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Primary mucosal melanomas of the head and neck are characterised by overexpression of
the DNA mutating enzyme APOBEC3B

Aims: Primary head/neck mucosal melanomas (MMs)
are rare and exhibit aggressive biologic behaviour and
elevated mutational loads. The molecular mechanisms
responsible for high genomic instability observed in
head/neck MMs remain elusive. The DNA cytosine
deaminase APOBEC3B (A3B) constitutes a major
endogenous source of mutation in human cancer.
A3B-related mutations are identified through C-to-T/�
G base substitutions in 50-TCA/T motifs. Herein, we
present immunohistochemical and genomic data sup-
portive of a role for A3B in head/neck MMs.
Methods and results: A3B protein levels were assessed
in oral (n = 13) and sinonasal (n = 13) melanomas,
and oral melanocytic nevi (n = 13) by immunohisto-
chemistry using a custom rabbit a-A3B mAb (5210-
87-13). Heterogeneous, selective-to-diffuse, nuclear
only, A3B immunopositivity was observed in 12 of 13
(92.3%) oral melanomas (H-score range = 9–72, med-
ian = 40) and 8 of 13 (62%) sinonasal melanomas (H-

score range = 1–110, median = 24). Two cases nega-
tive for A3B showed prominent cytoplasmic staining
consistent with A3G. A3B protein levels were signifi-
cantly higher in oral and sinonasal MMs than intraoral
melanocytic nevi (P < 0.0001 and P = 0.0022, respec-
tively), which were A3B-negative (H-score range = 1–
8, median = 4). A3B levels, however, did not differ sig-
nificantly between oral and sinonasal tumours
(P > 0.99). NGS performed in 10 sinonasal MMs
revealed missense NRAS mutations in 50% of the stud-
ied cases and one each KIT and HRAS mutations. Pub-
licly available whole-genome sequencing (WGS) data
disclosed that the number of C-to-T mutations and
APOBEC3 enrichment score were markedly elevated in
head/neck MMs (n = 2).
Conclusion: The above data strongly indicate a possi-
ble role for the mutagenic enzyme A3B in head/neck
melanomagenesis, but not benign melanocytic neo-
plasms.
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Introduction

Primary mucosal melanomas (MMs) are exceedingly
rare neoplasms and biologically distinct from their
cutaneous counterpart.1 MMs account for approxi-
mately 1.3% of all melanomas and 0.03% of human
cancers,2 with an estimated 800 cases per year in the
US.3 Approximately 45–55% of MMs are localised in
the head/neck region and arise predominantly in the
sinonasal sites (50–80%)1,3 and oral cavity (25%).3,4

The patient age range is wide, with an incidence peak
in the 7th decade of life.1 No gender predilection has
been reported.5

Although UV radiation comprises a major aetiologic
factor for cutaneous melanomas, the aetiology of
head/neck MMs remains elusive, in part due to the rel-
ative rarity of the disease.6,7 At the genomic level, pri-
mary oral and sinonasal MMs are characterised by a
high number of chromosomal structural aberrations
and increased mutational burden.8,9 Their molecular
profile is evidently distinct from the underlying muta-
tions occurring in cutaneous and ocular melanomas.10

KIT (CD117) mutations are detected in 10–37% of
MMs, followed by NRAS mutations (15–20%), whereas
BRAF V600E abnormalities are rare (<6%),3,11,12 lim-
iting the use of BRAF inhibitors in these lesions. Com-
bined locoregional and distant metastases develop in
50% of MMs of the head/neck3,13 and the overall prog-
nosis is dismal; 5-year survival is limited to 25–30%
with a median survival of 24 months.14-16

The past decade has enabled a remarkable view of
human genomic DNA sequences and, therefore, also
of the overall mutation landscape of human cancers.
Interestingly, a large fraction of mutations is attribu-
table to members of the apolipoprotein B mRNA edit-
ing enzyme catalytic subunit-like protein 3
(APOBEC3) family of single-stranded DNA cytosine
deaminases.17-20 The APOBEC3 mutation signature is
defined by C-to-T/�G single base substitutions in pref-
erential 50-TCA and 50-TCT trinucleotide motifs (sin-
gle base substitution signatures SBS2 and SBS13,
respectively).19,20 The APOBEC3 mutation signatures
dominate a multitude of cancer types including those
of the head/neck, cervix, bladder, breast, and
lung.17-23 There are several lines of evidence in can-
cer biology indicating that APOBEC3 enzymes drive

tumour evolution by promoting resistance to adminis-
tered therapeutic regimens, aggressive subclonal
expansion, and, thus, poor clinical outcomes.24-27

The human APOBEC3 family comprises seven
enzymes, A3A-D and A3F-H, that function to provide
innate immune protection from infection by retro-
viruses (e.g. HIV-1), herpesviruses (e.g. EBV), and
human papillomaviruses (e.g. HPV16).28-30 Among
the APOBEC3 enzymes, APOBEC3A (A3A) and APO-
BEC3B (A3B) are the most likely sources of the overall
APOBEC-driven mutations in human tumours.20,21,31

Large-scale genomic analyses have revealed substan-
tially elevated A3B expression levels and clear evi-
dence for kataegis events in cutaneous melanomas,21

but low proportions of APOBEC3 mutation signatures
SBS2 and SBS13.9,20 However, skin melanomas also
feature a strong dipyrimidine-focused C-to-T mutation
pattern that could eclipse an A3B deamination signa-
ture.21 In this context, A3B may provide insight into
the pathogenesis of head/neck MMs that occur with
minimal UV exposure. To address this hypothesis, we
implemented immunohistochemistry approaches util-
ising our newly developed rabbit anti-human A3B
monoclonal antibody (mAb),32 in combination with
next-generation sequencing methods and analysis of
available genomic datasets.

Methods

C A S E S E L E C T I O N A N D T I S S U E P R O C U R E M E N T

Following Institutional Review Board approval,
formalin-fixed paraffin-embedded (FFPE) archival tis-
sue blocks of primary oral MMs (n = 13) and oral
melanocytic nevi (n = 13) were obtained from the
Oral Pathology Laboratories of the School of Den-
tistry, University of Minnesota, and University of Flor-
ida College of Dentistry. In addition, primary
sinonasal MMs (n = 13) were procured from the
Department of Laboratory Medicine and Pathology,
Medical School, University of Minnesota. All human
tissues were derived from incisionally or excisionally
biopsied head/neck mucosal lesions diagnosed
between 2005 and 2018, and were classified accord-
ing to the criteria of the most recent WHO Classifica-
tion Head and Neck Tumours1 and Skin Tumours.2
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Cases with a previous history of skin melanoma or
MM of other anatomic sites were excluded. Haema-
toxylin and eosin (H&E)-stained slides were reviewed
to confirm the diagnoses and to assess the cytologic
and histomorphologic features of each specimen,
including tumour growth pattern and predominant
cell phenotype. The epidemiologic characteristics of
each patient (age and gender) and anatomic location
of lesions were retrieved and tabulated (Tables 1
and 2).

I M M U N O H I S T O C H E M I S T R Y ( I H C )

The complete panel of primary antibodies against
APOBEC3 proteins and ancillary IHC melanoma
markers along with information regarding the clone,
dilution, incubation time, and antigen retrieval meth-
ods were tabulated (Table S1). IHC staining for APO-
BEC3 proteins was performed following a previously
described protocol.32–34 All melanoma marker stains
were performed on a Ventana NexES automated sys-
tem (Ventana Medical Systems, Tucson, AZ, USA)
according to the manufacturers’ instructions with
appropriate positive and negative controls.

A 3 B I H C Q U A N T I F I C A T I O N A N D S T A T I S T I C A L

A N A L Y S E S

Nuclear A3B immunostaining was visualised with the
Aperio ScanScope XT (Leica Biosystems, Wetzlar, Ger-
many) and quantified using the Aperio Nuclear Algo-
rithm software, as previously.32–34 For each case, the
entirety of the stained tumour was annotated for anal-
ysis and calculation of corresponding A3B histoscore
(H-score).35,36 Adjacent normal structures i.e. surface
epithelium, were excluded from this analysis. Tumours
with an H-score ≤10 were considered negative for A3B.
Since data were not distributed normally, statistical dif-
ferences between groups were calculated using
Kruskal–Wallis one-way nonparametric tests and med-
ian and interquartile ranges were reported. P < 0.05
was considered statistically significant.

R N A E X T R A C T I O N A N D A P O B E C 3 M R N A

Q U A N T I T A T I V E P O L Y M E R A S E C H A I N R E A C T I O N

( R T - P C R )

Four 10 lm-thick sections were collected from FFPE
tissue blocks, deparaffinised in xylene and lysed in
ice-cold RLT and BME buffer according to the Qiagen
(Chatsworth, CA, USA) cell lysis protocol. RNA isola-
tion, cDNA synthesis and qPCR were performed as
previously described.18 Experiments were performed

in triplicate. The mean and standard error of the
mean (SEM) of at least three independent experiments
is presented.

N E X T - G E N E R A T I O N S E Q U E N C I N G ( N G S )

Genomic DNA was extracted from the FFPE samples
and enriched DNA libraries were prepared and
sequenced on an Illumina MiSeq instrument (v. 3
chemistry, 2 9 300 PE; Illumina, San Diego, CA,
USA). FASTQ files were processed through a custom-
designed bioinformatics pipeline as described.37,38

Amplicons with <5009 minimum coverage were
flagged for limited analytic performance. Additionally,
variant call files (vcf) were filtered to remove calls
with variant allele fractions (VAF) outside of the
thresholds defined for accepted single nucleotide vari-
ants (5–10%) and insertion/deletion variants (1–5%).
Clinically relevant mutations from this filtered variant
list were annotated using the GenomOncology (Cleve-
land, OH, USA) software and reported. The analytic
accuracy of the software is 99%. The panel of studied
genes, which varied depending on the case, as well as
sequenced exons were identified below: BRAF
(NM_004333.4): exons 11, 12, 14, 15; GNA11
(NM_002067.2): exon 5; GNAQ (NM_002072.3):
exon 5; KIT (NM_000222.2): exons 2, 8-14, 17, 18;
MAP2K1 (NM_002755.3): exons 2, 3, 6, 7; NRAS
(NM_002524.4): exons 2-4; HRAS (NM_005343.2):
exons 2-3; PDGFRA (NM_006206.4): exons 12, 14,
15, 18.

A N A L Y S I S O F M U C O S A L M E L A N O M A W H O L E -

G E N O M E S E Q U E N C I N G ( W G S ) D A T A

WGS datasets for all available MM tumour samples
(n = 8) in the International Cancer Genome Consor-
tium (ICGC) were downloaded from the ICGC data
portal (https://dcc.icgc.org/). Importantly, these speci-
mens, originally reported by Hayward et al.,9 were
analysed previously for the contribution of mutational
signatures 2 and 13, but were reanalysed here using
the APOBEC3 enrichment score as an improved met-
ric for identifying APOBEC3-specific mutations in
these tumours. Only single base substitution (SBS)
mutations were used to calculate the total number of
mutations and total number of C-to-T mutations in
this analysis (i.e. INDELs and other more complex
somatic variations were filtered out). The APOBEC3
enrichment score was calculated as described.39,40 In
addition, we calculated an A3B-specific enrichment
score that only considers C-T/G mutations in an (A/
G)TCW context, which is the context preferentially
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selected by A3B. The identification numbers, available
clinical information, and APOBEC3 and A3B-specific
enrichment scores of the ICGC cases are provided as
Table S2.

Results

C L I N I C O P A T H O L O G I C F E A T U R E S O F P R I M A R Y

H E A D / N E C K M M S A N D I N T R A O R A L M E L A N O C Y T I C

N E V I

The epidemiologic, clinicopathologic, and immunohis-
tochemical characteristics of the 26 cases of primary
head/neck MM are highlighted in Table 1. Fifteen cases
affected women and eleven men, with a mean age at
diagnosis of 69.2 years (age range = 51–91 years).
Among the 13 intraoral MMs, palate was the most
common site of involvement (7 of 13, 54%) followed by
the maxillary gingiva (3 of 13, 23%) and maxillary
tuberosity (2 of 13, 15%). The nasal cavity (5 of 13,
38%) and maxillary sinus (3 of 13, 23%) comprised the
most frequent locations for primary sinonasal MMs.
Microscopically, 24 of 26 head/neck MMs (92%)

exhibited a nodular growth pattern (Figures 1A and
2A) with a peritheliomatous (perivascular) component
present in two of these cases. The remaining two MMs
(8%) featured melanoma in situ with areas of invasion
(Figure 1A; case 9M). Epithelioid cellular morphology
was seen in 21 of 26 (81%) cases (Figure 1A; cases 5M
and 9M), while a spindle cell phenotype was appreci-
ated in 14 of 26 (54%) head/neck MMs (Figure 1A;
case 8M, Figure 3A; case 26M). Frequently, a combina-
tion of epithelioid and spindle neoplastic cells was
observed (9 of 26, 35%). Less common morphologic
characteristics were observed in 7 of 26 (27%) lesions
and included plasmacytoid, rhabdoid or highly
anaplastic cells, and multinucleation (Figure 2A). Sur-
face ulceration and necrosis were evident in 15 of 26
(58%) and 7 of 26 (27%) tumours, respectively
(Table 1). Most lesions showed an increased number of
mitoses, including atypical mitotic figures, that ranged
from 0 to 50 per mm2 (mean = 11). Perineural and
lymphovascular invasion were, overall, infrequent and
seen in 4 of 26 (15%) and 1 of 26 (4%) head/neck
MMs, respectively. Tumour infiltration by lymphocytes
was predominantly focal (nonbrisk; 24 of 26, 92%)
and rarely brisk (2 of 26, 8%).
The panel of ancillary IHC markers most frequently

utilised to confirm the diagnosis of MM comprised S100,
HMB45, tyrosinase, melan-A (MART1), and SOX10
(Table 1). Eighteen cases stained for S100 were positive,
showing strong and diffuse, cytoplasmic, and/or nuclear
immunoreactivity. Furthermore, 19 and 17 head/neckT
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MMs displayed strong cytoplasmic immunoreactivity for
HMB45 and melan-A, respectively. Finally, seven cases
were stained for SOX10 and showed strong and diffuse,
nuclear positivity. One case was negative for all melano-
cytic markers reported above.
The epidemiologic and clinicopathologic features of

the 13 intraoral melanocytic nevi (control group) are
summarised in Table 2. Eight cases affected men and
five women with a mean age of 48 years (age
range = 27–84 years). Buccal mucosa was the most
frequent site (6 of 13, 46%) followed by the gingiva
(4 of 13, 31%) and palate (3 of 13, 23%). Histopatho-
logically, 11 of 13 (85%) nevi were classified as intra-
mucosal and 2 of 13 (15%) as compound. The
melanocytic nevi were composed of aggregates of ovoid
or epithelioid nevus cells with abundant cytoplasm and
no evidence of cytologic atypia (Figure 2B).

A 3 B O V E R E X P R E S S I O N C H A R A C T E R I Z E S P R I M A R Y

O R A L M M S B U T N O T B E N I G N I N T R A O R A L N E V I

With the exception of one case (7.7%), all oral MMs
studied (12 of 13, 92.3%) showed heterogeneous,
selective-to-diffuse, nuclear only, A3B immunopositiv-
ity in the majority of neoplastic cells (H-score range =
9–72, median = 40; Figure 1A). A3B expression was

seen in both epithelioid and spindle melanoma cells
with varying staining intensity (Figure 1A, inset
images). In contrast, benign oral melanocytic nevi
(n = 13) were consistently and uniformly negative for
A3B (H-score range = 1–8, median = 4; Figure 1B).
Collectively, primary oral MMs exhibited markedly
elevated A3B IHC levels and corresponding H-scores
compared to melanocytic nevi (Figure 1C).

A 3 B U P R E G U L A T I O N I S A C O M M O N F I N D I N G I N

P R I M A R Y S I N O N A S A L M M S

Because A3B expression is evidently elevated in oral
MMs, we then probed A3B protein levels by IHC in a
group of sinonasal MMs and compared it to the
intraoral tumours. Eight of 13 (62%) cases of sinona-
sal MM displayed heterogeneous A3B nuclear
immunostaining (H-score range = 1–110; med-
ian = 24; Figure 2B) that was mostly diffuse (six of
eight, Figure 2A; cases 16M and 24M) and less fre-
quently selective or rare (Figure 2A; case 22M). The
A3B immunophenotypic properties of these cases are
shown in Table 1.
A3B protein expression was increased significantly

in oral and sinonasal MMs when compared to oral
melanocytic nevi (P < 0.0001 and P = 0.0022,

Table 2. Presentation of the epidemiologic, histopathologic and APOBEC3B (A3B) immunohistochemical characteristics of
the intraoral nevi

Case number Gender Age (years) Location
Histopathologic
subtype

APOBEC3B
staining (H-score)

1N Male 30 Buccal mucosa Intramucosal Negative (4)

2N Female 36 Buccal mucosa Compound Negative (3)

3N Female 39 Buccal mucosa Compound Negative (2)

4N Male 36 Buccal mucosa Intramucosal Negative (8)

5N Male 34 Buccal mucosa Intramucosal Negative (6)

6N Female 73 Gingiva Intramucosal Negative (4)

7N Female 49 Palate Intramucosal Negative (7)

8N Female 59 Gingiva Intramucosal Negative (3)

9N Male 61 Buccal mucosa Intramucosal Negative (5)

10N Male 84 Gingiva Intramucosal Negative (8)

11N Male 29 Gingiva Intramucosal Negative (3)

12N Male 27 Palate Intramucosal Negative (1)

13N Male 69 Palate Intramucosal Negative (5)
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respectively, by Kruskal–Wallis test; Figure 2C).
Notwithstanding notable intertumoral heterogeneity
in the sinonasal MMs that is reflected in their corre-
sponding A3B H-score range, A3B levels were simi-
larly elevated in oral and sinonasal tumours
(P > 0.99 by Kruskal–Wallis test; Figure 2C).
Interestingly, two sinonasal MMs (cases 25M and

26M) stained with our 5210-87-13 mAb showed
strong and diffuse cytoplasmic immunoreactivity
(Figure 3A, inset images), but were negative for
nuclear A3B (see Table 1). Since endogenous A3B
exhibits exclusively nuclear localisation, the observed
cytoplasmic staining pattern is consistent with A3A

or A3G; both enzymes are also recognised by 5210-
87-13 due to high homology of their C-terminal
domain.32 Staining of the lesions with a commer-
cially available a-A3G rabbit mAb (see Table S1)
revealed the presence of cytoplasmic A3G in the
epithelioid and spindle tumour cells (Figure 3B).
Similar results were obtained upon analysis of A3A,
A3B, and A3G mRNA levels by qRT-PCR (Figure 3C).
A3G mRNA expression was approximately 1.5- and
2-fold higher in cases 25M and 26M, respectively,
relative to the housekeeping gene TBP, whereas
A3A and A3B were expressed at markedly low levels
(Figure 3C).
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Figure 1. Endogenous A3B protein expression in primary oral mucosal melanomas (MMs) and oral melanocytic nevi. (A) A3B staining and

corresponding H&E-stained photomicrographs of representative primary oral MMs. Scale bars are 60 lm and inset images are magnified 8-

fold. (B) A3B immunophenotype and corresponding H&E-stained photomicrographs of representative benign oral melanocytic nevi. Scale

bars are 60 lm and inset images are magnified 8-fold. (C) Collective presentation of quantified A3B IHC score (H-score) of oral MMs

(n = 13) and oral nevi (n = 13, control). The black horizontal dotted line indicates the A3B H-score median (40) of the oral MMs group.
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Collectively, these data strongly indicate that A3B
upregulation is a common underlying molecular
event in head/neck MMs irrespective of the primary
site, i.e. oral or sinonasal. Upregulation of other APO-
BEC members such as A3G can also occur (2 of 26,
8% of cases), but this phenotype is rare and appears
to occur when A3B levels are low or absent.

A P O B E C 3 E N R I C H M E N T S C O R E S A R E H I G H I N

H E A D / N E C K M M S B U T A 3 B D O E S N O T D R I V E N R A S ,

H R A S , O R K I T G E N E T I C A L T E R A T I O N S I N T H E S E

T U M O U R S

NGS was utilised to analyse the underlying oncogenic
mutations in 10 primary sinonasal MMs. Four of
eight cases (50%) tested harboured pathogenic mis-
sense NRAS mutations including p.Q61K, p.G12C,
and p.G12D (Figure 4A). In addition, two variants of
uncertain biologic significance were discovered in KIT
(missense, p.K492R) and HRAS (nonsense, p.Q70*)
as passenger mutations in a tumour (case 22M) with
a concomitant NRAS mutation (Figure 4A). All 10

cases tested (100%) were negative for BRAF V600E
alterations, which are common in other types of mel-
anoma.9,41 Notably, none of the above NRAS, HRAS,
or KIT base substitutions occurred in 50-TCA-30 or 50-
TCT-30 trinucleotide contexts, which represent pre-
ferred motifs for APOBEC3B-catalysed deamination
activity (Figure 4B).21,42

Publicly available WGS data from eight human
MMs arising in various anatomic sites were reanal-
ysed, including two from the nasal cavity, which, as
we showed above, are overall characterised by high
A3B expression. The nasal MMs featured an increased
total number of mutations (15,405 and 7701, respec-
tively; Figure 5A), as well as a high number of C-to-T
base substitutions (Figure 5B). The APOBEC3 enrich-
ment score, an indicator of APOBEC3-specific muta-
tions, was markedly elevated in the two nasal cavity
MMs when compared to all other mucosal tumours
(Figure 5C, Table S2). Furthermore, when we exam-
ined C-T/G mutations occurring in an (A/G)TCW
context, the preferential context for A3B, the enrich-
ment scores from the two nasal cavity MMs
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(C) Collective presentation and comparison of quantified A3B H-scores of oral melanocytic nevi (n = 13), oral MMs (n = 13) and sinonasal

MMs (n = 13). The H-score median and interquartile range for each group are shown and statistical significance for key comparisons is indi-

cated (Kruskal–Wallis test).
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substantially increased (Figure 5D, Table S2). The lat-
ter strongly indicates a predominant role for A3B rel-
ative to other APOBEC3 enzymes, i.e. A3A, in

generating the APOBEC mutational profile in those
tumours.

Discussion

The studies presented here are the first to investi-
gate protein expression of the single-stranded DNA
cytosine deaminase A3B in primary head/neck
MMs, a rare and particularly aggressive type of
malignancy.1,3,43 IHC results here demonstrate ele-
vated A3B protein levels in approximately 77% of
the head/neck MMs studied. The A3B staining
intensity and distribution showed inter- and intratu-
moral heterogeneity, a finding in agreement with
A3B staining pattern in other human cancers, i.e.
HPV-positive and HPV-negative head/neck squa-
mous cell carcinoma33 and clear-cell ovarian carci-
noma34 that also exhibit increased, overall, A3B
staining and the prevalence of APOBEC3 mutation
signatures SBS2 and SBS13. Various molecular
mechanisms participate in the regulation of A3B in
human nonneoplastic tissues and cancers. A3B is
induced by high-risk HPV infections44–46 and
directly regulated by the Rb/E2F cell cycle signalling
pathway.47–51 Since there is no known causal asso-
ciation between viruses and MMs, it is plausible
that A3B overexpression in head/neck MMs is dri-
ven by the pronounced proliferating properties of
melanoma cells.
APOBEC3 deamination signatures (SBS2, SBS13)

were found to dominate chromosomal regions with
localised hypermutation (kataegis) in MMs and is
associated with an increased number of structural
rearrangements.52 APOBEC3 signatures were also
present (≤30% contribution) in acral melanomas,
which featured a higher number of gene rearrange-
ments.53 Furthermore, SBS2 was the most common
non-UVR process identified in melanomas of adoles-
cents and young adults.54 Only a low fraction of
mutational signatures detected in adult cutaneous
melanomas (1%) is attributable to APOBEC3.9,20,54

However, the prominent UVR-related C-to-T mutation
pattern (SBS7) present in skin melanomas could mask
an A3B deamination signature.21 By revisiting pub-
licly available WGS datasets we showed that both the
APOBEC3 and A3B-specific enrichment scores are sig-
nificantly elevated in head/neck (nasal) MMs, despite
the limited number of cases, and that A3B is not only
overexpressed at the protein level, as indicated by
IHC, but may also contribute to the overall height-
ened mutational burden in these tumours. Although
the current study focuses mainly on head/neck MMs,
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Figure 3. Endogenous A3G expression in primary sinonasal MMs.

(A) H&E-stained and corresponding 5210-87-13 immunohistochemi-

cal photomicrographs of the two cases with pronounced cytoplasmic

positivity. Scale bars are 60 lm and inset images are magnified 8-

fold. (B) Staining with a commercial A3G specific mAb corroborates

the presence of cytoplasmic A3G in these two sinonasal MMs. Scale

bars are 60 and 20 lm, respectively. (C) Quantitative RT-PCR inves-

tigating mRNA levels of A3A, A3B, and A3G expression in these two

cases. Experiments were performed in triplicate. The mean and SEM

of at least three independent experiments is shown. [Color figure can

be viewed at wileyonlinelibrary.com]
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high APOBEC3 enrichment scores were also observed
in a few melanomas of other mucosae such as the
vulva, rectum, and vagina.
Our studies herein have focused on A3B but do

not exclude the possibility that other APOBEC3
enzymes such as A3A and A3H may also provide
mutational fuel for head/neck MMs. To our knowl-
edge, monoclonal antibodies have yet to be devel-
oped to specifically distinguish A3A and A3B. A3A
and the catalytic domain of A3B are 92% identical
at the protein level and the C-terminal epitope
recognised by our rabbit mAb 5210-87-13 is
shared by these two enzymes.32 However, A3B is
the only APOBEC3 family member that localizes
constitutively to the nuclear compartment of
cells,32–34,55 whereas endogenous A3A is cytoplas-
mic in myeloid cell types and cell-wide when over-
expressed in heterologous systems.56,57 In this
study, only nuclear IHC staining was used to gen-
erate quantitative A3B H-scores. Interestingly, two
sinonasal MMs lacking nuclear A3B expression fea-
tured conspicuous A3G cytoplasmic staining.
Although high A3G expression by tumour-
infiltrating T lymphocytes in the stroma of certain
tumours, such as high-grade serous ovarian carci-
noma, correlates with improved outcomes,58 the
biologic significance of A3G expression by the mela-
noma cells is currently unknown. Since A3G is

confined exclusively to the cytoplasmic compart-
ment of the cells,55,59 it is not expected to con-
tribute to the mutational load of these tumours.
Previous animal and cell line studies along with

analysis of human datasets have shown that A3B
overexpression drives drug resistance and tumour
evolvability in various human malignancies, includ-
ing oestrogen receptor-positive breast tumours24 and
EGFR- and ALK-driven lung cancer.27 Conversely,
depletion of A3B from cancer cells confers sensitiv-
ity and improved drug responses.24 Patients with
head/neck MMs harbouring KIT mutations (approxi-
mately 25%) may benefit from treatment with ima-
tinib.3 Notwithstanding promising initial responses,
development of drug resistance is a frequent event
in patients with MMs treated with targeted thera-
pies against KIT mutations.60,61 As we show here,
A3B deaminating activity does not appear to relate
with the pathogenic mutations in KIT, HRAS, or
NRAS that characterize primary head/neck MMs.
However, it is possible that A3B ongoing mutagene-
sis in these tumours may contribute to drug resis-
tance. Unfortunately, no information on patient
outcomes or clinical management was available in
this cohort.
In conclusion, these novel immunohistochemical

and genomic studies combine to strongly indicate a
possible role for the single-stranded DNA mutator
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Figure 4. APOBEC3 does not drive NRAS, HRAS, or KIT genetic alterations in head/neck MMs. (A) NGS findings in primary sinonasal MMs

(n = 10). (B) Type and nucleotide context of the most common pathogenic mutations discovered by NGS in primary sinonasal MMs. None of

the NRAS, HRAS, or KIT base substitutions occurred in a 50-TCA-30 or 50-TCT-30 trinucleotide context, which represent the preferred DNA

motifs for APOBEC3. [Color figure can be viewed at wileyonlinelibrary.com]
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A3B in primary mucosal melanomas of the head/-
neck, but not benign intraoral melanocytic nevi.
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Figure 5. APOBEC3 enrichment scores are high in head/neck MMs. (A) Total number of mutations, (B) Number of C-to-T mutations, (C)

APOBEC3 enrichment scores, and (D) A3B-specific enrichment scores of eight cases of human MMs, including two nasal (red bars), available
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depleted (below 1) for APOBEC3 or A3B mutations. These analyses remove C-to-A mutations. [Color figure can be viewed at
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