected considering the visibility (Figure 3).

Testing of heterogeneity
The summary statistics and the SROC summary line described 

above are the deliverables that must be presented for DTA studies. 
In the subsequent analysis, the heterogeneity of individual studies 
is tested in the same way as the general pairwise meta-analysis, 
and if there is any significant factor, it should be tested and re-
ported. 

The basic assumption of the SROC curve is that the shape of 
the ROC curve is identical in all studies. However, this basic as-
sumption cannot hold if there is heterogeneity between studies. 

There are a variety of causes of heterogeneity such as chance, 
difference in cut-off value, difference in study design, prevalence, 
study environment, and the demographic factors of the sample 
population [1,4]. In meta-analysis of DTA studies, there are vari-
ous methods for testing and diagnosing the status of heterogenei-

ty [1,4]. In the first method, the asymmetry of the SROC curve is 
verified. In the second one, the possibility of heterogeneity is sus-
pected if the degree of scattering, that is, the variation of individu-
al studies in the SROC curve, is large. In the third method, heter-
ogeneity may be suspected if the between-study variation is great-
er than the within-study variation in the forest plot (sensitivity, 
specificity, diagnostic odds ratio [DOR]). These methods only de-
pend on visual discrimination, and therefore, the researchers 
should be able to observe the overall outline and formulate a 
comprehensive judgement on the heterogeneity. 

The symmetry of the SROC curve indicates the agreement be-
tween the models of a divided SROC curve when this curve is di-
vided by an arbitrary line from the top of the y-axis to the bottom 
right of the x-axis. That is, a diagnostic test with high accuracy will 
show that the SROC curve is symmetrical, the inflection point is 
drawn to the top left corner, and the curve will have a sharp turn to 
increase its AUC. Then, the value of Youden’s J index (J=sensitivity+ 
specificity−1) will increase. 

According to the judgment based on visual discrimination, the 
SROC curve in this example does not appear to have a high 
asymmetry and the degree of scattering of individual studies also 
does not seem to be large. However, since the specificity is low 
compared to the high sensitivity, the inflection point of the entire 
curve is located in the center and top right instead of top left, 
which indicates that the diagnostic test does not have a sufficient-

Figure 1. Univariate analysis using meta package. 
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Figure 2. Bivariate analysis using one cut-off within a study (mada package).

ly high accuracy. However, as the example diagnostic test is a test 
for diagnosing prostate cancer, a major chronic disease, through 
biomarkers, the abovementioned characteristic of the curve is ac-
ceptable from the point of view that the test is more specialized in 
the sensitivity for identifying the diseased. The specificity of the 
test can be improved through additional biopsy or radiological 
examination afterward, and thus the above example may be con-
sidered acceptable as the benefit of finding more immediate risk 
or threat to life (sensitivity) is greater than the benefit of accurate-
ly judging that the person is not a patient with a prostate cancer 
(specificity).

Bivariate analysis using multiple cut-offs within a 
study
Calculation of summary statistics

The diagmeta function from the “diagmeta” package was used 
for the calculation. In the bivariate model of the “mada” package, 
which was considered above, 13 data extracted from a single cut-
off value with the highest Youden index for each study were en-

Figure 3. Summary receiver operating characteristic (SROC) curve 
(bivariate analysis using one cut-off within a study) for diagnostic 
test accuracy. CI, confidence interval; AUC, area under the curve.
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tered, but in the case of the diagmeta function, 34 data correspond-
ing to all cut-off values were used. It is not necessary to match the 
number of cut-offs for each study. 

The variable names in the example data of this study (Table 1) 
were changed to the same names of the parameters in the diag-
meta function using the colnames function (“author”, “study_id”, 
“cutpoint”, “tpos”, “fpos”, “fneg”, “tneg”). In general, when functions 
are developed in a package, the variable names in the data are set 
to allow linking. However, sometimes there are functions in which 
the variable names cannot be linked and therefore, we recommend 
using the parameter names that are provided by default to reduce 
possible errors.

This model considered continuous biomarkers of the observed 
diseased group and the non-diseased group. In individual studies, 
when TP, FP, FN, and TN corresponding to each cut-off are given 
according to a random number of cut-offs, sensitivity and speci-
ficity can be calculated for the respective studies. In particular, this 
model was developed in accordance with the specificity and 1-sen-
sitivity corresponding to the negative test result in the diagnostic 
test.

(1)

where h denotes the normal model or logistic model, Sp is the 
specificity, Se is the sensitivity, x is the threshold,  and  denote 
the mean and variance for non-diseased, and  and  represent 
the mean and variance for diseased.

From individual data, a normal distribution or a logistic model 
is used to derive the corresponding model (h) (1), and this model 
is transformed to a linear mixed effects model for fitting (2) and 
(3). In general, a linear mixed effects model includes fixed effects 
(α0, α1, β0, and β1) and random effects (a0, a1, b0, and b1), and 
the structure of the model is changed according to how the 
weights of these parameters are set, which correspond to the in-
tercepts and slopes for the respective cases.

(2)

(3)

where TN is true negative, FN is false negative, s denotes study, i 
is the threshold of the study, α0 and α1, β0 and β1 are fixed inter-
cepts and fixed slopes for non-diseased and diseased, respectively; 
a0 and a1, b0 and b1 are random intercepts and random slopes 
for non-diseased and diseased, respectively; e is residual error for 
non-diseased, and f is residual error for diseased.

As for the model of the diagmeta function, the weights of the 
individual intercept and slopes are selected when calculating the 
linear mixed effects model. For the selection, eight options of dis-
tribution function are given as follows: “DIDS”, “CIDS”, “DICS”, 
“CICS”, “DS”, “CS”, “DI”, and “CI” (Figure 4). For example, if it is 
assumed that the intercepts of individual studies are different and 
the slopes within the study are the same, the different random in-

tercepts and common random slope (DICS), b0s= b1s= bs, func-
tion is selected [17,20,21]. Therefore, it is recommended that clin-
ical researchers make a comprehensive judgment by comparing 
the values calculated using multiple models rather than trying to 
understand the problem of setting a statistical model in excessive 
detail. 

“log.cutoff” sets whether to use the respective cutoffs after log 
transformation or use them as the raw data. In general, as the 
number of data is not large, it is necessary to normalize the values 
through log transformation.

Examining the results through the summary(diag) function, 
we can observe and verify the frequency of the cut-offs in detail 
as well as the number of cut-offs for individual studies. At the bot-
tom of the result window, the total number of studies (13) and the 
number of used cut-offs (34) are shown as a summary, and the 
DICS function was used as the model. The optimal cut-off value 
was 33.666, sensitivity was 0.718, specificity was 0.669, and AUC 
value was 0.749 (Figure 4). 

Along with summary statistics, figures for deriving the statistics 
are presented (Figure 5). In the original paper on the develop-
ment of the diagmeta package [17], survival curves were repre-
sented in terms of negative test results, but as the package devel-
opment was already completed and the package was formally 
registered, the curves are now represented using positive test re-
sults. That is, sensitivity and 1-specificity according to the cut-off 
are presented using a scatter plot, and the diseased and non-dis-
eased groups are indicated using solid and dashed lines, respec-
tively. As for Youden index, the maximum value of the corre-
sponding function was calculated and used as the optimal cut-off. 
The ROC curves for individual studies were plotted, and the 
points corresponding to sensitivity and 1-specificity were added 
by cut-off in the ROC curve of individual studies. Finally, a single 
SROC curve was created using a mixed linear regression model 
summarizing the individual ROC curves. 

Analysis of heterogeneity
Comparing the bivariate model of the “mada” package with the 

SROC curve, the bivariate model of the “diagmeta” package, 
which has larger number of data by using all cut-offs, shows a bet-
ter distribution in terms of heterogeneity. That is, the distribution 
of all studies was symmetrical and concentrated, showing no sig-
nificant heterogeneity. In addition, as described above, as the dis-
tribution of all effect sizes is located at the top right corner com-
pared to the SROC inflection point (0.718, 0.669), it can be ob-
served that this example test is a diagnostic test specialized for 
sensitivity, showing relatively low specificity. 

Comparative analysis on the methods of  
meta-analysis of diagnostic test accuracy studies

In this work, for meta-analysis of DTA studies, summary statis-
tics were calculated and the summary line was analyzed using the 
“meta”, “mada”, and “diagmeta” packages (Table 2). The summary 
statistics of the random effect model univariate analysis of the 
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Figure 4. Bivariate analysis using multiple cut-offs within a study (diagmeta package). 
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“meta” package with a single cut-off corresponding to the highest 
Youden index in a single study and those of the bivariate analysis 
of the “mada” package were highly similar. However, in the bivari-
ate analysis of the “diagmeta” package including all cut-off values, 
the sensitivity decreased and the specificity increased as the 
amount of data increased. Considering the heterogeneity of the 
SROC curve and the use of all given cut-offs, the use of the bivari-
ate analysis model of the “diagmeta” package is recommended. 

Indeed, the “diagmeta” model also shows some limitations as 

follows. First, the model does not take into account the uncertain-
ty of variance in individual studies, so there may be a problem of 
continuity correction. In particular, if there is “0” in a data cell in 
the 2× 2 table, calculation is not possible. Therefore, in this case, 
data preprocessing needs to be considered, such as the method of 
augmentation in which an identical set value (e.g., 0.5) is entered 
in each cell. Second, if there is excessive heterogeneity in the cut-
off values, the fit may be poor. However, given that this problem is 
unavoidable owing to the nature of meta-analysis, it is necessary 

Figure 5. Summary receiver operating characteristic (SROC) curve (bivariate analysis using multiple cut-offs within a study) for diagnostic 
test accuracy. 
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Table 2. Summary statistics comparison by diagnostic test accuracy (DTA) methods

DTA methods

One cut-off within a study1 Multiple cut-offs within a study

Univariate analysis Bivariate analysis Bivariate analysis

Common model using “meta” Random model using “meta” “Mada” “Diagmeta”

Sensitivity 0.844 0.862 0.863 0.718
Specificity 0.535 0.484 0.483 0.669

1According to the high Youden index. 
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to perform cross-validation using various tools for meta-analysis 
of the DTA studies discussed above.

CONCLUSION

In this study, I aimed to present the minimal theory of statistics 
and concentrate on the practical methods of meta-analysis of 
DTA studies for data integration so that researchers who are non-
statistics majors can also perform the analyses with ease. Through 
this study, it is expected that researchers will be able to utilize the 
ready-made statistical tools that have been already developed and 
interpret them appropriately for each field of their research. 

In particular, for systematic review and meta-analysis of DTA 
studies, when there are multiple effect sizes due to two or more 
cut-off values (thresholds), I presented a method that allows the 
use of all information without omission and a comparative analy-
sis with the existing method. Therefore, the results of this study 
will provide researchers with a useful guideline for selecting an 
appropriate model for their studies.

In addition, it is expected that the findings of this study will fa-
cilitate the process of meta-analysis and promote related studies 
for many researchers in the relevant fields in Korea. 

SUPPLEMENTARY MATERIALS

Korean version is available at http://www.e-epih.org/.
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