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Abstract: Complex [(DIPePBDI)Ca]2(C6H6), with a C6H6
2�

dianion bridging two Ca2+ ions, reacts with benzene to
yield [(DIPePBDI)Ca]2(biphenyl) with a bridging
biphenyl2� dianion (DIPePBDI=HC[C(Me)N-DIPeP]2;
DIPeP=2,6-CH(Et)2-phenyl). The biphenyl complex
was also prepared by reacting [(DIPePBDI)Ca]2(C6H6)
with biphenyl or by reduction of [(DIPePBDI)CaI]2 with
KC8 in presence of biphenyl. Benzene-benzene coupling
was also observed when the deep purple product of ball-
milling [(DIPPBDI)CaI(THF)]2 with K/KI was extracted
with benzene (DIPP=2,6-CH(Me)2-phenyl) giving crys-
talline [(DIPPBDI)Ca(THF)]2(biphenyl) (52% yield). Re-
duction of [(DIPePBDI)SrI]2 with KC8 gave highly labile
[(DIPePBDI)Sr]2(C6H6) as a black powder (61% yield)
which reacts rapidly and selectively with benzene to
[(DIPePBDI)Sr]2(biphenyl). DFT calculations show that
the most likely route for biphenyl formation is a path-
way in which the C6H6

2� dianion attacks neutral
benzene. This is facilitated by metal-benzene coordina-
tion.

Since biphenyl is a frequently applied building block in
pharmaceuticals and fine-chemicals, there is wide interest in
aryl-aryl coupling (Scheme 1).[1–3] Classical preparative
routes, like the century old Cu-mediated Ullmann
coupling,[4] have largely been replaced by numerous Pd-
catalyzed pathways.[2] From an industrial point of view,
nowadays the most popular Suzuki coupling is state-of-the-
art.[5] These methods rely on aryl halide feedstocks, mostly
using heavier bromide or iodide substrates.

The more sustainable approach to biaryl formation is the
direct dehydrogenative coupling of arene C� H bonds which,
given the fact that C� H bonds are almost as strong as the
rather inert C� F bond,[6] is a challenging process. While
present research activities for direct arene-arene coupling
focus on Pd catalysis,[7–11] the classical Scholl reaction[12]

using simple Lewis-acidic catalysts like AlCl3 or FeCl3 is an
attractive alternative (Scheme 1).[13,14] However, apart from
the need of forcing reaction conditions (> +100 °C), it has
limitations like the requirement of electron-poor arene
substrates or intramolecular forced proximity of the C� H
bonds. Arene-arene coupling in the Scholl process proceeds
through a cationic intermediate which is either arenium or
radical in nature.[14] The remaining alternative of radical
anion coupling is rare.[15] In contrast to anionic pyridine-
pyridine coupling,[16] there are only scarce examples for
benzene-benzene coupling via an anionic intermediate.
Benzene does not react with alkali metals but cocondensa-
tion of K, Rb or Cs with benzene resulted in C6H6

*� salts
and radical coupling to (biphenyl)2� and H2.

[17] Similarly
unique is benzene-benzene coupling between the graphite
layers of KC8, a peculiar reaction that only takes place in
presence of benzene and THF,[18] even resulting in formation
of larger benzene polymers.[19] Herein we introduce the
direct dehydrogenative coupling of benzene by low-valent
alkaline-earth (Ae) metal intermediates and propose a
mechanism through a unique complex with a C6H6

2�

dianion.
Previously reported attempts to isolate a low-valent CaI

complex with the bulky β-diketiminate ligand DIPePBDI led
to reduction of the aromatic solvent and isolation of black
crystals of [(DIPePBDI)Ca]2(C6H6) (I),[20] a paramagnetic
complex with a bridging C6H6

2� dianion (Scheme 2a)
(DIPePBDI=HC[C(Me)N-DIPeP]2; DIPeP=2,6-CH(Et)2-
phenyl). A solution of I in hexane decomposed at room
temperature very slowly to II, benzene and H2. In this
reaction the C6H6

2� moiety acts as a 2e� donor, reducing the
BDI anion to a dianionic N,C-chelating ligand. We now
found that changing the solvent to benzene led to slow
formation of [(DIPePBDI)Ca]2(biphenyl) (1) as the main
decomposition product, as characterized by 1H NMR (Fig-
ure S34, S35). Further proof for biphenyl formation was
obtained by addition of THF, which led to red crystals of the
THF adduct (1-THF) (crystal structure: Figure 1a). Other
side-products detected by 1H NMR are [(DIPePBDI)Ca(μ-H)]2
and (DIPePBDI)2Ca (product ratios are dependent on the
decomposition temperature; Figures S34–S36). Formation of
1 could also be achieved by reduction of biphenyl with the
CaI synthon [(DIPePBDI)Ca]2(C6H6) (I) or, even simpler, by
in situ reduction of [(DIPePBDI)Ca(μ-I)]2 with KC8 in the
presence of biphenyl (Scheme 2a).

An important requirement for isolation of the CaI

synthon [(DIPePBDI)Ca]2(C6H6) (I) is the very bulky DIPeP-
substituent in the BDI ligand. Reduction of a precursor with
the smaller, more generally used DIPP-substituent,
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[(DIPPBDI)Ca(μ-I)(THF)]2, led mainly to formation of homo-
leptic (DIPPBDI)2Ca and other unidentified decomposition
products (DIPP=2,6-CH(Me)2-phenyl). However, using
ball-milling changed the outcome of this reduction. We
recently introduced ball-milling to low-valent Ae metal

chemistry.[21,22] The advantage of this technique is that the
reactive radicals formed after reduction are partially
“frozen” in the solid-state. Similar as previously shown for
formation of (BDI)Mg* radicals,[22] reduction of
[(DIPPBDI)Ca(μ-I)(THF)]2 with K/KI in the ball-mill led to a

Scheme 1. Biphenyl formation.

Figure 1. Crystal structures of a) [(DIPePBDI)Ca(THF)]2(biphenyl) (1-THF)), b) [(DIPePBDI)Sr]2(C6H6) (4) and c) [(DIPePBDI)Sr]2(biphenyl) (5). The inset
shows C� C bond lengths in black [Å] and NPA charges on C in blue.
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deep purple powder. Extraction of the expected radical
[(DIPPBDI)Ca*(THF)] (Scheme 2b) with benzene led to
immediate formation of a dark-red solution from which
dark-brown crystals of [(DIPPBDI)Ca(THF)]2(biphenyl) (2-
THF) separated in 52% yield. During this process, the red
color of the mother liquor rapidly faded to yellow. 1H NMR
showed several decomposition products among which also
the previously reported dimers [(DIPPBDI)Ca(μ-H)(THF)]2
and [(DIPPBDI)Ca(μ-Ph)]2 (Figure S30).[23,24] A similar com-
plex with a tetrahydropyran (THP) ligand was isolated in
54% yield and could be structurally characterized (Fig-
ure S53).

Due to diminished steric protection by the DIPPBDI
ligand, any attempt to crystallize the presumed intermediate
with a bridging C6H6

2� dianion failed. However, cold
extraction gave a black powder with a 1H NMR spectrum
reminiscent to that of paramagnetic I (Figure S8). This
species decomposed rapidly under crystallization of the
biphenyl complex 2-THF (Figure S29). We therefore pre-
sume that the intermediate with the bridging C6H6

2� dianion
plays a pivotal role in biphenyl formation.

The intriguing reactivity of these Ca complexes with
bridging C6H6

2� moieties, motivated the synthesis of the
analogue SrI synthon [(DIPePBDI)Sr]2(C6H6) (4; Scheme 2c)
which due to the much higher reactivity and more difficult
to control Schlenk equilibria of Sr complexes is challenging.
The room temperature reduction of [(DIPePBDI)Sr(μ-I)]2 (3)
in benzene did not lead to 4 but unselectively gave various
decomposition products. However, after performing the

reaction just above the melting point of the solvent (10 °C)
and removal of benzene by freeze-drying at � 15 °C,
[(DIPePBDI)Sr]2(C6H6) (4) could be extracted with cold
pentane in form of an essentially pure pitch-black powder
(61% yield). We anticipate that this recently introduced
benzene freeze-drying method[25] could generally become a
key to the isolation of thermally labile complexes. Crystal-
lization from pentane gave black crystals of 4 which are
even at � 20 °C only of limited stability. 1H NMR in
cyclohexane-d12 indicates that 4 is also paramagnetic (Fig-
ure S22). Like [(DIPePBDI)Ca]2(C6H6) (I) is a synthon for
hitherto unknown (BDI)Ca-Ca(BDI) complexes,
[(DIPePBDI)Sr]2(C6H6) (4) could be considered as a synthon
for a hitherto unknown SrI complex.

A C6D6 solution of 4 rapidly changed color from black to
red-brown under formation of the biphenyl complex
[(DIPePBDI)Sr]2(biphenyl) (5). In contrast to the slow and
unselective reaction of I with benzene, reaction of 4 with
C6D6 to 5 is highly selective (Figure S38). Alternatively, 5
can be obtained by reduction of [(DIPePBDI)Sr(μ-I)]2 with
KC8 in methylcyclohexane in the presence of biphenyl. The
poor yield of 13% crystalline 5 is due to decomposition
during crystallization, reflecting the low stability of these Sr
complexes.

The centrosymmetric crystal structure of 1-THF shows a
biphenyl2� moiety that is bridging two (DIPePBDI)Ca+ ·(THF)
units (Figure 1a). The coplanar rings indicate extensive
charge delocalization. The central C� C bond of 1.390(6) Å
is considerably shorter than the C� C bond in biphenyl

Scheme 2. Syntheses of alkaline-earth metal biphenyl complexes.
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(1.507 Å)[26] suggesting a quinoid structure with central C=C
bond character. This is supported by the long-short-long
C� C bond alteration in the rings, typical for a resonance
structure with negative charges at the remote para-C atoms.
This is in agreement with the NPA charges (B3PW91/
def2tzvp//def2svp) which are highest in these positions
(Figure 1a). The total charge on the biphenyl unit (� 1.74)
indicates a CaII complex which is confirmed by a high
positive charge on Ca (+1.77). The Ca� C bond lengths vary
from 2.679(3) to 2.829(2) Å. The shortest Ca� C contacts are
to the most electron-rich para-C atoms. Crystal structures of
the biphenyl complexes [(DIPPBDI)Ca(solv)]2(biphenyl) (2-
solv; solv=THF or THP) show similar features.

The crystal structure of [(DIPePBDI)Sr]2(C6H6) (4) (Fig-
ure 1b), with no crystallographic symmetry, shows a slightly
puckered C6H6

2� dianion in a flattened boat form (max.
C� C� C� C torsion angle: 9.2(1)°). The Sr� C distances are in
the range of 2.718(3) to 2.952(3) Å. NPA charges on the
C6H6

2� ring (� 1.65) and on the Sr atoms (+1.76) are in
agreement with a SrII complex. The bond lengths in the
C6H6

2� ring indicate that 4 is in a singlet state with negative
charges on C atoms in para-position (at least in the crystal).
A triplet state features a C6H6

2� ring with equal C� C bonds
and has been calculated to be only 1–3 kcalmol� 1 more
stable (Figures S58, S59). Similar observations have been
made for [(DIPePBDI)Ca]2(C6H6) (I).

[20]

The crystal structure of [(DIPePBDI)Sr]2(biphenyl) (5)
(Figure 1c) shows quinoid features comparable to those in 1-
THF. The geometries and charge distribution of the bridging
biphenyl2� dianions are similar (charge on biphenyl: � 1.76,
charge on Sr: +1.79). The Sr� C distances vary from 2.787(2)
to 2.947(2) Å. The quinoid structure of the biphenyl2�

dianion gives rise to a strong upfield shift of its proton NMR
signals (Figures S38–S39). While reaction of 5 with iPrOH
led to protonation of the biphenyl2� moiety, oxidation with
air gave biphenyl. We observed similar dual reactivity for a
Ca-bridged stilbene2� dianion.[27]

The herein described dehydrogenative coupling of
benzene is a highly unusual synthetic route to biphenyl. The
far majority of inverse sandwich complexes of type M-
(C6H6)-M react like electron donors, eliminating aromatic
benzene.[28] We recently reported protonation of a Mg-
bridged C6H6

2� dianion to give cyclohexadiene.[29] Arnold
and co-workers reported the first functionalization of the
C6H6

2� dianion by dehydrogenative C� B coupling with a
borane (R2BH) to give Ph-BR2 and H2.

[30] While boranes are
highly electrophilic, the herein described nucleophilic attack
of C6H6

2� at electron-rich, aromatic C6H6 is unexpected and
unique in inverse sandwich chemistry.[31] It fits, however,
with the recent observations that heavier Ae2+ metals
cations (Ae=Ca, Sr) can facilitate such unusual nucleophilic
substitutions at aromatic rings.[32,33] Such processes are
especially fast for the larger Sr metal.[33]

Following observations may shine a light on the mecha-
nism of the dehydrogenative benzene coupling.
(1) Complexes with bridging C6H6

2� dianions decompose in
benzene to give the biphenyl complexes and are therefore
likely intermediates. (2) There is experimental evidence that
the bridging C6H6

2� dianions exchange with C6D6 (Fig-

ure S31). (3) Apart from biphenyl complexes, also side-
products like dimers with bridging hydrides and/or bridging
Ph groups have been detected. These may point to benzene
C� H activation by oxidative addition. The relative quantities
of these side products are variable and depend on the
reaction conditions (Figures S30, S34–S37).
(4) Decomposition of [(DIPePBDI)Sr]2(C6H6) (4) is in C6D6

much faster and more selective than in normal benzene
(Figures S38–S40), illustrating an inverse isotope effect. GC-
MS analysis shows that 4 reacts in C6H6 to C6H5� C6H5 but in
reaction with C6D6 mainly fully deuterated biphenyl was
obtained. This shows that C6H6/C6D6 exchange is a very fast
first step.

A preliminary DFT study evaluated two different
mechanisms for a model system in which due to size
limitations the DIPeP-substituents have been replaced with
smaller DIPP-substituents (Scheme 3) or Ph-substituents
(Figure S60).

Pathway A starts with cleavage of the benzene C� H
bond (Scheme 3a; A1-A2*-A3). The formation of the mixed
(μ-H,μ-Ph)-dimer A3 is exothermic by ΔH=

� 10.9 kcalmol� 1 and has a barrier of +21.8 kcalmol� 1. A
similar but much slower C� H bond cleavage has also been
observed for the analogue Mg complex [(ArBDI)Mg]2-
(C6H6).

[29,34] Benzene coordination (A3-A4) is slightly exo-
thermic but subsequent C� C coupling by direct attack of
Ph� at benzene (A4-A5*-ALT) is with a barrier of
+45.9 kcalmol� 1 highly endothermic. Alternatively, the H�

anion could deprotonate benzene. The transition state for
this conversion (A5*) is also very high (the activation energy
is 44.6 kcalmol� 1). It should, however, be noticed that A6
may also be obtained from A3 by ligand distribution via a
Schlenk equilibrium. The next transition state A7* is
unusual in the sense that it represents nucleophilic attack of
a Ph� anion at a Ph� anion. This can be envisioned by a
side-way approach leading to HOMO–LUMO interaction.
Although unconventional, there is precedence for a com-
parable C� C coupling of two acetylide anions.[35] The
calculated energy barrier of +16.2 kcalmol� 1 is the lowest
along this pathway. The total reaction is only slightly
exothermic by � 2.8 kcalmol� 1.

Like in pathway A, the starting point for route B is the
complex with the bridging C6H6

2� anion (A1); Scheme 3b.
Benzene complexation and subsequent C6H6

2� !benzene
attack (B2*) needs an activation enthalpy of
ΔH= +21.4 kcalmol� 1. The C� C coupling product B3 can
be considered as a double Meisenheimer anion. A similar
dianion with potassium has been isolated previously from a
K-crown ether-benzene mixture by Lappert and co-
workers.[36] The transition state for C� C coupling (B2*,
Scheme 3b) is comparable to that recently calculated for
benzene coupling in a Li(benzene)2

� sandwich.[37] The
bridging dianion in complex B3 could lose a hydride (B4*)
requiring an activation enthalpy of ΔH= +15.3 kcalmol� 1.
After relatively facile elimination of H2 (B5-B6*:
+8.2 kcalmol� 1) the final biphenyl product B7 is formed.

With a highest barrier of +21.4 kcalmol� 1, route B
seems more favorable than route A. This is in agreement
with the recent isolation of [(DIPPBDI)Ca(μ-Ph)]2 which
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upon heating in C6D6 did not show any evidence for
biphenyl formation.[24] However, the start of pathway A, i.e.
C� H bond cleavage, may be responsible for formation of
the observed side-products with Ph� or H� anions.

This preliminary experimental and theoretical study
suggests that benzene-benzene coupling indeed could start
from a C6H6

2� complex that reacts with a neutral benzene
ligand following pathway B. It has been shown
previously[32,33] that heavier Ae metal cations like Ca2+ and
Sr2+ can facilitate such unusual nucleophilic substitutions at
aromatic benzene by Ae2+ ···benzene coordination.[38,39] Such
processes are especially fast for complexes with the larger
Sr2+ cation.[33] Ball-milling is an attractive new approach to
this chemistry. Our investigations demonstrate that
[(BDI)Ca]2(C6H6) and [(BDI)Sr]2(C6H6) are not just syn-
thons for CaI and SrI, enriching the field of low-valent Ae
metal chemistry,[40–42] but also starting compounds for the
functionalization of benzene. Further progress in this
chemistry will be published in due course.

Electronic Supporting Information available: Experi-
mental details, NMR spectra, crystallographic details[43]

including ORTEP plots, XYZ coordinates for calculated
structures.
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