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Abstract

The FOS gene family has been implicated in tumourigenesis across several tumour types, particularly mesenchymal
tumours. The rare fibrous tumour desmoplastic fibroblastoma is characterised by overexpression of FOSL1. However,
previous studies using cytogenetic and molecular techniques did not identify an underlying somatic change involving
the FOSL1 gene to explain this finding. Prompted by an unusual index case, we report the discovery of a novel FOSL1
rearrangement in desmoplastic fibroblastoma using whole-genome and targeted RNA sequencing. We investigated
15 desmoplastic fibroblastomas and 15 fibromas of tendon sheath using immunohistochemistry, in situ hybridisation
and targeted RNA sequencing. Rearrangements in FOSL1 and FOS were identified in 10/15 and 2/15 desmoplastic
fibroblastomas respectively, which mirrors the pattern of FOS rearrangements observed in benign bone and vascular
tumours. Fibroma of tendon sheath, which shares histological features with desmoplastic fibroblastoma, harboured
USP6 rearrangements in 9/15 cases and did not demonstrate rearrangements in any of the four FOS genes. The over-
all concordance between FOSL1 immunohistochemistry and RNA sequencing results was 90%. These findings illus-
trate that FOSLT and FOS rearrangements are a recurrent event in desmoplastic fibroblastoma, establishing this
finding as a useful diagnostic adjunct and expanding the spectrum of tumours driven by FOS gene family alterations.
© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great

Britain and Ireland.
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Introduction

The discovery of the FOS retroviral homologue (v-fos) as
an initiator of osteosarcoma in mice [1] spurred significant
interest in the role of FOS and its paralogues in the patho-
genesis of bone and other tumours. The FOS gene family
comprises four genes, FOS, FOSB, FOSLI and FOSL2,
which encode subunits of the activator protein

1 (AP1) transcription factor, a master regulator of
human development and cellular differentiation [2,3].
Cancer genomics efforts over the past decade have
revealed that somatic rearrangements in FOS and FOSB
underpin osteoblastoma [4], osteoid osteoma, epithelioid
haemangioma [5,6] and pseudomyogenic haemangioen-
dothelioma [7]. Mutations of the remaining two FOS
genes, FOS Like 1 (FOSLI) and FOS Like 2 (FOSL2), have
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not been demonstrated in human tumours to date. In partic-
ular, although the benign fibrous tumour desmoplastic
fibroblastoma (collagenous fibroma) is characterised by
FOSL1 overexpression [8], cytogenetic studies have
localised recurrent breakpoints to chromosome 11ql12,
adjacent to but not involving the FOSLI gene [8-10].

Here we outline the initial discovery by whole-
genome sequencing of a FOSLI rearrangement that
recapitulates the pattern of reported FOS variants in an
index case of desmoplastic fibroblastoma. We further
demonstrate that rearrangements in FOSLI and, less
commonly FOS represent a recurrent and specific feature
in the majority of these tumours.

Materials and methods

Whole-genome sequencing (index case)

Fresh frozen tumour and whole blood were submitted for
whole-genome sequencing through the National Health
Service (NHS) Genomic Medicine Service via the East
Genomics Laboratory Hub (GLH), Cambridge, UK, as
previously described [11]. Data processing and analysis
were performed using the established clinical pipeline at
the East GLH. All data presented for the index case were
generated as part of routine clinical care. The child’s
legal guardians provided informed consent for publica-
tion of their child’s case. The validation cohort was
obtained through the University College London/
University College London Hospitals (UCL/UCLH)
Biobank for Health and Disease (REC reference
20/YH/0088).

Targeted RNA sequencing

Archival formalin-fixed paraffin-embedded (FFPE) mate-
rial from 15 cases each of desmoplastic fibroblastoma and
fibroma of tendon sheath were obtained from the
UCL/UCLH tissue biobank at the Royal National Ortho-
paedic Hospital (RNOH). RNA was extracted from

S De Noon et al

tumour FFPE material and analysed using the TruSight®
RNA Pan-Cancer Panel (Illumina, San Diego, CA,
USA) according to the manufacturer’s protocol. This
panel allows for targeted enrichment of the exonic
sequences of 1,385 cancer-related genes, including FOS,
FOSB, FOSLI and USP6. Bioinformatic analysis was
performed using the RNA-Seq Alignment App version
2.0.1 (BaseSpace Sequencing Hub, Illumina) with default
parameters (Supplementary materials and methods). This
was followed by analysis using a second, clinically vali-
dated in-house pipeline based on Arriba [12] at the North
Thames GLH. Sequencing data were manually inspected
for reads supporting breakpoints across the four FOS
genes using the Integrative Genomics Viewer [13].

Immunohistochemistry and FISH analysis

All samples were subjected to FOSL1 immunohistochem-
istry using Anti-Fra-1 (C-12, Santa Cruz Biotechnologies,
Texas, USA, see Supplementary materials and methods).
¢-FOS immunohistochemistry was performed using Anti-
c-Fos (ABE457, 0.5 pg/ml, MilliporeSigma, Burlington,
MA, USA). Fluorescence in situ hybridisation (FISH)
analysis for USP6 breakpoints was performed on all fibro-
mas of tendon sheath samples with commercially avail-
able USP6 dual colour probe (Zytovision, Bremerhaven,
Germany).

Results

This study began with a case of an infant who had devel-
oped an infiltrative mass in the dorsal compartment of the
distal forearm, near the wrist. This mass was initially
noted during the first few weeks of life; progressive
growth for several months prompted an open biopsy at a
separate hospital. Histology demonstrated a bland,
hypocellular spindle cell tumour with a myxocollagenous
stroma, which lacked informative diagnostic features on
immunohistochemistry. No convincing evidence of
malignancy was observed, but a low-grade sarcoma could
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Figure 1. FOSL1 rearrangement in index case. (A) Overview of somatic copy number and structural variant analysis of index tumour whole
genome, including t(11;14)(q13.1;922.1) rearrangement involving FOSLT. Green indicates absolute copy number, yellow minor allele copy
number. (B) Schematic of FOSLT rearrangement. Transcript sequence shows introduction of premature stop codon. (C) Haematoxylin and
eosin (H&E) showed a paucicellular fibrous lesion composed of bland spindle cells, which demonstrated strong nuclear immunoreactivity
to FOSL1 (inset).
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Figure 2. FOSL1 and FOSrearrangements in desmoplastic fibroblastoma. (A) Schematic of FOS gene family transcripts showing shared pattern
of breakpoints in FOS and FOSL1, leading to detachment of the proteasome degradation motif. HR, homologous region; D-TAD, dominant
transactivation domain; DBD, DNA binding domain; LZ, leucine zipper region. (B) Clustering of FOSL1 breakpoints detected in desmoplastic
fibroblastoma in exon 4 of gene. (C-E) Correlation of immunohistochemical and targeted RNA sequencing results. Strong diffuse immuno-
reactivity for (C) FOSL1 or (D) FOS were associated with the presence of rearrangements in the respective genes. (E) Weak and partial FOSL1
expression was seen in some fibromas of tendon sheaths, but typical USP6 rearrangements and absence of FOSL1 rearrangements distinguish
these tumours.

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2023; 259: 119-124
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com


http://www.pathsoc.org
http://www.thejournalofpathology.com

122

not be excluded. Given surgical options for en bloc
removal without functional impairment were limited, che-
motherapy was proposed as is commonly employed in
unresectable, low-grade fibromatous tumours of child-
hood. The child then came under our care, at which time
the growth of the lesion had stabilised. A decision was
made to monitor the tumour closely before embarking
on definitive treatment. Nine months later the mass
increased in size, and the lesion was excised. At this time,
the diagnosis of a benign fibrous tumour could be pro-
vided with greater confidence; the favoured differential
diagnoses included a fibroma of tendon sheath and
desmoplastic fibroblastoma (Figure 1C). No histological
features of malignancy were identified.

Clinical whole-genome sequencing, performed through
the NHS Genomic Medicine Service, revealed a
rearrangement involving the FOSLI gene on chromosome
11 (Figure 1A). The FOSLI breakpoint was located in the
final exon of the gene, with the partner sequence belonging
to an intergenic region on chromosome 14. The location of
this breakpoint ostensibly disconnects the functional cod-
ing sequences from its terminal regulatory domain,
mirroring the pattern of rearrangements previously
described in FOS [4,6]. The tumour genome was otherwise
devoid of somatic copy number changes or point mutations
that generated plausible driver events. Targeted RNA
sequencing, performed on FFPE-derived cDNA using
TruSight® RNA Pan-Cancer Panel, confirmed the FOSLI
breakpoint at the transcript level (Figure 1B), which was
further corroborated by strong nuclear immunoreactivity
for FOSL1 (Figure 1C). Based on these findings, a final
diagnosis of desmoplastic fibroblastoma was concluded,
and we speculated that somatic FOSLI rearrangements
may underpin desmoplastic fibroblastoma.

We investigated 15 additional cases of desmoplastic
fibroblastoma by targeted sequencing of FFPE-derived
cDNA and correlated the transcriptomic findings with
immunohistochemistry for FOSL1 (supplementary
material, Table S1). In a cohort of 15 desmoplastic
fibroblastomas, we found strong FOSL1 immunopo-
sitivity in 12/15 cases (including one recurrent tumour
DF10), 10 of which harboured FOSLI rearrangements at
the transcript level (Figure 2, supplementary material,
Table S2). The remaining 3/15 cases did not exhibit FOSL1
immunoreactivity or FOSLI rearrangements. Similar to
the index case, all FOSLI breakpoints clustered around
the regulatory domain of the final exon (Figure 2A,B).
Rearrangement partners were scattered across multiple
chromosomes, most commonly chromosome 2 (n = 4),
and all comprised non-coding regions, either intronic
(out of reading frame, n =35) or intergenic (n =Y5).
Despite strong FOSL1 expression in two cases, DF11
and DF12, these revealed no evidence of rearrangements
in FOSLI.

We next delved into the three FOSLI wild-type and
immunonegative cases of desmoplastic fibroblastoma
and found that two of these contained breakpoints in
the final exon of FOS, identical to the recurrent alterations
that typify osteoblastoma (Figure 2A). Consistent with
this finding, we demonstrated c-FOS immunoreactivity

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

S De Noon et al

in both cases (Figure 2D). In the third FOSLI wild-type
case (DF15), an intrachromosomal TFG-PIK3CA trans-
location was identified.

To explore the specificity of these findings in FOS and
FOSLI for desmoplastic fibroblastoma, we examined
15 fibroma of tendon sheath tumours, their principal his-
tological mimic. As 90% of these contain USP6
rearrangements [14], we submitted all cases for FOSL1
immunohistochemistry and FISH for a USP6 break-
apart signal. Nine fibromas of tendon sheath harboured
USP6 break-apart signals (Figure 2E). FOSLI1
immunostaining was negative in 12/15 cases, whereas
3/15 (FTSS5, FTS11, FTS12) showed equivocal weak
nuclear immunoreactivity (1+) with a minor population
of tumour cells demonstrating stronger (2+4-/3+) positiv-
ity (Figure 2E). No fibromas showed strong uniform
FOSL1 positivity, as observed in desmoplastic
fibroblastoma. We interrogated the six fibromas of ten-
don sheath, which showed no USP6 rearrangement by
FISH, using targeted RNA sequencing, and did not find
a breakpoint in FOSLI or any of the other three FOS
genes. Across both tumour types, concordance between
FOSL1 immunohistochemistry and targeted sequencing
results was 90%. Together, these findings indicated that
FOSLI rearrangements, detectable by immunohisto-
chemistry or direct sequencing of the FOSLI transcript,
are a common feature in desmoplastic fibroblastoma
and absent from fibroma of tendon sheath, including
USP6 wild-type cases.

Discussion

Our investigation revealed that a majority of desmoplastic
fibroblastomas harbour rearrangements in FOSLI
that distinguish them from their main mimic, fibroma
of tendon sheath. Although conventional morphology
alone will suffice in most cases to reach a diagnosis of
desmoplastic fibroblastoma, some rare cases will require
more definitive evidence to aid clinical decision making,
as illustrated by the index patient of this study. The find-
ing of a molecular marker that confirmed the benign
nature of this tumour-directed clinical management to
prioritise long-term functional outcomes over tumour eradi-
cation. In addition, identification of FOSLI rearrangements
has allowed confirmation of a case of locally recurrent
desmoplastic fibroblastoma (DF10). Disease relapse has
not been reported in the literature for this tumour type,
so our finding expands the spectrum of clinical behaviour
displayed by this entity.

Similar to the need for cautious interpretation of FOS
and FOSB immunoreactivity [15,16], careful optimisa-
tion of the dilution of antibodies against FOSL1 is
required since wild-type cells can demonstrate low
levels of this protein [17]. Hence, detection of FOSLI
rearrangements by targeted sequencing approaches
may be the preferred adjunct for the diagnostic work-
up of fibrous tumours: this resolves the challenge of
interpreting equivocal immunohistochemistry while
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simultaneously identifying genetic alterations that
may indicate other fibrous tumours, including desmoid-
type fibromatosis, nodular fasciitis and low-grade
fibromyxoid sarcoma.

Earlier genetic studies of desmoplastic fibroblastoma
identified somatic changes in the vicinity of the FOSLI
locus, associated with FOSL1 immunoreactivity [9,10].
Whole-genome and RNA sequencing enabled us to
unravel the underlying somatic genetic alteration that
explained these findings. In a remarkable parallel to
rearrangements observed in FOS, translocations remove
the regulatory region of FOSLI to generate a mutant
gene mimicking the potent oncogene v-fos [4]. The reg-
ulatory region of FOSLI encodes motifs that are highly
conserved across all FOS genes and promote protein
degradation [18-20]. Disruption of these motifs is
hypothesised to increase activity by increasing protein
life span [6], which in the case of FOS has been corrob-
orated experimentally in vitro [21]. It is thus highly plau-
sible that FOSLI rearrangements operate through the
same mechanism, i.e. reduced FOSL1 protein degrada-
tion, which is supported by our finding of intense FOSL1
protein immunoreactivity in mutant tumours.

Since systematic large-scale efforts to investigate
human neoplasms have concluded, the somatic genetic
landscape of the majority of tumour types has been
defined. Precision medicine programmes, such as
whole-genome sequencing offered to children with
tumours and all patients with sarcoma, by the National
Health Service in England [11] provide an opportunity
to study genetically uncharted neoplasms in a real-life
clinical context. As three of four FOS genes have
emerged as recurrently mutated in human tumours, and
given the structural and functional similarities between
members of this gene family, we suspect that there
may well be neoplasms harbouring yet undiscovered
alterations in FOSL2, which clinical sequencing
programmes of rare tumours can help reveal.
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