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Abstract

Cognitive reserve supports cognitive function in the presence of pathology or

atrophy. Functional neuroimaging may enable direct and accurate measure-

ment of cognitive reserve which could have considerable clinical potential.

The present study aimed to develop and validate a measure of cognitive

reserve using task-based fMRI data that could then be applied to independent

resting-state data. Connectome-based predictive modelling with leave-one-out

cross-validation was applied to predict a residual measure of cognitive reserve

using task-based functional connectivity from the Cognitive Reserve/Reference

Ability Neural Network studies (n = 220, mean age = 51.91 years,

SD = 17.04 years). This model generated summary measures of connectivity

strength that accurately predicted a residual measure of cognitive reserve in

unseen participants. The theoretical validity of these measures was established

via a positive correlation with a socio-behavioural proxy of cognitive reserve

(verbal intelligence) and a positive correlation with global cognition, indepen-

dent of brain structure. This fitted model was then applied to external test

data: resting-state functional connectivity data from The Irish Longitudinal

Study on Ageing (TILDA, n = 294, mean age = 68.3 years, SD = 7.18 years).

The network-strength predicted measures were not positively associated with

a residual measure of cognitive reserve nor with measures of verbal intelli-

gence and global cognition. The present study demonstrated that task-based

functional connectivity data can be used to generate theoretically valid mea-

sures of cognitive reserve. Further work is needed to establish if, and how,

measures of cognitive reserve derived from task-based functional connectivity

can be applied to independent resting-state data.

Abbreviations: CPM, connectome-based predictive modelling; CR/RANN, Cognitive Reserve/Reference Ability Neural Network studies; DMN,
default mode network; EPI, echo-planar imaging; fMRI, functional magnetic resonance imaging; FPN, frontoparietal network; FWD, framewise
displacement; LOOCV, leave-one-out cross-validation; MAE, mean absolute error; MNI, Montreal Neurological Institute; MPRAGE, magnetization-
prepared rapid gradient echo; NART, National Adult Reading Test; rs-fMRI, resting-state functional magnetic resonance imaging; SAL, salience
network; TE, echo time; TILDA, The Irish Longitudinal Study on Ageing; TR, repetition time.
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1 | INTRODUCTION

Cognitive reserve (CR) refers to a property of the brain
that enables better-than-expected cognitive function
given the degree of age-related brain changes and brain
injury or disease (Collaboratory on Research Definitions
for Reserve and Resilience in Cognitive Aging and
Dementia, 2022). Higher CR is associated with a delayed
onset, and lower incidence, of dementia (Reed
et al., 2010; Soldan et al., 2020; Zahodne et al., 2015), and
reduced hospitalization risk in individuals with a genetic
risk for Alzheimer’s disease (Filshtein et al., 2019). CR is
a modifiable construct that may be influenced by various
life experiences, for example educational attainment
(Malek-Ahmadi et al., 2017) and occupational complexity
(Boots et al., 2015), as well as genetics (Barker
et al., 2021; Dumitrescu et al., 2020).

Accurate measurement of CR could improve the clini-
cal diagnosis of dementia (Stern, 2012), the measurement
of intervention efficacy in clinical trials (Mondini
et al., 2016), the stratification of participants in interven-
tion studies (Stern, 2012), and the development of inter-
ventions designed to enhance CR (Moga et al., 2019). An
accurate neuroimaging measure of CR might enable the
identification of specific CR-related brain networks that
could be targeted using neuromodulation (Arvaneh
et al., 2018; Scheinost et al., 2020) or neurostimulation
techniques (Kim et al., 2019).

CR is typically measured using socio-behavioural var-
iables (‘proxies’) that reflect the degree of exposure to
various lifetime experiences thought to contribute to CR
(Stern et al., 2020). Although this measurement approach
is convenient and inexpensive, it is theoretically and
methodologically limited as proxies are self-report vari-
ables that fail to capture the entirety of dynamic CR con-
struct (Bettcher et al., 2019; Jones et al., 2011; Ward
et al., 2015). Another measurement approach, using
structural neuroimaging, is the CR residual, which opera-
tionally defines CR as the unexplained variance in cogni-
tion after accounting for brain structure and
demographics (Bettcher et al., 2019; Reed et al., 2010;
Zahodne et al., 2013). In comparison to socio-behavioural
proxies, the CR residual can better reflect change in CR
over time (Stern et al., 2020). However, the CR residual

provides limited insights into the functional processes
underlying CR, as it uses structural—not functional—
neuroimaging data. Furthermore, because it is a residual,
it will necessarily contain a significant proportion of mea-
surement error (Ewers, 2020).

Functional neuroimaging may provide a more direct
measure of CR via the identification of neural networks
or patterns of neural activity, whose strength or expres-
sion differs as a function of CR (Stern et al., 2020;
Stern & Barulli, 2019). Unlike proxies, a functional neu-
roimaging measure could reflect exposure to various life-
time experiences without directly reflecting the change in
exposure itself (Stern & Barulli, 2019). This would enable
effective evaluation of interventions designed to increase
CR. Importantly, a brain-based approach could provide
important mechanistic insights into CR.

Valid measurement of CR requires some proposed
measure of CR (e.g., a proxy or candidate neuroimaging
measure) and two other components: a measure of brain
structure/pathology and a measure of cognitive function
(Christensen et al., 2008; Stern et al., 2020). The latter
two components allow the CR measure to be validated by
assessing its protective effect on cognition. A protective
effect can be demonstrated by a moderation effect of the
candidate CR measure on the relationship between brain
structure/pathology and cognition, such that there is a
weaker relationship between brain structure/pathology
and cognition at higher levels of CR (Collaboratory on
Research Definitions for Reserve and Resilience in Cogni-
tive Aging and Dementia, 2022). Alternatively, weaker
evidence of a protective effect may be established by a
positive association between the candidate CR measure
and cognition, controlling for the effect of brain struc-
ture/pathology (Stern et al., 2020). Face validity of the CR
measure can be established by a positive association with
a socio-behavioural CR proxy (Franzmeier, Duering,
et al., 2017; Stern & Habeck, 2018).

The theoretical criteria for neuroimaging measures of
CR have been satisfied in previous work. Belleville et al.
(2021) identified a pattern of increased activation in the
right inferior temporal gyrus that was positively associ-
ated with a composite CR proxy and that moderated the
relationship between hippocampal volume and associa-
tive memory performance, that is, compensating for

BOYLE ET AL. 491



reduced hippocampal volume. This supports the use of
task-fMRI for measuring CR. However, as individual dif-
ferences in cognitive function are more accurately pre-
dicted by global patterns of task-related activations than
by regional patterns (Zhao et al., 2021), focusing on glob-
ally distributed activations may be a more promising
approach. Global brain activation may also be better
suited to detecting the generalized neural networks
(i.e., generic or task-invariant networks) that may under-
lie CR (Steffener et al., 2011; Steffener & Stern, 2012;
Stern et al., 2018; van Loenhoud et al., 2020).

Resting-state fMRI (rs-fMRI) provides a means of
measuring global patterns of connectivity in generic or
task-invariant CR networks. In contrast to task-fMRI, rs-
fMRI is unaffected by various individual-level factors,
including task difficulty (Stern, 2005), motivation, con-
centration, and fatigue (McCaffrey & Westervelt, 1995),
that influence task performance and engagement and
therefore may affect task-related activations. As rs-fMRI
does not place task-related demands on participants, it
can be more easily conducted in individuals with cogni-
tive impairment (Fox & Greicius, 2010), and therefore
has better potential for clinical utility. Finally, rs-fMRI
data can be more easily shared and aggregated with data
from other sites as part of data-sharing initiatives,
thereby enabling greater use of any derived CR measures
(Mennes et al., 2013; Woodward & Cascio, 2015).

Various studies have identified associations between
resting-state connectivity in specific networks and CR
proxies as well as protective effects on cognition. Educa-
tional attainment has been positively associated with
connectivity of the frontoparietal network (FPN; Franz-
meier, Caballero, et al., 2017; Serra et al., 2016) and
between a salience network (SAL) node, the anterior cin-
gulate cortex, and regions including the right hippocam-
pus, right posterior cingulate cortex/gyrus, left inferior
frontal lobe, and left angular gyrus (Arenaza-Urquijo
et al., 2013). Greater connectivity of the FPN, SAL and
default mode networks (DMN) has been associated with
lower cognitive decline, independent of brain structure,
and in the context of high amyloid burden (Buckley
et al., 2017).

Converging evidence of the association between
resting-state functional connectivity and CR suggests that
rs-fMRI may be a viable method for measuring CR. The
viability of this method was firmly supported by Stern
et al. (2021), who identified a pattern of resting-state
functional connectivity that was positively associated
with a CR proxy, verbal intelligence. Having demon-
strated the face validity of this potential measure, a pro-
tective effect on cognition was subsequently established
as this measure was associated with global cognition,
controlling for cortical thickness. Importantly, Stern et al.

were able to validate this measure in an independent
dataset, where it also showed face validity and a protec-
tive effect on global cognition.

Despite the advantages and demonstrated viability of
rs-fMRI data for measuring CR, task-fMRI data may still
enable more accurate measurement. Task-based fMRI
can augment individual differences in neural processes or
networks underlying a phenotype (Greene et al., 2018;
Yoo et al., 2018) and has been shown to generate more
accurate predictions of cognitive phenotypes compared
with rs-fMRI (Greene et al., 2018). Therefore, current
methods for developing functional neuroimaging mea-
sures of CR may have suboptimal accuracy if developed
using rs-fMRI but may have limited clinical potential and
shared use if developed using task-fMRI. A novel
approach is to develop a measure of CR leveraging the
increased accuracy of task-fMRI but that can be applied
to rs-fMRI in independent datasets or individual scans,
thereby maximizing the clinical potential and usability of
the measure.

Connectome-based predictive modelling (CPM; Shen
et al., 2017) is a data driven-method for developing accu-
rate measures of cognitive and behavioural phenotypes,
using task-based fMRI or rs-fMRI, that generalise across
datasets (M. Gao et al., 2020; Rosenberg et al., 2016; Yip
et al., 2019; Yoo et al., 2018). In short, CPM summarises
the most relevant connections—or ‘edges’—for the phe-
notype, across the whole brain. Within cross-validation
frameworks, these edges are summed to create three sin-
gle scalar value measures—positive, negative, and com-
bined network strength—which summarise the
connectivity strength of edges that are related to the phe-
notype of interest. These three measures effectively
reduce complex functional connectivity data into single
values that predict a phenotype based on the connectivity
strength of functional networks. CPM generates more
accurate predictions of cognition using task-based fMRI
but, importantly, these predictions still generalise to
rsfMRI (Greene et al., 2018; Rosenberg et al., 2016). This
is because individual differences, compared with brain
state (i.e., task vs. rest), explain more variability in func-
tional connectivity (Gratton et al., 2018) and task-based
and resting-state functional connectivity are highly corre-
lated (Finn et al., 2015; McCormick et al., 2022). As such,
CPM provides a means of capitalising on the increased
accuracy of task-fMRI to develop measures that can be
applied to rs-fMRI.

Previous applications of CPM have successfully pre-
dicted cognitive phenotypes—fluid intelligence (Gao
et al., 2019; Greene et al., 2018), attention (Fountain-
Zaragoza et al., 2019; Rosenberg et al., 2016), and execu-
tive function (Henneghan et al., 2020)—that have been
directly associated with CR proxies elsewhere (Chan
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et al., 2018; Lavrencic et al., 2018). CPM could capitalise
on recent developments in measuring CR from neuroim-
aging data by using the CR residual as the outcome—or
target—variable to be predicted from the functional con-
nectivity data. The CR residual has face validity (Habeck
et al., 2017; Lee et al., 2019), satisfies the cognitive benefit
criterion (Reed et al., 2010; Zahodne et al., 2013) and pro-
vides a more direct measure of CR than proxies that have
been used as target variables in previous attempts to mea-
sure CR with fMRI (Stern et al., 2018, 2021; van
Loenhoud et al., 2020). The present study aimed to
develop and validate a functional neuroimaging measure
of CR by applying CPM to task-based fMRI data to pre-
dict a CR residual and to externally validate the measure
on resting-state fMRI data in an independent dataset.

2 | METHODS

2.1 | Participants

2.1.1 | Training set

The training set consisted of data from 220 participants of
the Cognitive Reserve/Reference Ability Neural Network
(CR/RANN) studies (Stern et al., 2014, 2018). From an
initial 384 participants, 123 were excluded due to missing
data, presence of possible lesions, or fMRI data quality
issues (see Supporting Information, Methods: Participant
exclusions) and 41 were excluded for excessive head

motion during fMRI scan, defined as mean framewise
displacement (FWD) > 0.4 mm or frame to frame move-
ments >97.5th percentile of frame to frame movements
across the whole sample.

2.1.2 | Test set

The test set consisted of 294 participants from the MRI
subset of The Irish Longitudinal Study on Ageing
(TILDA), a nationally representative longitudinal cohort
study of community-dwelling older adults in Ireland
(Kearney et al., 2011; B. J. Whelan & Savva, 2013). From
an initial 561 participants, 113 were excluded due to
missing data, history of Parkinson’s disease, stroke, or
transient ischaemic attack, presence of possible lesions,
or fMRI data quality issues, and 154 were excluded for
excessive head motion. Demographic information for
both datasets is presented in Table 1.

2.2 | Image acquisition

2.2.1 | Training set

CR/RANN imaging data were obtained from a 3T Philips
Achieva scanner over the course of two separate 2-h
imaging sessions. Here, a single fMRI scan session was
used, which was collected during completion of the Paper
Folding task (Ekstrom et al., 1976), as described

TAB L E 1 Descriptive statistics for relevant variables in both datasets

CR/RANN (training set) n = 220 TILDA (test set) n = 294 Group comparison

Mean SD Mean SD t p

Age (years) 51.905 17.043 68.301 7.177 �14.837 <0.001

Sex (female/male) 115/105 152/142 χ 2 = 0.016 0.898

Education (years) 16.209 2.380 17.629a 3.163 �5.537 <0.001

NART score 32.859 9.011 30.432 10.596 5.710 <0.001b

Global cognition 0.076 0.711 0.094 0.650 �0.300 0.764

Grey matter volume 0.426 0.028 0.410 0.037 5.453 <0.001

Hippocampal volume 0.005 0.001 0.005 0.001 1.511 0.131

Mean cortical thickness 2.610 0.114 2.410 0.075 23.892 <0.001

CR residual 0.000 0.593 0.000 0.585 �0.664 0.507

Mean FWD (mm) 0.199 0.074 0.250 0.072 �7.745 <0.001

Abbreviations: SD, standard deviation; global cognition, composite of standardized scores on measures of verbal fluency, processing speed, executive function,
immediate and delayed verbal episodic memory; NART, National Adult Reading Test; CR, cognitive reserve; FWD, framewise displacement; t, t-statistic from

independent samples t-test; χ2, chi-square statistic.
a14 participants missing years of education in TILDA.
bMean NART scores were normalised separately in each dataset using min-max normalisation before conducting an independent samples t-test as different
versions of the NART with different possible maximum scores were used in each dataset.
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previously (Stern et al., 2014). The fMRI data were
acquired using a 14 min 26 s echo-planar imaging (EPI)
pulse sequence (flip angle = 72�, slice thickness = 3 mm,
slice gap = 0 mm, slices = 33, repetition time [TR]
= 2000 ms, echo time [TE] = 2 ms). In addition to
430 volumes, three dummy volumes were acquired at the
start of the fMRI scan and automatically discarded. Struc-
tural MRI data were acquired using a 5-min 3D
T1-weighted magnetization-prepared rapid gradient echo
(MPRAGE) scan with the following parameters: field of
view = 256 � 256 � 180 mm, matrix size = 256 � 256,
slice thickness = 1 mm, slice gap = 0 mm, TR = 6.5 ms,
TE = 3 ms.

2.2.2 | Test set

TILDA imaging data were obtained using a 3T Philips
Achieva scanner during a 45-min MRI battery. Rs-fMRI
data were acquired using a 6 min 51.9 s gradient EPI
sequence (flip angle = 90�, slice thickness = 3.2 mm,
slice gap = 0.3 mm, slices = 38, TR = 2000 ms,
TE = 28 ms). In addition to 200 volumes, four dummy
volumes were acquired at the start of the rs-fMRI scan
and automatically discarded. Structural MRI data were
acquired using a 3D T1 MPRAGE scan with the following
parameters: field of view = 240 � 240 � 162 mm3,
matrix size = 288 � 288, slice thickness = 0.9 mm, slice
gap = 0 mm, TR = 6.7 ms, TE = 3.1 ms.

2.3 | Image preprocessing

Each dataset was preprocessed separately with the same
pipeline. Functional and structural images were manu-
ally reoriented to ensure approximately similar orienta-
tion in Montreal Neurological Institute (MNI) space.
Images were visually inspected for artefacts, data quality
issues, possible lesions, and severe atrophy. Images were
preprocessed using SPM12 and fMRI images were cor-
rected for slice-timing and head motion. Nuisance regres-
sors consisted of six motion estimates, mean white matter
signal, mean cerebrospinal fluid signal, and mean global
signal, and the derivatives, quadratic terms, and squares
of derivatives of these nine parameters (i.e., the ‘36
Parameter model’; Ciric et al., 2017; Satterthwaite
et al., 2013). Normalised functional images and variance
images were visually inspected for data quality issues
(e.g., registration or normalization errors) and motion-
related issues and artefacts, respectively (see Supporting
Information, Methods: Participant exclusions). Finally,
data were temporally smoothed with a zero-mean unit-

variance Gaussian filter (approximate cut-off frequency
of 9.37 Hz) using BioImageSuite (Joshi et al., 2011). The
code used for quality control of the fMRI images is avail-
able here: https://github.com/rorytboyle/fMRI_QC.

2.4 | Functional connectivity network
construction

The Shen 268-node functional atlas (Shen et al., 2013)
was used to parcellate the fMRI data in both datasets, in
line with previous CPM studies (Finn et al., 2015; Gao
et al., 2020; Greene et al., 2018; Horien et al., 2019). Fully
preprocessed functional volumes, already in MNI space,
were resliced to the Shen functional parcellation image
using spm_reslice. Using BioImageSuite, the mean time
series for each node was calculated as the average time
series across all voxels within each node, for each partici-
pant. Due to incomplete coverage of the cerebellum for a
large proportion of the training set (n = 125; 56.82% of
final sample), 63 nodes within the cerebellum and brain-
stem were removed from all participants in each dataset
(see Supporting Information, Methods: Removal of cere-
bellar and brainstem nodes). Functional connectivity
between each pair of nodes was calculated by correlating
the average time course between each pair of nodes.
Pearson correlation coefficients were normalised by a
Fisher z-transformation. This resulted in a 205*205 con-
nectivity matrix for each participant in both datasets. The
code used for construction of the connectivity matrices is
available here: https://github.com/rorytboyle/fMRI_
connectivity_processing.

2.5 | Measures

2.5.1 | CR residual

CR residuals were obtained, separately in each dataset,
from a linear regression of global cognition on age, gen-
der, grey matter volume, hippocampal volume, and mean
cortical thickness (see Figure 1 and Supporting Informa-
tion, Results: Creation of CR residuals). Global cognition
was measured as the composite of five standardized
scores on comparable measures of verbal fluency, proces-
sing speed, executive function, immediate and delayed
verbal episodic memory (see Supporting Information,
Methods: Cognitive function and brain structure mea-
sures). Measures of total GM volume, adjusted hippocam-
pal volume, and mean cortical thickness were obtained
from Freesurfer, as described previously (Carey
et al., 2019; Habeck et al., 2016).
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2.5.2 | CR proxy

Verbal intelligence was used here as CR proxy to assess
the face validity of the neuroimaging measure of CR, as it
is a robust socio-behavioural proxy of CR (Boyle
et al., 2021). Verbal intelligence was measured by the
total number of correctly pronounced words on the
American National Adult Reading Test (AMNART;
Grober & Sliwinski, 1991) in CR/RANN and on an
adjusted version of the National Adult Reading Test
(NART; Nelson & Willinson, 1982) in TILDA (see Sup-
porting Information, Methods: Verbal intelligence).

2.6 | Connectome-based predictive
modelling of cognitive reserve

CPM with leave-one-out cross-validation (LOOCV) was
applied to the training set (Shen et al., 2017) using
MATLAB (code available here: https://github.com/
rorytboyle/flexible_cpm). CPM consisted of the following
steps: edge selection, network strength calculation, model
fitting, model application, model evaluation as detailed
in Figure 2 (see Supporting Information: Connectome-

based predictive modelling for a comprehensive descrip-
tion). This generated three network strength predicted
CR values per participant (positive network strength pre-
dicted CR, negative network strength predicted CR, and
combined network strength predicted CR). The accuracy
of each predicted value with respect to the CR residual
was evaluated using three metrics: Pearson’s correlation,
coefficient of determination (R2) from a linear regression,
and the mean absolute error (MAE), in line with best-
practice guidelines for predictive modelling in neuroim-
aging (Poldrack et al., 2020).

LOOCV is the standard cross-validation scheme in
studies applying CPM (Greene et al., 2018; Rosenberg
et al., 2016), but can overestimate model accuracy and
can generate more variable predictions when applied to
external datasets (Dwyer et al., 2018; Varoquaux
et al., 2017). As such, k-fold cross-validation has been
recommended as a preferable cross-validation scheme
(Poldrack et al., 2020; Varoquaux et al., 2017). Therefore,
the analysis was repeated in the training set using
repeated k-fold cross-validation schemes (5-fold and
10-fold cross-validation repeated 100 times) instead of
LOOCV (see Supporting Information: Repeated k-fold
cross-validation).

2.7 | Optimisation of edge selection
threshold

As edge-selection p-value thresholds are arbitrary
(Greene et al., 2018), a data-driven method was imple-
mented to obtain an optimal threshold which provided
the highest training set accuracy (see Supplemental Infor-
mation, Methods: Optimisation of edge selection thresh-
old). The resulting p-value threshold was 0.0009 with
r = 0.2896 (see Table S1).

2.8 | Assessing validity of network
strength predicted CR

To assess the theoretical validity of the network strength
predicted CR measures, their face validity and protective
effects on cognition were investigated. Face validity was
assessed by establishing if there was a positive association
with a CR proxy, verbal intelligence, using Pearson’s cor-
relation. The protective effect was assessed by establish-
ing whether they a) moderated the relationship between
mean cortical thickness and global cognition
(i.e., demonstrated a moderation effect), or b) were posi-
tively associated with global cognition, independent of
mean cortical thickness (i.e., demonstrated an indepen-
dent effect). In hierarchical linear regressions, global

F I GURE 1 Illustration of CR residuals from the regression of

global cognition on age, sex, and brain structure. Positive residuals

(green arrows) reflect better cognitive performance than expected

given age, sex, and brain structure. Negative residuals (purple

arrows) reflect poorer cognitive performance than expected.

Higher/more positive residual values reflect higher CR. Image

adapted with permission from Figure 1 (Franzmeier, Hartmann,

et al., 2017)
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cognition was regressed on age, sex, and mean cortical
thickness in Step 1, with network strength predicted CR
added as an independent variable in Step 2, and the inter-
action term for mean cortical thickness and network
strength predicted CR included as an independent vari-
able in Step 3. The change in R2 (i.e., amount of variance

explained) from Step 1 to Step 2, and from Step 2 to Step
3 in linear regression models were used to assess the size
of the independent and moderation effects of CR proxies,
respectively. This analysis was conducted in Python (code
available here: https://github.com/rorytboyle/
hierarchical_regression).

F I GURE 2 Schematic of CPM with LOOCV to predict CR residuals in the training set. PosNetStrength = positive network strength;

NegNetStrength = negative network strength; ComboNetStrength = combined network strength; PosNet CR = positive network strength

predicted CR; NegNet CR = negative network strength predicted CR; ComboNet CR = combined network strength predicted CR
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2.9 | External generalisability of
connectome-based prediction

To evaluate if network strength predicted CR generalised
to independent data, the trained CPM from CR/RANN
was applied to TILDA data. First, positive and negative
network strength values were computed by summing the
positive and negative edges selected in each iteration of
the LOOCV in the training set and dividing the sums by
two to account for the symmetrical matrix. Combined
network strength was computed as positive network
strength minus negative network strength. Second, the
regression parameters fitted in the training set were aver-
aged across all iterations of the LOOCV and applied to
their respective network strength values to calculate net-
work strength predicted CR values. Third, these values
were evaluated with respect to their predictive accuracy
of the CR residual, using Pearson’s correlation, R2, and
MAE. Finally, as described above for the training set, the
predicted CR values were assessed with respect to their
theoretical validity as measures of CR.

2.10 | Possible confounds in the
relationship between connectivity and CR

The ‘36 Parameter’ preprocessing pipeline used here
has been shown to attenuate motion-related artefacts

and noise in the data (Power et al., 2014; Yan
et al., 2013). Due to the noted effect of motion on func-
tional connectivity (Power et al., 2012), additional steps
were also taken to control for this source of noise (see
Supporting Information, Methods: Control of possible
confounds). To further ensure that the network strength
predicted CR measures were not confounded by covari-
ates including head motion, CPM was repeated includ-
ing age, sex, and mean FWD as covariates at the edge
selection step. This was implemented using a partial
correlation to relate functional connectivity in each
edge to the CR residual, including age, sex, and mean
FWD as covariates.

3 | RESULTS

3.1 | Connectome-based prediction of
cognitive reserve

The connectome-based predictive models significantly
predicted the CR residuals of novel participants (i.e., each
left-out participant in the LOOCV) from task-based func-
tional connectivity data in the training set (see Figure 3
and Table 2). The combined network strength model had
the highest predictive accuracy for the CR residual,
across all three performance metrics (highest R, highest
R2, and lowest MAE).

TAB L E 2 CPM performance for prediction of CR residuals in the training set

Positive network strength Negative network strength Combined network strength

r R2 MAE r R2 MAE r R2 MAE

Original 0.239*** 0.057 0.453 0.282*** 0.079 0.447 0.290*** 0.084 0.444

Adjusted 0.251*** 0.063 0.452 0.178** 0.032 0.475 0.225*** 0.051 0.463

*<0.05.
**<0.01.
***<0.001.

F I GURE 3 CR residual versus positive-, negative-, and combined network strength predicted CR in the training set
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3.2 | Validation of network strength
predicted CR in the training set

The network strength predicted CR values generated
by the connectome-based predictive models displayed
face validity as measures of CR, as all models were
significantly positively correlated with a CR proxy—

verbal intelligence as measured by NART scores (see
Figure 4. and Table 3). The network strength predicted
CR values also satisfied the protective effect
criterion for measures of CR, as all were positively
associated with global cognition, controlling for the
effects of mean cortical thickness, age, and sex (see
Table 3).

F I GURE 4 NART scores versus positive-, negative-, and combined network strength predicted CR in the training set

TAB L E 3 Validation of network strength predicted CR in the training set

Positive network strength Negative network strength Combined network strength

NART Ind. Mod. NART Ind. Mod. NART Ind. Mod.

r R2 R2 r R2 R2 r R2 R2

Original 0.25*** 0.043*** 2.5e-5 0.182** 0.06*** 0.005 0.223*** 0.063*** 0.026

Adjusted 0.28*** 0.03* 1.7e-6 0.165* 0.056*** 0.003 0.226*** 0.054*** 0.002

Abbreviations: NART, correlation of predicted values with NART scores; Ind., independent effect of predicted values on global cognition, controlling for age,
sex, and mean cortical thickness; Mod., moderation effect of predicted values on relationship between brain structure and global cognition.

*<0.05.
**<0.01.
***<0.001.

F I GURE 5 CR residual versus positive-, negative-, and combined network strength predicted CR using adjusted CPM in the

training set
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3.3 | Motion control and confounds

The connectome-based predictive models remained sta-
tistically significant when adjusting for age, sex, and
mean FWD at the feature selection stage (see Figure 5
and Table 2). Furthermore, network strength predicted
CR values generated from the adjusted connectome-
based predictive models also satisfied the criteria for mea-
surement of CR as they displayed face validity and a

positive independent effect on cognition (see Figure 6
and Table 3).

3.4 | Functional network anatomy

Both positive and negative CR networks were sparse with
nine edges (0.04% of total edges) and 12 edges (0.06% of
total edges) selected in every iteration of the positive and

F I GURE 6 NART scores versus positive-, negative-, and combined network strength predicted CR using adjusted CPM in the

training set

F I GURE 7 Circle plots illustrating the positive and negative CR connectomes. Positive connections (red) and negative connections

(blue) in original CPM (top panel) and adjusted CPM (bottom panel), controlling for age, sex, and mean FWD. These circle plots are inverted

such that the right side of each plot corresponds to the left hemisphere and the left side to the right hemisphere.
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negative network, respectively (see Figures 7 and 8).
Nodes with multiple edges in the positive network were
located within the left dorsolateral prefrontal cortex, left

premotor/supplementary cortex, and the right angular
gyrus (see Table S4). Nodes with multiple edges in the
negative network were located in the left temporal pole,

F I GURE 8 Glass brain visualising the patterns of connectivity within the brain. Positive connections (red) and negative connections

(blue) in original CPM (a, top panel) and adjusted CPM (b, bottom panel), controlling for age, sex, and mean FWD

F I GURE 9 Connectivity matrices summarising the connectivity patterns within and between different functional networks. Note:

Darker shades represent stronger connectivity (i.e., larger number of edges in that network). MF = medial frontal network;

FP = Frontoparietal network; DMN = default mode network; mot = motor network; Vis I = visual I network; Vis II = visual II network;

VAs = visual association network; SAL = salience network; SC = subcortical network; CBL = cerebellar network
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right angular gyrus and the left precentral gyrus (see
Table S5).

In relation to canonical functional networks (Noble
et al., 2017), the positive CR connectome was largely
characterised by connectivity within the FPN, and of the
FPN and motor network to other networks (see Figure 9).
The negative CR network was characterised by connec-
tivity of a single medial frontal network node—the left
temporal pole—to other networks, connectivity within
the motor network, and connectivity of the motor net-
work to other networks. Similar patterns of connectivity
were observed in models adjusting for age, sex, and mean
FWD, although a lower number of edges were selected.

3.5 | Generalisability of network
strength predicted CR: Application to
test set

The network strength predicted CR values in the test
set were not related to the CR residual (see Figure 10a
and Table 4). Although the correlations of the CR
residual with negative- and combined-network strength
predicted CR had p-values <0.05, the negative direc-
tion of these associations meant that the associations
are not meaningful as has been noted in other CPM
studies (Ren et al., 2021). The results were similar
when CPM, controlling for age, sex, and mean FWD,

F I GURE 1 0 CR residual versus positive-, negative-, and combined network strength predicted CR in the test set. a = predicted CR

values from original network strength models; b = predicted CR values from adjusted network strength models, controlling for age, sex, and

mean FW

TAB L E 4 CPM performance for prediction of CR residuals in the test set

Positive network strength Negative network strength Combined network strength

r R2 MAE r R2 MAE r R2 MAE

Original �0.008 6.3e-5 0.648 �0.169 0.028 0.570 �0.140 0.020 0.617

Adjusted �0.025 0.001 0.620 �0.133 0.018 0.536 �0.136 0.018 0.580
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was applied to the test set (see Figure 10b and
Table 4).

3.6 | Validation of network strength
predicted CR in the test set

The network strength predicted CR values were not
significantly positively correlated with a CR proxy, ver-
bal intelligence (see Figure 11a and Table 5).

Furthermore, protective effects of the network strength
predicted CR values on cognition were not observed as
they did not moderate the relationship between mean
cortical thickness and global cognition nor were they
significantly positively associated with global cognition,
controlling for the effects of mean cortical
thickness, age, and sex (see Table 5). The adjusted
models also did not demonstrate face validity (see
Figure 11b) or protective effects on cognition (see
Table 5).

TAB L E 5 Validation of network strength predicted CR in the test set

Positive network strength Negative network strength Combined network strength

NART Ind. Mod. NART Ind. Mod. NART Ind. Mod.

r R2 R2 r R2 R2 r R2 R2

Original 0.045 2.9e-5 0.002 �0.084 0.024** 0.001 �0.039 0.016* 0.005

Adjusted 0.017 4e-4 4e-4 �0.077 0.015* 6.1e-6 �0.063 0.015* 3.5e-6

Abbreviations: NART, correlation of predicted values with NART scores; Ind., independent effect of predicted values on global cognition, controlling for age,
sex, and mean cortical thickness; Mod., moderation effect of predicted values on relationship between brain structure and global cognition.
*<0.05.
**<0.01.

F I GURE 1 1 NART scores versus positive-, negative-, and combined network strength predicted CR in the test set. a = predicted CR

values from original network strength models; b = predicted CR values from adjusted network strength models, controlling for age, sex, and

mean FWD
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3.7 | Post-hoc exploratory analyses

In the training set, the negative and combined network
strength predicted CR values remained statistically signif-
icant when applying k-fold cross-validation methods
instead of LOOCV (see Table S6). However, the positive
network strength predicted CR values did not remain sta-
tistically significant in the training set. As in the main
analysis, the k-fold models did not generalize to the test
set as the negative- and combined-network strength pre-
dicted CR values were negatively correlated with the CR
residual (see Table S6).

A negative correlation between network strength pre-
dicted CR values and observed values (i.e., the CR resid-
ual) is interpreted as a failure to explain any variance in
the observed values (Greene et al., 2018) and is consid-
ered meaningless (Ren et al., 2021). To explore the nega-
tive correlation between network strength predicted CR
values and the CR residual in the test set, the correlation
between the CR residual and the thresholded edges in
the test set was investigated (see Table S7). Twelve edges
were selected in the negative network in the training set.
The average correlation between connectivity in these
12 edges and the CR residual in the training set was
r = �0.2728. However, in the test set, none of these edges
were negatively correlated with the CR residual and the
average correlation in the test set was r = 0.0696. Indeed,
three of the thresholded edges (25%) were significantly
positively correlated with the CR residual.

To investigate the failure of the model to generalize to
rsfMRI data in an independent dataset, further explor-
atory analyses were conducted (see Supporting Informa-
tion). Applying CPM using a restricted age range in the
training set to more closely match the age range of the
test set failed to generalize to resting-state data in the test
set (see Table S8). Applying CPM with a less conservative
edge selection threshold (p = 0.01) also failed to general-
ize (see Table S9). Finally, using CPM to predict global
cognition directly, controlling for measures of brain
structure at the edge selection step, instead of predicting
the CR residual, failed to generate measures that were
positively associated with the CR proxy, verbal intelli-
gence, in the training set.

4 | DISCUSSION

CPM was applied to task-based functional connectivity to
predict a CR residual in order to develop functional neu-
roimaging measures of CR, namely, positive-, negative-,
and combined-network strength predicted CR. These mea-
sures accurately predicted a CR residual in unseen indi-
viduals within the same dataset based on a sparse set of

edges. The network strength predicted CR values met the
theoretical criteria for neuroimaging measures of CR, as
they displayed face validity and were positively associated
with cognition beyond the effects of brain structure.
However, these measures did not generalise to resting-
state functional connectivity data from an independent
dataset.

As was demonstrated in previous task-based fMRI
studies, the network strength predicted CR measures
here displayed face validity and protective effects on cog-
nition. Although previous studies used task-related acti-
vations (Stern et al., 2018) and task potency (van
Loenhoud et al., 2020), the present study is the first to
demonstrate that functional connectivity during task per-
formance can predict CR in unseen data, albeit using
internal cross-validation.

The CR connectomes identified here were sparse,
reflecting connectivity strength from only 0.1% of all
edges. This is more sparse than previously reported con-
nectomes of cognitive phenotypes. For example, 3.88%
and 1.99% of edges were included in connectomes under-
lying sustained attention (Rosenberg et al., 2016) and pro-
cessing speed (M. Gao et al., 2020), respectively. The
stricter edge selection threshold used here could explain
this increased sparsity. This sparsity could also be a fea-
ture of CR-related connectomes, as similarly sparse func-
tional networks have been reported to underlie CR. van
Loenhoud et al. (2020) identified a sparse CR network
comprising of 0.17% of all edges, although the same data-
set as the present study was used, which does not rule
out the possibility that the observed sparsity is an idio-
syncrasy of the dataset.

The relationship between connectivity of the positive
CR connectome and the CR residual in the present study
was not robust despite being largely characterized by con-
nectivity of the FPN which has been previously impli-
cated in CR (Buckley et al., 2017; Franzmeier, Caballero,
et al., 2017; Serra et al., 2016). Positive network strength
predicted CR accurately predicted the CR residual in
unseen data when CPM was implemented with LOOCV,
but not when implemented with k-fold cross-validation
(see Table S6). LOOCV can produce estimates that have
high variance (Efron, 1983), particularly compared with
10-fold cross-validation (Kohavi, 1995) and consequently
can lead to overfitting (Lever et al., 2016). As such, the
positive network strength predicted CR values may have
somewhat reflected noise in the data (Poldrack
et al., 2020; R. Whelan & Garavan, 2014).

Critically, the network strength predicted CR mea-
sures did not generalize to resting-state data in an inde-
pendent dataset. Other studies applying CPM to cognitive
phenotypes have had similar results, where the pheno-
type could be accurately predicted within-sample (i.e., in
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the training set), but not when applied to independent
test sets (Gbadeyan et al., 2022; Manglani et al., 2022).
We undertook exploratory analyses that suggested the
failure to develop generalizable and theoretically valid
measures of CR was not due to differences in the age
ranges of the datasets, overfitting the training set due to a
strict edge selection threshold, nor due to the use of the
CR residual as a target variable. Another exploratory
analysis investigated why the negative and combined net-
work strength predicted CR values were negatively
related to CR residuals in the test set. This was not a
meaningful prediction because the predicted values were
in the opposite direction to the observed values and simi-
lar findings have been treated as meaningless (Greene
et al., 2018; Ren et al., 2021). Nevertheless, differences in
connectivity from task to rest conditions may be particu-
larly relevant to CR as adaptability of functional net-
works and processes to task demands is central to the CR
construct. Inspection of the negative CR connectome in
the test set revealed that all edges had positive, albeit
mostly non-significant, correlations to CR. As these same
edges were negatively correlated with CR in the training
set, this may suggest that CR is associated with a change
or reorganisation of brain connectivity in response to task
demands, as previously shown by the relationship
between task potency and CR (van Loenhoud
et al., 2020). A practical implication of this is that
although CR may be associated with both task-based and
resting-state connectivity, the nature of these associations
could be different. Therefore, it may not be possible for
measures developed solely on task-based data to general-
ize to resting-state data, as has been demonstrated for
CPM measures of cognitive phenotypes such as sustained
attention (Rosenberg et al., 2016).

The inability to generalize to resting-state data may
also have arisen due to the nature of the data in both our
training and test set datasets. Single-task connectomes
with static univariate functional connectivity were used
in the training set but CPM studies have reported more
accurate predictions of cognitive phenotypes with train-
ing sets consisting of multiple task connectomes (S. Gao
et al., 2019), multivariate connectivity data (Yoo
et al., 2019), and dynamic functional connectivity data
(Zhu et al., 2021). In the test set, the resting-state fMRI
scan was approximately 5 min in duration. This length is
sufficient to obtain stable correlations for functional con-
nectivity (Van Dijk et al., 2010), but longer durations fur-
ther reduce the amount of noise in, and the reliability of,
functional connectivity data (Birn et al., 2013; Van Dijk
et al., 2010). The degree of individual variability in func-
tional connectivity matrices is also greatly reduced in
scans with fewer than 500 time points (Finn et al., 2015).
As the test set resting-state scan contained only 200 time

points, more time points may be needed for connectivity
matrices to have sufficient variation across individuals in
order to accurately predict complex phenotypes such as
CR. Advanced modelling techniques, such as bootstrap
aggregating (O’Connor et al., 2020) and partial least
squares regression (Yoo et al., 2018), when implemented
within CPM frameworks have also been shown to
improve generalizability to external datasets.

There were some important limitations in the present
study. Due to incomplete coverage of the cerebellum in a
large proportion (57%) of the training set, nodes within
the cerebellum and brainstem were removed from the
functional connectivity matrices. This was necessary to
avoid a drastic reduction in training set sample size but it
reduced the number of edges in each connectivity matrix
by 58%, from 35,778 to 20,910. The loss of this informa-
tion in the training set, from a region that has been previ-
ously associated with CR (Belleville et al., 2021; Marques
et al., 2016; Stern et al., 2018), may have hindered the
ability to develop a generalizable measure of CR.

Other limitations arose due to the use of the CR resid-
ual as the target variable in the predictive model. The
decision to use a CR residual instead of a CR proxy was
justified on the basis that CR residuals are considered
more direct measures of CR than proxy variables (Stern
et al., 2020). However, because CR residuals inevitably
contain a large amount of measurement error
(Ewers, 2020), the use of the CR residual as a target vari-
able, introduced irreducible error (i.e., noise in the
dependent variable) into the predictive model. Irreduc-
ible error affects generalisability (Janssen et al., 2018),
and can limit the ability of predictive models to recon-
struct the target variables, due to the amount of noise
present in that variable. In an exploratory analysis an
alternative approach was implemented to minimize the
effects of measurement error. This approach predicted
cognition directly from functional connectivity, control-
ling for brain structure at the edge selection step of CPM.
This approach also failed to generalise to the test set.

It should be noted that there were considerable differ-
ences between the two cohorts. CR/RANN participants
were significantly younger than the TILDA participants
and both studies were conducted in different countries
and used different recruitment strategies. This may have
led to differences in ethnoracial, geographic (e.g., urban
vs. rural) and socio-economic diversity that may have
influenced results. Given the recent finding that predic-
tive modelling of brain-phenotype relationships fails
when applied to individuals who do not fit the stereotypi-
cal profile of the sample (Greene et al., 2022), differences
in TILDA participants from the stereotypical profile of
the CR/RANN participants may have contributed to the
failure of the model to generalize. Increasing availability
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of open-access data will enable future studies to access
more similar cohorts to clarify if it is viable to develop
task-based fMRI measures of CR that can generalise to
rsfMRI.

Despite the failure to generalize and the aforemen-
tioned limitations, there were a number of strengths to
the current study. A data-driven approach was imple-
mented that considered functional connectivity across
the whole cortex. As such, the model and results were
not biased by a priori predictions. A cross-validation
framework was applied to assess whether the model
could make accurate predictions in unseen data. An
external validation dataset, with functional connectivity
obtained from a different fMRI condition on which the
model was trained, was used to provide a rigorous test of
the generalisability of the developed measures across
datasets and conditions. The gold-standard recommenda-
tions for deriving measures of CR (Collaboratory on
Research Definitions for Reserve and Resilience in Cogni-
tive Aging and Dementia, 2022) were rigorously applied
by assessing the face validity of the measures in respect
to their association with a robust socio-behavioural proxy
of CR as well assessing their protective effects on cogni-
tion, above and beyond the effects of brain structure.
Best-practice guidelines for predictive modelling in neu-
roimaging were also applied (Poldrack et al., 2020).

In sum, the present results demonstrated that task-
based functional connectivity data can be used to create
objective summary measures of CR (i.e., network
strength predicted CR values) that are significantly asso-
ciated with a CR residual, positively correlated with a CR
proxy, and demonstrate a protective effect on cognition,
beyond the effects of brain structure. These findings were
demonstrated on unseen data within the training set
(i.e., the same dataset used to develop the measures).
However, the findings were not replicated when the
model was applied to the test set (i.e., resting-state data
from an independent dataset). Recent developments in
methods for relating functional connectivity to cognition
include calculating latent functional connectivity using
both task-based fMRI and rs-fMRI (McCormick
et al., 2022) and accounting for network topology using
structural connectivity (Anderson et al., 2022) and these
methods show improved predictive accuracy. These
advances may improve the ability of future studies to
develop measures that can generalise from task-fMRI to
rs-fMRI. The present study presents a framework for
future attempts to develop measures that can generalise
across datasets and fMRI conditions such that objective
measures of CR can be developed, shared, and used by
the wider research community with the ultimate aim of
validating their clinical potential.
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