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Abstract

Aim: To develop a personalized nomogram and risk score to predict the 5-year risk of

diabetes among Chinese adults with prediabetes.

Methods: There were 26 018 participants with prediabetes at baseline in this retro-

spective cohort study. We randomly stratified participants into two cohorts for training

(n = 12 947) and validation (n = 13 071). The least absolute shrinkage and selection

operator (LASSO) model was applied to select the most significant variables among can-

didate variables. And we further established a stepwise Cox proportional hazards model

to screen out the risk factors based on the predictors chosen by the LASSO model. We

presented the model with a nomogram. The model's discrimination, clinical use and cali-

bration were assessed using the area under the receiver operating characteristic (ROC)

curve, decision curve and calibration analysis. The associated risk factors were also cate-

gorized according to clinical cut-points or tertials to create the diabetes risk score model.

Based on the total score, we divided it into four risk categories: low, middle, high and

extremely high. We also evaluated our diabetes risk score model's performance.

Results: We developed a simple nomogram and risk score that predicts the risk of

prediabetes by using the variables age, triglyceride, fasting blood glucose, body mass

index, alanine aminotransferase, high-density lipoprotein cholesterol and family

history of diabetes. The area under the ROC curve of the nomogram was 0.8146 (95%

CI 0.8035-0.8258) and 0.8147 (95% CI 0.8035-0.8259) for the training and validation

cohort, respectively. The calibration curve showed a perfect fit between predicted and

observed diabetes risks at 5 years. Decision curve analysis presented the clinical use

of the nomogram, and there was a wide range of alternative threshold probability spec-

trums. A total risk score of 0 to 2.5, 3 to 4.5, 5 to 7.5 and 8 to 13.5 is associated with

low, middle, high and extremely high diabetes risk status, respectively.

Conclusions: We developed and validated a personalized prediction nomogram and

risk score for 5-year diabetes risk among Chinese adults with prediabetes, identifying
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individuals at a high risk of developing diabetes. Doctors and other healthcare profes-

sionals can easily and quickly use our diabetes score model to assess the diabetes risk

status in patients with prediabetes. In addition, the nomogram model and risk score

we developed need to be validated in a prospective cohort study.
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1 | INTRODUCTION

Around the world, diabetes affects millions of people, making it one

of the most prevalent chronic diseases.1 Worldwide, in 2021,

according to the International Diabetes Federation, approximately

536.6 million adults had diabetes. According to estimates, people

with diabetes will account for 783.2 million of the world's population

by 2045.2 In addition, diabetes and its complications constitute a

worldwide public health problem that imposes a huge economic

burden on society.3-5

Diabetes is a chronic endocrine and metabolic disease that can be

split into numerous types. Type 1 diabetes and type 2 diabetes (T2D)

are the two main types. T2D accounts for 90%-95% of all diabetes,

primarily because of a lack of insulin production or impaired insulin

sensitivity. The development of T2D normally has three stages: health,

prediabetes and T2D.6,7 Prediabetes generally refers to the presence

of either or both impaired glucose tolerance and impaired fasting glu-

cose.8 Evidence suggests that after the diagnosis of T2D, the patient's

blood glucose level will continue to rise, which is difficult to reverse

with medical treatment.9 Therefore, effective intervention for patients

with prediabetes is the key to preventing diabetes.10-13 Nevertheless,

lifestyle modification programmes and drug costs limit population-

wide initiatives for prediabetes. Conversely, early identification of

patients at a high risk of developing prediabetes into diabetes and

timely management can avoid the burden of prevention and treat-

ment in low-risk populations.

However, the commonly used laboratory tests for risk stratifica-

tion are limited, with fasting blood glucose (FPG) having an intermedi-

ate sensitivity and HbA1c being the most convenient but least

sensitive.10 However, other factors affecting the onset of diabetes,

including hypertension,14 dyslipidaemia,15 body mass index (BMI),16

waist circumference17 and dietary patterns,18 also have limited predic-

tive value for the risk of prediabetes progression to diabetes. Risk

score models are practical and efficient tools for screening high-risk

individuals with prediabetes. Currently, many diabetes risk score

models can estimate diabetes risk and help physicians make appropri-

ate treatment plans based on a patient's risk status.19-21 Several risk

assessment tools for detecting the risk of progression from prediabe-

tes to diabetes have been reported.22-24 However, most studies

employed logistic regression rather than the Cox proportional hazards

model, considering follow-up time. Besides, most studies lack an eval-

uation of model accuracy and clinical use value, which limits the gen-

eralization of the model. Most scoring systems are created for Whites

in industrialized countries, and only a few are for Asians. Therefore, a

diabetes risk score is needed for Chinese adults with prediabetes.

Our study uses a Cox proportional hazards model to develop a

diabetes risk score and nomogram for individuals with prediabetes

based on medical examination records in China. The model's discrimi-

natory ability, clinical applicability, calibration and internal validation

will all be assessed. We developed this model to help clinicians predict

the risk of progression to diabetes in patients with prediabetes and to

facilitate intervention programmes to delay or prevent the onset of

diabetes.

2 | METHODS

2.1 | Study design

We performed a retrospective cohort study using data from the data-

base provided by the China Rich Healthcare Group.25 Variables at

baseline are included as screening variables in the prediction model in

the current study. The dependent variable was diabetes diagnosed

during the 5 years of follow-up (dichotomous variable: 0 = non-diabe-

tes, 1 = diabetes).

2.2 | Data source

The raw data were obtained freely from the DATADRYAD database

(www.datadryad.org) provided by Chen et al. (Chen Y, Zhang XP,

Yuan J, et al. [2018], Data from Association of body mass index and

age with incident diabetes in Chinese adults: a population-based cohort

study, Dryad, Dataset, https://doi.org/10.5061/dryad.ft8750v).25 This

is an open-access article given in accordance with the Creative Com-

mons Attribution Non Commercial (CC BY-NC 4.0) license, and anyone

may share, remix, change and produce a derivative work from it for

non-commercial use, as long as the authors and source are credited.25

2.3 | Study population

Information was extracted from a computerized database established

by the Rich Healthcare Group in China by the original researchers,

which contains all medical records for participants who received

health checks in 32 regions and 11 cities from 2010 to 2016. The Rich
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Healthcare Group Review Board initially approved the original study,

and the information was retrieved retrospectively.25 For the retro-

spective study, no informed consent or approval was required by the

institutional ethics committee.25 Therefore, ethical approval was not

required for the current secondary analysis. Furthermore, the original

study was carried out in compliance with the Helsinki Declaration, as

was this secondary analysis.

The original study initially recruited 685 277 participants aged at

least 20 years and with at least two health examinations. After that,

473,444 participants were excluded. Finally, the original study

included 211 833 individuals in its analysis. Following are the exclu-

sion criteria for the original study: (a) participants diagnosed with dia-

betes at enrolment; (b) no information about FPG value, sex, height

and weight at baseline; (c) extreme BMI values (< 15 kg/m2

or > 55 kg/m2); (d) participants with less than 2 years between visits;

(e) and participants with unknown diabetes status at follow-up.

According to the American Diabetes Association (ADA) 2022 diagnos-

tic criteria for prediabetes,26 we excluded 185 815 participants with

baseline FPG less than 5.6 mmol/L and FPG greater than 6.9 mmol/L

in the current study. Ultimately, 26 018 participants were included in

the present study. Figure 1 shows how participants were selected.

2.4 | Variables

2.4.1 | Baseline variables

According to previous research and clinical experience, we selected

the screening variables for the prediction model in this study.22,25 The

following variables were therefore used as covariates based on

the principles outlined above: (i) continuous variables: serum creati-

nine (Scr), systolic blood pressure (SBP), BMI, diastolic blood pressure

(DBP), age, triglyceride (TG), total cholesterol (TC), FPG, low-density

lipoprotein cholesterol (LDL-c), aspartate aminotransferase (AST),

high-density lipoprotein cholesterol (HDL-c) and alanine aminotrans-

ferase (ALT); and (ii) categorical variables: smoking, sex, family history

of diabetes and alcohol consumption.

2.4.2 | Data collection

In the original study, trained investigators used standard question-

naires to collect baseline information, including alcohol consumption

and smoking status, demographic characteristics (sex and age) and

F IGURE 1 Flowchart of study participants. BMI, body mass index; FPG, fasting plasma glucose
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family history of diabetes. Smoking status was divided into three cate-

gories according to the smoking situation: currently smoking, ever

smoking and never smoking. Alcohol consumption status was divided

into three categories according to the situation: currently, ever and

never alcohol consumption. The family history of diabetes was

defined as diabetes history in at least a parent or sibling. Standard

mercury sphygmomanometers measured blood pressure. During each

visit, fasting venous blood samples were taken at least 10 hours after

a fast. A Beckman 5800 autoanalyser was used to measure plasma

glucose, TC, HDL-c, TG and LDL-c.25

2.4.3 | Outcome measures

Our interesting outcome variable was diabetes (dichotomous variable:

0 = non-diabetes, 1 = diabetes). Prediabetes was diagnosed based on

FPG at baseline, and FPG values in patients with prediabetes are set

at 5.6 to 6.9 mmol/L as part of the ADA's 2022 diagnostic criteria.26

Incident diabetes was based on either self-report or FPG of

7.0 mmoL/L or higher at the last follow-up evaluation, whichever

came first.25 The follow-up period was 5 years.

2.4.4 | Handling missing baseline variables

The number of participants whose data were missing for SBP, DBP,

Scr, ALT, LDL-c, HDL-c, AST, smoking status and alcohol consumption

status was 7 (0.03%), 7 (0.03%), 1342 (5.16%), 234 (0.90%), 9958

(38.27%), 10 589 (40.70%), 14 708 (56.53%), 17 244 (66.28%) and

17 244 (66.28%), respectively. This study used multiple imputations

for missing data to mitigate the variation caused by missing vari-

ables.27 The imputation model (type = linear regression, itera-

tions = 10) included sex, age, DBP, HDL-c, TC, AST, Scr, SBP, ALT,

LDL-c, alcohol consumption status, family history of diabetes and

smoking status. Missing-at-random assumptions are used in missing

data analysis procedures.27,28

2.5 | Statistical analysis

All participants were randomly assigned a random number generated

by the Empower network random system. Randomized participants

were stratified into training and validation cohorts according to a sim-

ple randomization procedure. Continuous variables with Gaussian dis-

tributions are presented as means and standard deviations, and

skewed distributions are reported as medians. For categorical vari-

ables, percentages and frequencies are presented. We used Wilcoxon

rank-sum tests (skewed distribution), two-sample t-tests (normal dis-

tribution) or χ2 (categorical variables) to test for differences between

the training and validation cohorts. Additionally, we summarized the

baseline characteristics of the training and validation cohorts stratified

by incident diabetes.

We conducted two rounds of variable screening to identify a sim-

ple and reliable risk prediction model. The Least Absolute Shrinkage

and Selection Operator (LASSO), a method suitable for reducing high-

dimensional data and for selecting the most useful prediction candi-

dates, was used for the first variable screening of the model.29,30 The

LASSO model was established by selecting candidates with non-zero

coefficients.31 We performed a second screening round based on the

LASSO model's identified variables. First, we applied all risk factors to

build a full model through the Cox proportional hazards model. Sec-

ond, our method was to perform a step-down selection process using

the Akaike information criterion, so as to develop a parsimonious

model (i.e. a stepwise Cox proportional hazards model).32 Third, to

establish a stable model (i.e. the multivariable fractional polynomials

[MFP] model) in the real world, we used the iterative fashion to deter-

mine significant variables and functional form by backward elimination

according to the MFP algorithm.33

In view of the fewer variables and reasonably good prediction per-

formance of the stepwise model, we selected it for further analysis. To

evaluate the discriminatory power of the prediction models, we plotted

the receiver operating characteristic (ROC) curve and calculated the

area under the curve (AUC) in the training and validation cohorts,

respectively. We calculated the sensitivity, specificity, negative likeli-

hood ratio (NLR), positive likelihood ratio (PLR), negative predictive

value (NPV) and positive predictive value (PPV) for the stepwise model

according to standard definitions. In addition, we obtained a diabetes

risk prediction formula from the stepwise Cox proportional hazards

model. Predicted risk (time t) = 1-S0(t) Exp (LP), where the predicted

probability is given at time t (in years) after the start of follow-up using

the stepwise model, Exp = exponential of e, LP is the linear predictor

from the stepwise model and S0(t) = baseline survival at time t (for

ease of calculation, an estimate was provided 5 years after the start of

follow-up).34 The nomogram was based on proportionally converting

each regression coefficient in the stepwise Cox proportional hazards

regression model to a 0-to-100-point scale; 100 points were assigned

to the variable with the highest β coefficient (absolute value). We

added points across independent variables to obtain total points, which

were then converted into predicted probabilities of progression to dia-

betes from prediabetes. Each patient's nomogram score was a numeric

value representing their prediction model score. At different cut-off

points of nomogram scores, sensitivity and specificity were different

for predicting diabetes. Also, the calibration plot for 5-year diabetes

probability was used to assess the accuracy of the nomogram.35 We

assessed the clinical utility of the risk prediction model for diabetes in

patients with prediabetes by conducting decision curve analysis: taking

the proportion of individuals who showed a true positive result and

subtracting the proportion who showed a false positive result, then

weighting the relative hazard of the false positive and false negative

results to obtain a net benefit of making a decision.36

The associated risk factors of prediabetes in the stepwise model

were also categorized according to clinical cut-points or tertiles to

create the prediabetes score model. We put these risk factors that

were treated as categorical variables into the stepwise Cox

678 HAN ET AL.



proportional hazards model and derived a new β coefficient. The

scoring system was constructed according to regression coefficients

multiplied by three and rounded to the nearest integer to calculate

the weights.37 The scoring system was then implemented in a ques-

tionnaire form that primary care personnel could utilize easily. The

total score was classified into four risk categories: low, middle, high

and extremely high risk.

Additionally, we assessed the performance of our risk score

model for the development of diabetes from prediabetes. The survival

estimates and time-to-event variables were calculated using the

Kaplan-Meier method. Using the log-rank test, we compared the

probability of diabetes-free survival among the four risk score groups

(quartile of risk score). Using ROC curves, we also analysed the perfor-

mance of each risk factor in the model for predicting diabetes perfor-

mance and its optimal cut-off.

All results are reported according to the TRIPOD statement.38

Statistical analyses were conducted with R (http://www.R-project.

org; The R Foundation) and Empower-Stats 2.0 (X&Y Solutions, Inc,

TABLE 1 Baseline characteristics of
the training and validation sets

Characteristic Training set Validation set P value

N 12 947 13 071

Age (y) 49.03 ± 13.82 49.08 ± 13.83 .751

Age groups

< 40 y 3926 (30.32%) 3961 (30.30%) .949

40 to < 60 y 5856 (45.23%) 5893 (45.08%)

≥ 60 y 3165 (24.45%) 3217 (24.61%)

BMI (kg/m2) 24.77 ± 3.34 24.84 ± 3.39 .118

BMI groups .305

< 18.5 kg/m2 257 (1.99%) 239 (1.83%)

18.5-24.0 kg/m2 5061 (39.09%) 5135 (39.29%)

24.0-28.0 kg/m2 5531 (42.72%) 5488 (41.99%)

≥ 28 kg/m2 2098 (16.20%) 2209 (16.90%)

SBP (mmHg) 127.15 ± 17.53 127.21 ± 17.61 .783

DBP (mmHg) 78.42 ± 11.23 78.38 ± 11.05 .772

FPG (mmol/L) 5.95 ± 0.32 5.95 ± 0.32 .985

TC (mmol/L) 4.97 ± 0.95 4.97 ± 0.96 .931

TG (mmol/L) 1.78 ± 1.43 1.80 ± 1.46 .191

HDL-c (mmol/L) 1.33 ± 0.30 1.33 ± 0.31 .413

LDL-c (mmol/L) 2.89 ± 0.72 2.88 ± 0.73 .604

ALT (U/L) 22.00 (15.30-33.00) 22.00 (15.50-33.45) .400

AST (U/L) 26.40 ± 11.90 26.51 ± 12.31 .478

Scr (μmol/L) 72.72 ± 15.75 72.83 ± 16.36 .589

Sex .903

Male 8594 (66.38%) 8667 (66.31%)

Female 4353 (33.62%) 4404 (33.69%)

Family history of diabetes .091

No 12 610 (97.40%) 12 773 (97.72%)

Yes 337 (2.60%) 298 (2.28%)

Alcohol consumption .928

No 10 610 (81.95%) 10 706 (81.91%)

Yes 2337 (18.05%) 2365 (18.09%)

Smoking .674

No 9492 (73.31%) 9613 (73.54%)

Yes 3455 (26.69%) 3458 (26.46%)

Note: Continuous variables are summarized as mean (SD) or medians (quartile interval); categorical
variables are displayed as a percentage (%).
Abbreviations: ALT, alanine aminotransferase; AST aspartate aminotransferase; BMI, body mass index;
BUN, blood urea nitrogen; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL-c, high-
density lipoprotein cholesterol; LDL-c, low-density lipid cholesterol; SBP, systolic blood pressure; Scr,
serum creatinine; TC, total cholesterol, TG triglyceride.
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Boston, MA). Two-tailed tests were conducted and P less than .05

was statistically significant.

3 | RESULTS

The present study included 26 018 eligible participants (66.34% men

and 33.66% women). The mean age of all participants was 49.06 ±

13.82 years; 2640 (10.15%) participants developed diabetes during a

median follow-up period of 3.05 years.

3.1 | Baseline characteristics of participants

Table 1 lists the eligible participants' basic demographic, clinical and

anthropological information. Among all participants with prediabetes,

12 947 were in the training cohort and 13 071 were in the valida-

tion cohort; 1315 and 1325 participants developed diabetes over

the 3.05-year median follow-up period in the training and valida-

tion cohorts, respectively. Training and validation cohorts did not

differ in a statistically significant manner for any baseline character-

istics (all P > .05).

The baseline characteristics of both cohorts are shown in Table S1

according to incident diabetes status within the 5 years. The partici-

pants with incident diabetes had higher DBP, BMI, SBP, TG, FPG, age,

TC, AST, LDL-c, ALT, and higher rates of males, smokers, and family

history of diabetes in the training and validation cohort (all P < .05). By

contrast, the persons without incident diabetes had higher levels of

HDL-c. In addition, in the validation cohort, the proportion of partici-

pants with alcohol consumption was higher in those with incident dia-

betes than in those without incident diabetes. However, there was no

statistically significant difference for Scr and alcohol consumption sta-

tus in the training cohort.

3.2 | Univariate and multivariate analyses of risk
predictors of diabetes onset

Table S2 displays risk predictors for incident diabetes through the univar-

iate and multivariate Cox proportional hazards model in the training

cohort. The univariate analysis showed that age (HR = 1.03), female

(HR = 0.84), BMI (HR = 1.13), SBP (HR = 1.02), DBP (HR = 1.02), FPG

(HR = 9.77), TG (HR = 1.12), LDL-c (HR = 1.08), TC (HR = 1.07),

ALT (HR = 1.01), AST (HR = 1.01), family history of diabetes

(HR = 1.45) and smoking (HR = 1.28) were related to incident

diabetes (all P < .05); alcohol consumption status was not associated with

the risk of diabetes (P = .986). The multivariate analysis showed that age

(HR = 1.02), BMI (HR = 1.09), FPG (HR = 7.57), TC (HR = 0.62), TG

(HR = 1.15), HDL-c (HR = 2.07), LDL-c (HR = 1.58), ALT (HR = 1.01)

and family history of diabetes (HR = 1.71) were related to diabetes risk

(all P < .05). However, SBP, Scr, DBP, AST, smoking status and alcohol

consumption status were not associated with the risk of diabetes (all

P > .05).

3.3 | Candidate selection through LASSO
regression

On the basis of 12 974 participants in the training set that had non-zero

coefficients in the LASSO regression, 16 clinical features (BMI, age, SBP,

HDL-c, Scr, sex, TC, DBP, ALT, TG, LDL-c, FPG, alcohol consumption

status, family history of diabetes, AST and smoking status) were reduced

to eight potential predictors (Figure S1). These potential predictors were

HDL-c, BMI, FPG, TG, ALT, TC, age and family history of diabetes.

3.4 | Identification of risk factors

According to the predictors selected by the LASSO regression model,

we developed three further prediction models: the MFP model, the

full Cox proportional hazards model and the stepwise Cox propor-

tional hazards model. For the training set, the MFP model, full model

and stepwise model had AUCs of 0.781, 0.782 and 0.782, respectively

(Figure S2). The corresponding AUCs for these models were 0.789,

0.786 and 0.786 in the validation set (Figure S2). There were fairly

similar AUCs in the three models. Compared with the MFP and the

full model, the stepwise model has fewer risk factors, is simpler and

better predicts diabetes risk. Therefore, we concluded that the step-

wise model is the most suitable model for predicting diabetes risk. As

shown in Table 2, seven variables were selected by the stepwise

TABLE 2 Variables selected using a
stepwise Cox proportional hazards model

Beta Standard error HR (95% CI) P value

Age (y) 0.0199 0.0022 1.0201 (1.0157, 1.0246) < .0001

BMI (kg/m2) 0.0880 0.0086 1.0920 (1.0739, 1.1105) < .0001

FPG (mmol/L) 2.0171 0.0726 7.5164 (6.5201, 8.6650) < .0001

TG (mmol/L) 0.0368 0.0169 1.0374 (1.0036, 1.0724) .0296

HDL-c (mmol/L) 0.3960 0.0954 1.4859 (1.2325, 1.7914) < .0001

ALT (U/L) 0.0050 0.0009 1.0050 (1.0031, 1.0068) < .0001

Family history of diabetes 0.4935 0.1325 1.6380 (1.2635, 2.1236) .0002

Abbreviations: ALT, alanine aminotransferase; BMI, body mass index; CI, confidence interval; FPG;

fasting plasma glucose; HDL-c, high-density lipoprotein cholesterol; HR, hazard ratios; TG, triglyceride.
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model, namely, FPG (HR = 7.5164, 95% CI 6.5201-8.6650), BMI

(HR = 1.0920, 95% CI 1.0739-1.1105), age (HR = 1.0201, 95% CI

1.0157-1.0246), TG (HR = 1.0374, 95% CI 1.0036-1.0724), HDL-c

(HR = 1.4859, 95% CI 1.2325-1.7914), ALT (HR = 1.0050, 95%

CI 1.0031-1.0068) and family history of diabetes (HR = 1.6380, 95%

CI 1.2635-2.1236). The results showed that all seven variables were

positively associated with incident diabetes.

Each risk predictor (except for family history of diabetes)

was evaluated for its prediction performance in the training and

validation cohorts of incident diabetes over 5 years (Table S3,

Figure S3). The AUC of the FPG was greater than the AUC of the

other risk factors for 5-year incident diabetes in participants with

prediabetes.

We also plotted the time-dependent ROC curves for the stepwise

model in the training and validation cohorts (Figure S4). The results

suggest that the AUCs for predicting the risk of diabetes at different

times in the future using the present stepwise model remained

broadly consistent. This indicates that the current model has a better

predictive value for the risk of developing diabetes in patients with

prediabetes at different times in the future.

3.5 | Development of the nomogram

We also drew a corresponding nomogram based on age, BMI,

FPG, TG, ALT, HDL-c and family history of diabetes, providing a

quantitative and simple tool for predicting the 5-year risk of progres-

sion from prediabetes to diabetes (Figure 2). Based on the

nomogram, each variable was assigned a specific point, and the

points were summed to determine the probability of diabetes onset

at 5 years. The algorithm of diabetes risk in the stepwise model was

as follows:

Predicted risk 5�yearð Þ¼1�S0 5�yearð ÞExp LPð Þ

LP¼0:01994�Age yearsð Þþ0:08802�BMI kg=m2
� �

þ2:01709�FPG mmol=Lð Þþ0:03675�TG mmol=Lð Þ
þ0:39602�HDL�c mmol=Lð Þþ0:00498�ALT U=Lð Þ
þ0:49350� family history of diabetesð Þ

S0 5�yearð Þ¼0:99999994

3.6 | Performance of nomograms to predict 5-year
incident diabetes

3.6.1 | Discrimination

In the training cohort and the validation cohort, the AUCs of the

nomogram were 0.8146 (95% CI 0.8035-0.8258) and 0.8147 (95% CI

0.8035-0.8259), respectively (Table S4, Figure S5). For the training

and validation cohorts, at the best threshold, the sensitivity rates were

76.87% and 65.02%, respectively, and the specificity percentages

were 71.63% and 82.57%. There was a comparatively high NPV in

both the training and the validation cohorts.

F IGURE 2 Nomogram to predict
the risk of diabetes for patients with
prediabetes. ALT, alanine
aminotransferase; BMI, body mass
index; FPG, fasting plasma glucose;
HDL-c, high-density lipoprotein
cholesterol; TG, triglyceride
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3.6.2 | Model accuracy evaluation

We also evaluated how close the predicted 5-year diabetes risk was

to the observed 5-year diabetes risk for the nomogram in the training

and validation cohorts. In both the validation and training sets, the cal-

ibration histograms for 5-year incident diabetes probability showed

excellent agreement between the predicted possibility and the actual

observation (Figure S6). These results show that the nomogram could

accurately predict the 5-year diabetes risk in the Chinese population

with prediabetes.

3.6.3 | Clinical use of the nomogram

The training and validation cohorts of the stepwise model's deci-

sion curve analysis are shown in Figure S7. The black line repre-

sents the net benefit when no patient with prediabetes was

considered to have diabetes. Conversely, the light grey line repre-

sents the net benefit if all patients with prediabetes were assumed

to progress to diabetes. The area between the ‘all treatment line’

(light grey line) and the ‘no treatment line’ (black line) in the model

curve represents the clinical utility of the model. In general, the fur-

ther the model curve is from the black and light grey lines, the bet-

ter the nomogram's clinical utility. Specifically, in the training

cohort, the net benefit was about 23% if the threshold probability

of a patient was 20% in the stepwise model, which corresponds to

an additional 23 diabetes screenings per 100 Chinese adults with

prediabetes in the absence of a significant change in diabetes

incidence.

3.7 | Associations between predicted diabetes
probability and 5-year incident diabetes

We further divided the training and validation cohorts into two groups

according to whether they developed diabetes in the future, compar-

ing the predicted diabetes probability between the two groups. The

results showed that participants with diabetes had a higher predicted

probability, whereas those without prediabetes had a lower predicted

probability (Figure S8).

TABLE 3 Risk score model for
diabetes in patients with prediabetes

Coefficients SE HR (95% CI) P value Score

Age (y)

< 40 Ref. Ref. 0

≥ 40, < 60 0.5125 0.0871 1.6695 (1.4076, 1.9801) <.0001 1.5

≥ 60 0.8322 0.0909 2.2983 (1.9233, 2.7464) <.0001 2.5

BMI (kg/m2)

< 18.5 Ref. Ref. 0

≥ 18.5, < 25 0.0781 0.3220 1.0812 (0.5752, 2.0323) .8084 0

≥ 25, < 30 0.3578 0.3211 1.4302 (0.7622, 2.6835) .2651 1

≥ 30 0.6312 0.3239 1.8799 (0.9963, 3.5471) .0513 2

FPG (mmol/L)

Low (< 5.74) Ref. Ref. 0

Medium (5.74-6.0) 0.6716 0.1115 1.9575 (1.5731, 2.4357) < .0001 2

High (≥ 6.0) 1.7354 0.0965 5.6713 (4.6942, 6.8519) < .0001 5

HDL-c (mmol/L)

Low (< 1.035) Ref. Ref. 0

High (≥ 1.035) 0.2354 0.0708 1.2654 (1.1013, 1.4538) .0009 0.5

TG (mmol/L)

< 1.7 Ref. Ref. 0

≥ 1.7 0.3182 0.0590 1.3747 (1.2245, 1.5432) < .0001 1

ALT (U/L)

Low (< 40) Ref. Ref. 0

High (≥ 40) 0.2836 0.0665 1.3279 (1.1656, 1.5128) < .0001 1

Family history of diabetes

No Ref. Ref. 0

Yes 0.4926 0.1320 1.6366 (1.2635, 2.1199) .0002 1.5

Abbreviations: ALT, alanine aminotransferase; BMI, body mass index; CI, confidence interval; FPG,

fasting plasma glucose; HDL-c, high-density lipoprotein cholesterol; HR, hazard ratios;TG, triglyceride.
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Next, we divided the participants into four groups based on the

quartiles of predicted diabetes probability. Kaplan-Meier survival

curves for 5-year diabetes-free survival probability stratified by the

predicted probability quartiles are shown in Figure S9. There were sig-

nificant differences in the probability of diabetes-free survival

between the different predicted probability groups (log-rank test,

P < .0001). Diabetes-free survival probabilities decreased as predicted

probability increased, which indicated that those with the highest pre-

dicted probability faced the highest risk of diabetes. These results also

indicated the good performance of the stepwise model.

3.8 | The optimal cut-off value for the
nomogram score

In Table S5, we report the sensitivity and specificity for predicting dia-

betes at different cut-off values in the training cohort. The specificity is

10.01% and the sensitivity is 99.70% based on a cut-off value of 0.05.

When the cut-off value increased to 0.6, the specificity increased to

91.50%, while the sensitivity dropped to 41.22%. Overall, higher cut-

off values led to higher specificity, but the sensitivity rapidly decreased.

In the validation cohort, we obtained similar results (Table S6).

3.9 | Performance of nomograms to predict 5-year
incident diabetes in subgroups

We drew ROC curves to measure the ability of the nomogram to pre-

dict the onset of diabetes within 5 years in different subgroups. First,

the ROC curves for the diabetes risk nomogram showed an AUC of

0.8091 and 0.8237 for male and female participants, respectively

(Figure S10). For male and female cohorts, at the best threshold, the

sensitivity rates were 72.30% and 76.42%, and the specificity was

75.46% and 75.05%, respectively. The NPV was higher in both

male and female cohorts (Table S7). In addition, we stratified the par-

ticipants of the training cohort according to age (< 40, 40-60

and ≥ 60 years). The AUC of the nomogram predicting diabetes risk

was 0.8538, 0.7947 and 0.7523 for those aged younger than

40, 40-60 and 60 years or older, respectively (Figure S11). The NPV

was higher in all age groups (Table S7).

3.10 | Risk score model of progression from
prediabetes to diabetes

We further categorized the risk factors, including age (< 40,

40-60, ≥ 60 years),39 FPG (tertial), BMI (< 18.5, 18.5-24, 24-28,

≥ 28 kg/m2),40 HDL-c (< 1.035, ≥ 1.035 mmol/L),41 TG (< 1.7,

≥ 1.7 mmol/L)42 and ALT (< 40, ≥ 40 U/L),43 according to clinical

cut-points, median or tertials, to create the diabetes score model.

We put these categorical variables into the stepwise Cox propor-

tional hazards model and derived a new β coefficient. The scoring

system was constructed based on regression coefficients multiplied

by three and rounded to the nearest integer to derive the weights

of the scores (Table 3). Following this scoring rule, each partici-

pant's total score ranged from 0 to 13.5 points. Participants

without diabetes risk factors received a minimum score of 0; those

with seven diabetes risk factors received a maximum score of 13.5.

F IGURE 3 Kaplan-Meier diabetes-free survival curve stratified by the risk score quartiles. Kaplan-Meier survival curves for 5-year diabetes-
free survival probability stratified by the risk score quartiles in A, The training cohort and B, The validation cohort. There were significant
differences in the probability of diabetes-free survival between the different risk score groups (log-rank test, P < .0001). Diabetes-free survival
probabilities decreased as risk scores increased, which indicated that those in the extremely high-risk group faced the highest risk of diabetes
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The seven predictors (categorical variables) collectively yielded an

AUC of 0.794 in the development model. The optimal cut-point

was selected to be 5.5 of the total score with 70.09% sensitivity

and 75.2% specificity (Figure S12, Table S8).

Based on the quartile of the total risk score, we divided diabetes

risk into four categories. The observed incidence of diabetes among

low-risk participants (0-2.5 points) was 0.74% (19 out of 2564 partici-

pants), 3.44% (100 out of 2911 participants) among medium-risk

(3.0-4.5 points), 8.92% (349 out of 3914 participants) among high-risk

(5-7.5 points) and 23.81% (847 out of 3558 participants) among

extremely high-risk participants (8-13.5 points) (Table S9). The dichot-

omizing scale at, for example, 5 points (non-diabetes if risk score < 5;

diagnosis of diabetes if risk score ≥ 5) yielded a sensitivity of 90.55%,

a specificity of 46.05%, a PPV of 16.01% and an NPV of 97.83%

(Table S9).

A Kaplan-Meier survival curve for diabetes-free survival stratified

by risk score quartiles is shown in Figure 3A. The probability of

diabetes-free survival differed significantly between the quartiles of

risk scores (log-rank test, P < .0001). Diabetes-free survival probabili-

ties decreased as risk scores increased, which indicated that those in

the extremely high-risk group faced the highest risk of diabetes.

3.11 | Validation stage of risk score

In the validation cohort, the optimal cut-off point for the risk score

was 6.5, which resulted in overall consistent test results with

AUC = 0.7781, the optimal point with the optimal value of a sensitiv-

ity of 65.39% and a specificity of 78.46% (Figure S12, Table S8).

This result suggested that the questionnaires filled out by participants

in the training and validation cohorts had similar AUC values. Accord-

ing to the questionnaire formula in Table 3, we can estimate the prob-

ability of progression from prediabetes to diabetes based on the

demographic and clinical characteristics of participants. The observed

incidence of diabetes among low-risk participants (0-2.5 points) was

0.75% (19 out of 2526 participants), 3.2% (95 out of 2970 partici-

pants) among medium-risk (3-4.5 points), 8.27% (331 out of 4002 par-

ticipants) among high-risk (5-7.5 points) and 24.63% (880 out of 3573

participants) among extremely high-risk participants (8-13.5 points)

(Table S9). For example, the dichotomizing scale at 5.0 points (at < 5.0

points the diagnosis was non-diabetes, and at ≥ 5.0 it was diabetes)

yielded a sensitivity of 91.40%, a specificity of 45.82%, a PPV of

15.99% and an NPV of 97.93% (Table S9). Kaplan-Meier survival

curves yielded similar results to the training cohort (Figure 3B).

4 | DISCUSSION

We developed and validated a personalized prediction nomogram and

risk score for the 5-year risk of incident diabetes in Chinese adults

with prediabetes using cost-effective and readily available variables in

this study, assisting clinicians in identifying patients at a high risk of

progression from prediabetes to diabetes. The prediction model

included seven variables: BMI, ALT, TG, age, FPG, HDL-c and family

history of diabetes. Model evaluation and internal validation showed

excellent prediction performance for our nomogram and risk score.

Several risk assessment tools have been reported for predicting

progression from prediabetes to diabetes. In 2017, Yokota et al.24 per-

formed a multivariate logistic regression analysis to develop a risk

score to predict the risk of progression from prediabetes to diabetes

based on family history of diabetes, sex, SBP, FPG, HbA1c and ALT.

The AUC of the model was 0.80 (95% CI 0.70-0.87), a specificity of

prediction of 61.8% at 80% sensitivity. Although their study was a

retrospective longitudinal study, they did not use a Cox proportional

hazards model to build a predictive model, which takes into account

factors of follow-up time to build a model. After all, for predictive

models, the effect of follow-up time on the outcome must also be

considered, as different follow-up times may lead to differences in the

performance of model predictions. Also, they did not perform decision

curve analysis to evaluate the clinical usefulness of the model, nor cal-

ibration curve analysis to assess the model's accuracy. Furthermore,

they did not try other methods to compare and screen the most

suitable risk prediction model for incident diabetes. After all, because

of the inherent collinearity and interaction effects of the screening

factors, screening variables directly using logistic regression models is

not a good choice. In 2020, Cahn et al.22 developed a predictive

model based on machine learning to predict the risk of progression

from prediabetes to diabetes according to age, gender, glucose,

HbA1c, BMI, TG, ALT, white blood cell count, HDL-c, statins usage

and aspirin usage. The AUC was 0.865 (95% CI 0.860-0.869).

However, they did not establish time-dependent ROC curves and

did not explicitly propose specific timing for predicting the risk of pre-

diabetes. Also, they did not conduct decision curve analysis to assess

the model's clinical suitability, nor did they measure how closely the

predicted risk matches the actual risk. In addition, too many risk pre-

dictors for their model may limit further generalization of their model.

Moreover, in 2021, Liang et al.23 developed a model to predict the risk

of progression from prediabetes to diabetes using three predictors:

FPG, 2-hour postprandial blood glucose (2hPG) and HbA1c.

Their model's predictive ability is comparatively low (AUC = 0.742).

Besides, they did not perform variable screening and did not take into

account predictors such as ALT, TG, HDL-c, age and family history of

diabetes, which are significantly associated with incident prediabetes

or diabetes.44-48 In addition, 2hPG is comparatively difficult to obtain,

which affects the clinical application of the model. In 2022, Nicolaisen

et al.49 developed a 5-year risk prediction model for diabetes in

patients with prediabetes based on factors including HbA1c, age, sex,

BMI, treated hypertension, pre-existing pancreatic disease, absence of

cancer, unhealthy diet and physician recommendation to lose weight

or change diet. The 5-year AUC was 0.727 (95% CI 0.712-0.743).

Their model has too many predictors, and there are not easily mea-

sured and quantified predictors, which affects the clinical application

of the model. Compared with the similar studies mentioned above,

our nomogram and risk score filled those gaps. We used LASSO

regression and the multivariate fractional polynomials algorithm in the

screening process, considering the collinearity and interaction of the
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screened variables. Meanwhile, we established predictive equations

by Cox proportional hazards regression models to fully account

for the effect of follow-up time on incident diabetes and established

time-dependent ROC curves. Besides, we performed a complete

evaluation of the model for discrimination, clinical use and calibration,

as well as an internal validation of the model. Moreover, for further

convenience of clinical use, we also established a risk score, and risk

stratification was performed.

The prevalence of prediabetes among adults reached 35.7% in a

nationwide cross-sectional survey in China.50 Therefore, effective

intervention for patients with prediabetes is the key to preventing

diabetes. It is important to note that only a subset of people with

prediabetes will progress to diabetes, so intervention of the entire

prediabetic population is not cost-effective. Identifying those truly at

a high risk of developing diabetes among individuals with prediabetes

is particularly important, as this allows us to allocate medical costs for

diabetes prevention and treatment rationally. In this study, we con-

structed a nomogram and risk score using the LASSO and stepwise

Cox proportional hazards models. And we provided a formula that

calculated the risk of progression from prediabetes to diabetes

based on risk predictors, which could assist clinicians in identifying

individuals with prediabetes at a high risk of diabetes and assist them

in being screened for diabetes on time. Our nomogram model and risk

score are routine clinical variables readily available to clinicians; thus,

they can be easily applied in practice.

The present study has several strengths, including: (i) participants

in this study came from multiple centres, and the sample size was

large; (ii) we established four prediction models: the LASSO, full, step-

wise and MFP. And we developed a simple stepwise model based on

the LASSO model; (iii) we performed a nomogram and a risk score at

the same time to ensure model precision and clinical practicability;

(iv) we provided a formula to calculate the risk of diabetes in patients

with prediabetes based on risk predictors, which can help clinicians

calculate an individual's risk of developing diabetes quickly and accu-

rately; (v) we performed a complete evaluation of the model for dis-

crimination, clinical use and calibration; (vi) the decision curve analysis

showed the nomogram's clinical value and could avoid additional dia-

betes screenings (such as the Oral Glucose Tolerance Test) in individ-

uals with prediabetes who are at a low risk of incident diabetes; and

(vii) we performed a series of internal validations to ensure the reli-

ability of the results.

Despite the excellent performance of our nomogram and risk

score, some potential limitations remain. First, this is a secondary

analysis based on published data. The raw data did not include other

diabetes risk factors, such as lifestyle factors, medical history and

waist-to-hip ratio, which may influence the development of predia-

betes or diabetes. In addition, although we performed subgroup

analyses for age and sex during modelling, some population differ-

ences, such as regional and ethnic differences, were not addressed.

We may attempt to design our studies or collaborate with

other researchers in the future to collect as many variables as possi-

ble. Second, diabetes was defined as having an FPG level of

7.00 mmol/L or higher and/or having self-reported diabetes during

the follow-up period, but not as a measurement of HbA1c or of a

2-hour oral glucose tolerance test. Therefore, the incidence of dia-

betes may be underestimated. However, in such a large cohort, a

2-hour oral glucose tolerance test was not easy to perform. Third,

we used multiple imputations to replace missing values. This has the

potential to lead to bias. Therefore, in the future, we can consider

designing our studies or cooperating with other researchers to

collect as many variables as possible and reduce the numbers of

missing values. Finally, although we tested the performance of the

predictive model, it still needs real clinical or other relevant work to

test it before it can be widely accepted or applied.

In conclusion, we have developed and validated a personalized

prediction nomogram and risk score for the 5-year risk of incident

diabetes among Chinese adults with prediabetes, including TG, BMI,

age, FPG, HDL-c, ALT and family history of diabetes. The nomogram

and risk score have excellent prediction performance in both the

training and validation cohorts for estimating the risk of developing

diabetes and have high generalizability. Categorizing the entire risk

relative to the risk status helps to create a diabetes intervention or

prevention programme. Additionally, much clinical and other related

work is required before this diabetes risk score and nomogram can be

widely accepted and used.
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