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Summary
Background and Aims: In cirrhotic nonalcoholic steatohepatitis (NASH) clinical trials, 
primary efficacy endpoints have been hepatic venous pressure gradient (HVPG), liver 
histology and clinical liver outcomes. Important histologic features, such as septa 
thickness, nodules features and fibrosis area have not been included in the histologic 
assessment and may have important clinical relevance. We assessed these features 
with a machine learning (ML) model.
Methods: NASH patients with compensated cirrhosis and HVPG ≥6 mm Hg (n = 143) 
from the Belapectin phase 2b trial were studied. Liver biopsies, HVPG measurements 
and upper endoscopies were performed at baseline and at end of treatment (EOT). A 
second harmonic generation/two- photon excitation fluorescence provided an auto-
mated quantitative assessment of septa, nodules and fibrosis (SNOF). We created ML 
scores and tested their association with HVPG, clinically significant HVPG (≥10 mm 
Hg) and the presence of varices (SNOF- V).
Results: We derived 448 histologic variables (243 related to septa, 21 related to nod-
ules and 184 related to fibrosis). The SNOF score (≥11.78) reliably distinguished CSPH 
at baseline and in the validation cohort (baseline + EOT) [AUC = 0.85 and 0.74, re-
spectively]. The SNOF- V score (≥0.57) distinguished the presence of varices at base-
line and in the same validation cohort [AUC = 0.86 and 0.73, respectively]. Finally, 
the SNOF- C score differentiated those who had >20% change in HVPG against those 
who did not, with an AUROC of 0.89.
Conclusion: The ML algorithm accurately predicted HVPG, CSPH, the development 
of varices and HVPG changes in patients with NASH cirrhosis. The use of ML his-
tology model in NASH cirrhosis trials may improve the assessment of key outcome 
changes.
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1  | INTRODUC TION

Nonalcoholic fatty liver disease (NAFLD) can progress to nonalco-
holic steatohepatitis (NASH), which has become the leading cause 
of cirrhosis overall, the leading cause of liver transplantation in 
women, and the second leading cause of liver transplantation in 
men.1,2 Emerging therapies are being examined to treat NASH pa-
tients, including those with cirrhosis.3- 5 However, treating cirrhotic 
patients is complex since quantification of fibrosis is challenging and 
has been inadequately studied in NASH cirrhosis. Nevertheless, evi-
dence from cirrhosis of other causes, such as chronic hepatitis B and 
C, suggest that measurement of fibrosis regression is a goal within 
reach and has opened the door for the development of drugs that 
target fibrosis (e.g., antifibrotics).6,7

Recent efforts have determined NASH aetiology as a cause of 
cirrhosis and have defined the primary efficacy end points in trials 
of NASH cirrhosis.8,9 Defining the end points has proven challeng-
ing, however, because of the lack of data on the natural history and 
of drugs effective in reversing cirrhosis. Historical evidence has led 
to using hepatic portal pressure gradient (HVPG) in NASH cirrho-
sis trials as a primary end point, especially in patients with elevated 
HVPG.10,11 This approach was supported by evidence from cirrhosis 
of other causes that HVPG correlates with clinical liver events,12 and 
improvement of HVPG is associated with clinical benefits. However, 
the use of HVPG is challenging in NASH cirrhosis trials because this 
technique is limited to expert academic centres, variabilities in reading 
in NASH cirrhosis patients, cost and invasiveness of the procedure, 
and patients' acceptance.13 Thus, one- stage improvement of fibrosis 
in NASH cirrhosis patients, especially those with compensated cirrho-
sis, has been proposed as an alternative to HVPG measurements.14 
Although linear improvement of fibrosis has correlated with improve-
ment in clinical liver events,15 this assessment has limitations as well: 
it ignores other important architectural changes in cirrhosis, including 
the extent of fibrosis area, septal thickness and size and numbers of 
nodules.16 Studies from hepatitis C, using semi- quantitative meth-
ods, have found that considering these features can be helpful in 
accurately correlating histology with portal pressure in cirrhotic pa-
tients17- 19; however, these semi- quantitative techniques have limited 
the use of that novel concept, as readings are prone to variabilities.

The emergence of machine learning (ML) technology in reading 
liver histology has advanced the field and limited inter-  and intra- 
observer variabilities.20,21 A recent study from a NASH cirrhosis 
clinical trial has found that a machine learning- based model on 
trichrome- stained liver biopsy slides can predict clinically significant 
portal hypertension (CSPH) in NASH cirrhosis patients.22 However, 
nodule size was weakly correlated with HVPG in this model, while 
septa thickness was not considered.22

Here, we developed 448 histologic variables to develop a ML 
model for correlation with HVPG. We hypothesised that our model 
would correlate with HVPG and the presence of oesophageal vari-
ces assessed in a phase 2 clinical trial that examined the efficacy of 
belapectin, an inhibitor of galectin 3, in patients with NASH cirrhosis 
and portal hypertension.10

2  | MATERIAL S AND METHODS

2.1 | Study cohort

The study was approved by the institutional review board of the 
participating sites and has been described in detail.10 Patients with 
NASH cirrhosis and portal hypertension (HVPG ≥6 mm Hg), enrolled 
from 36 centres, were randomised to 52 weeks of treatment with 
belapectin 2 or 8 mg/kg or placebo. Patients received upper endos-
copy within 2 months before randomisation and within 14– 28 days 
after the final dose of the experimental drug. Varices were classified 
as small, medium or large.10

2.2 | HVPG measurements and liver histology

HVPG measurements were performed at each site. Before the start 
of the study, each site underwent evaluation of their HVPG tech-
nique, and passed quality assessment by an expert HVPG central 
reader. HVPG were performed by advancing a balloon catheter into 
the hepatic vein under fluoroscopic guidance. Free hepatic pressure 
was measured when the balloon was completely deflated; wedge 
pressure was measured upon inflation of the balloon and occlusion of 
the hepatic vein. Three measurements of the hepatic vein and wedge 
pressure were obtained and transmitted to the central reader. Liver 
biopsies of mean length of 2.5 cm were obtained.23 Liver histology 
was read by an expert liver pathologist central reader. Steatohepatitis 
was assessed according to Brunt criteria24; the NASH activity score, 
graded according to the NASH clinical research network,25 was used 
to semi- quantify the cellular activity; fibrosis was assessed accord-
ing to the Ishak score and the NASH clinical research network score.

2.3 | Image acquisition

The images of 286 unstained slides from 143 patients were acquired 
by use of a second harmonic generation/two- photon excitation fluo-
rescence (SHG/TPE) imaging system (Genesis™ system, HistoIndex 
Pte. Ltd.). Histoindex was blinded to the assigned treatment group 
(reported elsewhere),10 HVPG and endoscopies results upon receiv-
ing the slides and until the end of the histological analysis process. 
The collagen and histologic structures were visualised by SHG mi-
croscopy and TPE microscopy, respectively. Details of the proce-
dure have been described elsewhere.23 Image tiles were acquired at 
20x objective with 512 × 512 pixels resolution with a dimension of 
200 × 200 μm.2 Multiple adjacent tiles were captured to encompass 
the whole tissue area in each needle biopsy.

2.4 | Image quantification

The initial algorithm version developed for septa detection was 
based on a hepatitis B virus (HBV) patient cohort using SHG/TPEF 
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imaging technology.26 The algorithm is further refined by using an 
expert pathologist's septa annotations on 25 digitised NASH slides 
stained with picrosirius red, and immunostain for smooth muscle 
actin. In addition to annotating for septa, cirrhotic nodules were also 
annotated and these annotations were used to develop a separate 
algorithm for nodule detection.

The SHG/TPE images of unstained slides were analysed with a 
digital image processing algorithm that can quantify (1) 243 septa 
criteria, including the morphological characteristics of septa, such as 
area, length and width, and the collagen and cellular regions inside the 
region of septa; (2) 21 nodule criteria, such as number of nodules and 
length of nodules; (3) 184 fibrosis criteria in various regions in liver tis-
sue, including the portal- septa, peri- septal, mid- nodular, peri- venular 
and hepatic venule regions. In total, 448 criteria were quantified by the 
image processing algorithm based on Matlab 2015a (MathWorks, Inc.).

Using this ML model, fibrosis was quantified in regions that are 
specific only to cirrhotic samples. In these cirrhotic samples, the 
portal tract areas were observed to coincide with septa, and we 
termed these regions “portal- septal”. Centrilobular and peri- portal 
regions can be difficult to visualise in a cirrhotic liver, but lineage 
markers such as glutamine synthetase have shown that the peri- 
septal hepatocyte cells are derived from the centrilobular cells of a 

normal liver.27 Given that the peri- portal regions are observed near 
the septa in these cirrhotic samples, it is designated as “peri- septal”. 
Further, the centrilobular region surrounding central veins in a nor-
mal liver does not apply in a cirrhotic nodule, and since the central 
vein is a tributary of the hepatic vein, peri- central is renamed as “peri- 
venular” and central vein as “hepatic venule”. Lastly, the rest of the 
parenchyma (Zone 2) of the nodules consists of some regenerative 
nodules, so we have termed as “mid- nodular” for the purpose of this 
analysis. The definitions of these regions are illustrated in Figure 1.

Using SHG/TPE, the visualisation of these fibrosis in these regions, 
as well as septa and nodules were shown. (Figure 2) Using the ML model, 
18 septa (Figure 2A) and 19 nodules (Figure 2B) were detected while 
fibrosis (Figure 2C) was quantified in the regions as described above.

2.5 | Model construction

The training and validation work flows to establish the ML models 
are summarised in Figure 3. To assess the HVPG for patients, septa, 
nodules and fibrosis criteria from the baseline cohort were used 
for building single scores which were septa- only, nodule- only and 
fibrosis- only scores, respectively.

F I G U R E  1   (A) An illustrative example of a liver biopsy showing septa, nodules, diameter of nodule and distance between septa as defined 
by the algorithm. (B) An illustrative example showing the five regions in which fibrosis is quantified by the algorithm: the portal- septa,  
peri- septal, mid- nodular, peri- venular and hepatic venule.

F I G U R E  2   SHG/TPE image showing the AI annotations of (A) septa, (B) nodules and (C) fibrosis as analysed in the portal- septal and  
peri- septal regions



412  |     NOUREDDIN et al.

In addition to building ML models with parameters based on a 
single histological feature, the septa, nodules and fibrosis param-
eters were also combined to build three models designated as (A) 
SNOF score that related to HVPG, (B) SNOF- V score that related 
to the presence or development of varices and (C) SNOF- C score 
that is related to HVPG change of >20% or ≤20% between base-
line and end of treatment regardless of the treatment arm. Baseline 
liver biopsies were used as the training set for these models. With 
a sequential feature selection method, three sets of 15 parameters 
each were selected from the 448 parameters for the SNOF score, 
SNOF- V score and SNOF- C score, respectively. The distribution of 
these 15 parameters between the septa, nodules and fibrosis cate-
gories for the SNOF, SNOF- V and SNOF- C scores are provided in the 
Supplementary section (Tables S1– S3). The models were validated 
using the leave- one- out cross- validation method, which is a well- 
accepted validation method as previously reported.28

2.6 | Statistical analysis

The Spearman non- parametric method was used to estimate the 
correlation between SNOF score and HVPG. The difference in 
SNOF- V score between varices YES and NO samples was esti-
mated by the Wilcoxon rank sum test. The area under the receiver 
operating characteristic curve (AUROC) analysis was performed to 
evaluate the performance of SNOF and SNOF- V scores. The cut-
off values of SNOF score for evaluating the presence of significant 

portal hypertension, the cutoff values of SNOF- V score and the 
cutoff value for HVPG value for evaluating the presence of oe-
sophageal varices, were determined with Youden's index. The sen-
sitivity, specificity, negative predictive value (NPV) and positive 
predictive value (PPV), determined by the cutoff values, were cal-
culated. Statistical significance level was set at p < 0.05. Statistical 
analyses were performed with Matlab 2015a (MathWorks, Inc., 
Natick, MA).

3  | RESULTS

3.1 | Detection of septa, nodules and fibrosis (SNOF)

The ML model identifies septa, nodules and fibrosis in the biopsy sam-
ple and quantifies their morphological features automatically. A total 
of 243 septa- related, 21 nodule- related and 184 fibrosis- related mor-
phological features were analysed for each biopsy sample.

3.2 | Correlation of the SNOF ML model with HVPG

We assessed the degree of correlation among the septa- , nodules- 
and fibrosis- selected criteria on baseline biopsies, using them as 
training cohort, and we used the same biopsies as validation cohort 
by leaving one sample out. The results were consistent across the 
training cohorts and the validation cohorts (Table 1).

F I G U R E  3   Training and validation workflows for (A) SNOF, (B) SNOF- V and (C) SNOF- C scores

SNOF-V score - related to the presence of varices 

Significant septa, nodule
and fibrosis criteria SNOF-V score 

SNOF score - related to HVPG 

Significant septa criteria 

Significant nodule criteria 

Significant fibrosis criteria 

Significant septa, nodule
and fibrosis criteria 

septa-only score 

nodule-only score 

fibrosis-only score 

SNOF score 

BL samples 

SNOF-C score - predict HVPG change of  >-20% or ≤-20% a�er treatment 

BL samples Significant septa, nodule
and fibrosis criteria 

SNOF-C score 

BL samples 

Leave-one-out valida�on 

Leave-one-out valida�on 

Leave-one-out valida�on 

Leave-one-out valida�on 

Leave-one-out valida�on 

Leave-one-out valida�on 

(A)

(B)

(C)
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Next, a machine learning SNOF score was built by selecting the 
15 best morphological parameters that correlated significantly with 
HVPG measurement (Tables S1 and S2) from each morphological fea-
ture described. The correlation of training and validation results of 
SNOF scores with HVPG is shown in Figure 3, with an r value of 0.67 
in the training cohort and 0.57 in the leave- one- out validation. The 
combination of septa, nodules and fibrosis (SNOF) in an index out-
performs using just septa, or nodule, or fibrosis separately (Table 1).

3.3 | Correlation of the SNOF ML model with 
presence of varices

We next created SNOF- varices (SNOF- V) scores by correlating 
variables with the presence of varices and selected the 15 best- 
correlated parameters for the final model. The performance of the 

SNOF- V score to distinguish the presence of oesophageal varices at 
baseline (pre- treatment) is shown in Figure 4.

3.4 | Performances of SNOF score and 
SNOF- V scores

An optimum cutoff value of 11.78 was determined by correlating 
SNOF scores with HVPG value of ≥10 (CSPH). With this cutoff value, 
the performance of SNOF score in predicting HVPG ≥10 is summarised 
in Table 2. Similarly, the performance of SNOF- V score in predicting 
the presence of varices is also summarised in Table 2. The performance 
in predicting the presence of varices with an HVPG cutoff value at ≥10 
is also included in the table as a reference. We validated the results by 
combining the baseline and end of treatment samples (Figure 5).

3.5 | Performance of SNOF- C in detecting clinically 
meaningful HVPG changes

We then divided the patients into those who had HVPG change of 
>20% or ≤20% between baseline and end of treatment regardless 
of the treatment arm. The SNOF- Change (SNOF- C) score was built 
based on the top 15 significant parameters that correlated with 20% 
changes in HVPG (Table S3). The SNOF- C score performed well in dif-
ferentiating those who had >20% change in HVPG versus those who 
did not, with AUROC of 0.89 in the training Cohort and 0.79 in the 
validation cohort (Table 3). The performance criteria of SNOF- C score 
including sensitivity, specificity, PPV and NPV are shown in Table 3.

TA B L E  1   Summary of the correlation results among septa, 
nodules and fibrosis selected parameters when baseline biopsies 
were used as the training cohort. Correlation of SNOF score built by 
selecting 15 septa, nodules and fibrosis parameters is also shown

Parameters

Correlation results (r value)

Training using baseline 
samples

Leave- one- out 
validation

Septa only 0.55 0.44

Nodule only 0.52 0.39

Fibrosis only 0.57 0.44

SNOF 0.67 0.57

F I G U R E  4   Scatter plots for the SNOF 
score. (A) Training using baseline samples 
and (B) validation using the leave- one- out 
method

TA B L E  2   Summary of the performances of SNOF score and SNOF- varices (SNOF- V) scores at predicting HVPG and presence of varices, 
respectively

Baseline Baseline and end- of- treatment

AUC Sensitivity Specificity PPV NPV AUC Sensitivity Specificity PPV NPV

SNOF score ≥11.78 to predict 
HVPG ≥10 (CSPH)

0.85 73% 86% 91% 62% 0.74 65% 76% 83% 54%

SNOF- V score ≥0.57 to 
predict varices

0.86 77% 86% 85% 78% 0.73 64% 78% 74% 70%

HVPG ≥10 to predict varices 0.75 84% 53% 65% 76% 0.74 82% 52% 62% 76%



414  |     NOUREDDIN et al.

4  | DISCUSSION

The major outcome of this study was that the ML algorithm ac-
curately extrapolated HVPG, CSPH and its changes, and the de-
velopment of varices from liver histology in patients with NASH 
cirrhosis. Using the SHG/TPE machine learning model on baseline 
and end- of- treatment liver biopsies from the phase 2b belapectin 
trial in NASH cirrhosis patients,10 we created 448 histologic vari-
ables related to key cirrhosis architectural features: septa, nodules 
and fibrosis. The slides from which the images were obtained were 
examined in a blinded manner. We then combined these features in 
various scores: one to assess correlation with HVPG (SNOF), one 
to distinguish the presence of varices (SNOF- V), and one to assess 
clinically meaningful changes of HVPG (SNOF- C). These scores per-
formed well and can potentially be implemented in NASH cirrhosis 
clinical trials (without the need for measuring HVPG) to assess key 
changes in patients with cirrhosis. The use of ML histologic features 
and scores may increase the accuracy of the efficacy endpoints in 
cirrhotic NASH trials.

Given that patients with cirrhosis are at a much higher risk for 
decompensation and mortality, more screening measures have 
been developed to identify the right patient population for en-
rolment into cirrhotic NASH trials, including a recent surrogate 
score, the nonalcoholic fatty liver disease cirrhosis score (NCS), 
developed by Labenz et al which enables the differentiation of 
bridging fibrosis from cirrhosis.29 Previous studies17- 19 have pro-
posed subclassification of cirrhosis based on unique histologic 
features: septal width and thickness, numbers of nodules and 
nodule size. These studies were mainly done with small cohorts 
(<50 patients in two series) and did not include NASH cirrhosis 
as a cause. In a cohort of 43 patients, Nagula et al17 found that 
small nodularity and thick fibrous septa were the only variables 
independently predictive of CSPH (HVPG ≥10 mm Hg), which 
is predictive of the development of complications of cirrhosis, 

including death. The authors used a semi- quantitative method 
to evaluate liver biopsies. Those findings were confirmed in a 
study conducted with patients who had cirrhosis mainly caused 
by hepatitis B.19 These studies led to a position paper,16 calling 
for pathophysiological classification of cirrhosis. In a subsequent 
study of 43 patients that used a quantitative methodology based 
on digital image analysis, total fibrosis area and small nodule size 
were both independently predictive of the presence of CSPH; 
septal width was not predictive.18 The authors attributed the 
differences in findings of the two studies to differences in tech-
niques used (semi- quantitative vs quantitative).18 It appears that 
compensated cirrhosis might be classified into subcategories 
reflecting various degrees of severity, which is a crucial consid-
eration when developing antifibrotic drugs. For instance, it is 
plausible that compensated cirrhosis with thick septa, many small 
nodules and a large fibrosis area will be harder to treat and less 
likely to respond to therapies. Therefore, we have developed a 
machine learning model with 448 variables focusing on the key 
histological features of cirrhotic liver biopsies, including septa, 
nodules and fibrosis area. These variables correlated individually 
with HVPG measurements, and the correlation improved when 
they were combined into one score comprised of the most signif-
icant variables. The score assessed the CSPH with an excellent 
AUC of 0.85 in the training cohort and 0.74 in the validation co-
hort. Similarly, we created a score from the most significant vari-
ables to distinguish the presence of varices, which had an AUC 
of 0.86 in the training cohort and 0.73 in the validation cohort 
and a score to assess meaningful changes in HVPG, which had an 
AUC of 0.89. All these scores performed well and confirmed the 
value of including crucial histologic features of cirrhosis in histo-
logical assessment of liver biopsies. A recently published machine 
learning model which correlated well with CSPH in NASH cirrho-
sis patients included nodules of size that were weakly correlated 
with HVPG, and it did not consider septal thickness,22 despite 

F I G U R E  5   Boxplots for the SNOF- V 
score. (A) Training using baseline samples 
and (B) validation using the leave- one- out 
method

TA B L E  3   Summary of the performances of SNOF- C score at predicting HVPG changes ≤ −20%

Training Leave- one- out validation

AUC Sensitivity Specificity PPV NPV AUC Sensitivity Specificity PPV NPV

SNOF- C score >0.257 
to predict HVPG 
changes ≤−20%

0.89 97% 69% 50% 99% 0.79 75% 63% 40% 89%
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previous literature demonstrating that septal thickness correlate 
with the severity of cirrhosis.30 Also, the baseline machine learn-
ing HVPG score was not predictive of clinical liver events.

Our study has limitations and strengths. We were only able to 
correlate the ML model with HVPG, CSPH (and its changes) and the 
presence of varices. Further, there is a restriction of patient popula-
tion due to the inclusion criteria of HVPG measurement >6 mmHg, 
and additional cohorts across a wider HVPG spectrum are needed 
confirm the generalisability of our findings. Recent studies have 
raised issues about the variabilities of HVPG measurement in NASH 
cirrhosis.31 However, the HVPG measurements in this study10 were 
made according to a rigorous protocol, including testing of the se-
lected sites for qualification; using detailed measurement protocols; 
using balloons for wedge measurement; taking multiple reads; and 
using a central experienced HVPG reader.13 In addition, the pres-
ence of varices is a valid measurement of portal hypertension for 
phase 2b NASH cirrhosis trials; other clinical liver events did not 
occur often enough in our study to be correlated with our ML model. 
The SNOF ML models would require evaluation in larger cohorts 
with longer follow- up to determine their prognostic utility in cir-
rhotic trials.

The study has many strengths as well: It was done in the setting of 
a randomised controlled trial with a central pathologist, endoscopist 
and portal pressure reader. All the readers were blinded to the treat-
ment arm. Our sample size is the largest to date to assess this concept, 
using machine learning in a cohort with NASH cirrhosis. The SHG/
TPE images technique uses unstained slides in comparison to other 
machine learning methods and thus may avoid traditional problems 
associated with staining liver tissue slides.32

In summary, we developed a histologic ML model that considers 
key histologic features in NASH cirrhosis: namely, septa, nodules 
and fibrosis area that have not been considered in the traditional 
histologic assessment. These features correlate with (HVPG) mea-
surements and combining them with scores that correlated better 
with HVPG and clinically significant portal hypertension, distin-
guished the presence of varices and detected meaningful changes 
in HVPG. Our machine learning histology model offers a promising 
new method for NASH cirrhosis trials that may improve the assess-
ment of histologic changes and drug efficacy.

5  | CONCLUSIONS

The machine learning algorithm accurately extrapolated hepatic 
venous pressure gradient, clinically significant portal hypertension 
and the development of varices from liver histology in patients with 
NASH cirrhosis. The use of the machine learning histology model 
in NASH cirrhosis trials may improve the assessment of histologic 
changes and drug efficacy.
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