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Abstract

Purpose: Lung transplantation is the standard treatment for end-stage lung diseases. A crucial
factor affecting its success is size matching between the donor’s lungs and the recipient’s thorax.
Computed tomography (CT) scans can accurately determine recipient’s lung size, but donor’s
lung size is often unknown due to the absence of medical images. We aim to predict donor’s
right/left/total lung volume, thoracic cavity, and heart volume from only subject demographics to
improve the accuracy of size matching.

Approach: A cohort of 4610 subjects with chest CT scans and basic demographics (i.e., age,
gender, race, smoking status, smoking history, weight, and height) was used in this study. The
right and left lungs, thoracic cavity, and heart depicted on chest CT scans were automatically
segmented using U-Net, and their volumes were computed. Eight machine learning models [i.e.,
random forest, multivariate linear regression, support vector machine, extreme gradient boosting
(XGBoost), multilayer perceptron (MLP), decision tree, k-nearest neighbors, and Bayesian
regression) were developed and used to predict the volume measures from subject demographics.
The 10-fold cross-validation method was used to evaluate the performances of the prediction
models. R-squared (R2), mean absolute error (MAE), and mean absolute percentage error
(MAPE) were used as performance metrics.

Results: The MLP model demonstrated the best performance for predicting the thoracic cavity
volume (R2: 0.628, MAE: 0.736 L, MAPE: 10.9%), right lung volume (R2: 0.501, MAE: 0.383 L,
MAPE: 13.9%), and left lung volume (R2: 0.507, MAE: 0.365 L,MAPE: 15.2%), and the XGBoost
model demonstrated the best performance for predicting the total lung volume (R2: 0.514, MAE:
0.728 L, MAPE: 14.0%) and heart volume (R2: 0.430, MAE: 0.075 L, MAPE: 13.9%).

Conclusions: Our results demonstrate the feasibility of predicting lung, heart, and thoracic
cavity volumes from subject demographics with superior performance compared with available
studies in predicting lung volumes.
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1 Introduction

Lung transplant is the standard treatment for patients with end-stage lung disease. There has been
a steady increase in lung transplants and improved post-transplant survival over the past two
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decades. In 2020, 2597 lung transplants were performed in the United States, and 2696 candi-
dates were added to the lung transplant waiting list.1 These numbers decreased slightly compared
with 2019 due to the COVID-19 pandemic.2 One-year, 3-year, and 5-year post-transplant
survival all improved from 2019 to 2020.1 More than 30% of the patients survive more than
10 years after lung transplant.

Despite the advances in lung transplant, survival after lung transplant is the lowest of all solid
organ transplants.1 Most importantly, donor lungs are a scarce resource. The universal shortage of
donor lungs has created a long waiting list for lung transplant candidates. The mortality rate of
patients on the waiting list for lung transplants is reported to be between 10% and 20%.3–6 Organ
allocation should consider both patient equity and medical efficacy to maximize the utilization of
this scarce resource. In other words, lung transplant outcome should be emphasized to maximize the
benefits of lung transplant. The International Society for Heart and Lung Transplantation (ISHLT)
has developed transplant recipient selection guidelines.7–9 The candidate selection criteria are
primarily based on the risk of death if lung transplantation is not performed and the likelihood
of 5-year survival after lung transplantation. Although the current allocation rules may optimize
the medical efficacy of lung transplantation, one important consideration is to identify transplant
candidates who will benefit the most from lung transplant in terms of survival to improve organ
allocation.

The size match of the donor and recipient lungs is a critical consideration for determining and
matching donor lungs to a potential recipient. In practice, the size of a recipient lung can be
ascertained from a volumetric computed tomography (CT) scan. In contrast, the size and con-
dition of the donor’s lung are limited, and in many situations, only demographic information is
available. The unavailability of medical imaging (e.g., CT scans) related to the donor often
makes it difficult to accurately obtain the size of the donor lungs and thus makes lung size match-
ing a challenging task. Published studies primarily rely on predicted total lung capacity (pTLC)
to estimate the size of the donor lungs based on demographics (e.g., age, gender, height, and
weight)10–14 and reported that the accuracy of pTLC was limited. As a result, a few studies
attempted to estimate the lung volume of a donor based on demographics using their chest
CT scans as the “ground truth” to train a machine learning model.10–14 However, factors that
affect matching of donor and recipient lungs are not limited to lung volume. The characteristics
of the thoracic cavity and heart are also important and may potentially affect lung size match.
To our knowledge, no models have been developed to predict the size of the thoracic cavity or
heart to facilitate lung size match in lung transplantation.

We developed and validated eight machine learning models to predict right lung volume
(pRLV), left lung volume (pLLV), total lung volume (pTLV), thoracic cavity volume (pTCV),
and heart volume (pHV) based on only basic subject demographics, including age, gender, race,
weight, and height. Our study included a large cohort (n ¼ 4610) to develop and test the models.
The ultimate objective is to improve lung transplant donor and recipient matching by integrating
more information into the matching criteria.

2 Methods and Materials

2.1 Datasets

A cohort consisting of 4610 subjects with chest CT scans was identified from the Pittsburgh
Lung Screening Study (PLuSS) cohort15 and the Specialized Centers of Clinically Oriented
Research in COPD (SCCOR).16 Subjects’ age, gender (male, female), race (white, African
American, other), weight, height, smoking history (pack years), and smoking status (current,
former) were included in the dataset (Table 1). To facilitate the development of automated algo-
rithms for segmenting key chest anatomical structures (i.e., thoracic cavity, heart, right lung, and
left lung), 100 cases were randomly selected from the cohort. An observer (AA, a primary care
physician) manually outlined the lungs, heart, and thoracic cavity on the CT images of the
100 subjects. All the CT examinations in the two cohorts were de-identified and re-identified
with a unique study ID. This study was approved by the University of Pittsburgh Institutional
Review Board (IRB) (IRB # STUDY21020128).
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2.2 Algorithm Overview

First, the classical U-Net models were trained to automatically segment the left lung, right lung,
heart, and thoracic cavity (Fig. 1). Second, the thoracic structures were automatically segmented
from the CT images using the trained U-Net models, and their volumes were computed based on
the segmentation as the ground truth (or dependent variables) for the regression modeling. Third,
eight machine learning algorithms were implemented to predict the lung, heart, and thoracic
cavity volumes based on the subject demographics. The volumes of the structures obtained from
the chest CT scans were used as the ground truth for training the machine learning models.
Finally, the performance of the prediction models was validated using the 10-fold cross-
validation method. The models with the best performance were finalized.

2.3 Segmentation of Key Chest Anatomical Structures

Convolutional neural network (CNN) has demonstrated great success in a variety of medical
imaging tasks. Among the available CNN models, U-Net17 is one of the most common ones
used for image segmentation and was used in this study. The classical U-Net model was trained
to segment the key chest anatomical structures involved in this study by following the image
patch-based method.18 The CT scans were first reconstructed to form an isotropic annotation

Table 1 Subjects’ demographics.

All subjects (n ¼ 4610) Male (n ¼ 2378) Female (n ¼ 2232)

Age, mean (range) 60(40 to 70) 60 (44 to 70) 60 (40 to 70)

Race, n (%) — — —

White 4354(94.4) 2266(95.3) 2088(93.5)

African American 245(5.3) 109(4.6) 136(6.1)

Others 11(0.2) 3(0.1) 8(0.4)

Height (cm), mean (SD) 169.08 ± 9.52 175.7 ± 6.55 162.03 ± 0.55

Weight (kg), mean (SD) 82.09 ± 18.10 89.94 ± 11.79 73.72 ± 8.85

Fig. 1 Algorithm overview. The U-Net-based model was used to generate the ground truth
(i.e., dependent variables) for prediction modeling.
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mask with a resolution of 2.5 × 2.5 × 2.5 mm3. Next, all the CT scans were split into three sets,
namely training set, internal validation set, and independent test set at a ratio of 8:1:1, respec-
tively. Next, paired image patches with a uniform dimension of 80 × 80 × 80 voxels were ran-
domly sampled from both the reconstructed CT scans and the annotation masks, which were fed
into the U-Net model. The batch size, initial learning rate, and decay rate were set to 4, 0.0001,
and 0.5, respectively.18 The Dice coefficient was used as the loss function, Adam as the opti-
mizer, and Softmax as the activation function. If the loss did not improve for 10 continuous
epochs, the training procedure was terminated.

2.4 Regression Modeling

Several regression methods have been developed to predict numeric measures based on the tasks
and data. Eight commonly used supervised machine learning methods were evaluated to identify
the optimal approach. The methods are available in an open-source data analysis library:
Scikit-learn. The approaches evaluated include: (1) decision tree, (2) random forest,19 (3) multi-
variant linear regression (MLR), (4) support vector machine (SVM),20 (5) extreme gradient
boosting (XGBoost),21 (6) multilayer perception (MLP), (7) K-nearest neighbors (KNN),22 and
(8) Bayesian regression. These methods can be used for both classification and regression prob-
lems. As a preprocessing step, a z-score normalization was performed before the prediction mod-
eling. For the SVM-based modeling, a linear kernel was used in our implementation. For the
decision tree modeling, the maximum depth of the tree was set to 5. For both random forest
and XGBoost modeling, 250 trees were used, and the maximum depth of the tree was set to 6.
For the MLP modeling, the sigmoid function was used as the activation function and L-BFGS
as the optimizer. For the KNN modeling, 40 neighbors were used.

2.5 Performance Validation

The performance of the U-Net segmentation models was evaluated first using the 10-fold cross-
validation method. The manual segmentations dataset (n ¼ 100) was randomly split into
10-folds. Eightfolds were used for training, onefold was used for internal validation, and onefold
was used for an independent test. Training was repeated 10 times to ensure that all the cases in
the cohort were involved in the independent test. The performance of the segmentation model
was evaluated using the Dice coefficient. Next, the Pearson coefficients were computed to assess
the correlation between subject demographics and the volumes of the key chest anatomical struc-
tures. A p-value of <0.05was considered statistically significant. Only the variables significantly
associated with the anatomical volumes were used as predictors in the regression modeling.
Finally, the 10-fold cross-validation method was used again to validate the performances of the
regression models. Unlike the evaluation of the U-Net models, there was no internal validation
set. The cohort (n ¼ 4610) was randomly split into tenfolds. Ninefolds were used for training the
regression models, and the remaining onefold was used for the independent test. The average
R-squared (R2), mean absolute error (MAE), and mean absolute percentage error (MAPE) were
used as the performance metrics. The categorical variables gender, race, and smoking status
were classified as male/female, white/African American/other, and current/former, respectively.
IBM SPSS v28 was used for the statistical analyses.

3 Results

3.1 Image Segmentation Performance

The U-Net segmentation models using the 10-fold cross-validation approach reliably segmented
the right lung, left lung, heart, and thoracic cavity on chest CT scans (Fig. 2). The Dice coef-
ficients for segmenting the right lung, left lung, heart, and thoracic cavity were 0.951� 0.006,
0.943� 0.007, 0.913� 0.035, and 0.959� 0.013, respectively. The volumes of the right lung
(RLV), left lung (LLV), total lung (TLV), heart (HV), and thoracic cavity (TCV) were computed
using the U-Net segmentation models based on the chest CT scans (Table 2). The measures in
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the male subjects were consistently higher than those in the female subjects. Their average
LLV, RLV, TLV, HV, and TCV were 2.552� 0.668 L, 2.900� 0.691 L, 5.452� 1.340 L,
0.543� 0.131 L, and 6.925� 1.539 L, respectively.

3.2 Correlation between Subject Demographics and the Volumes of Key
Chest Anatomical Structures

Most (28/35) of the subject demographics were significantly associated with the RLV, LLV, TLV,
HV, and TCV, except the smoking status (Fig. 3). Gender, height, and weight had significant,
positive correlations with all five anatomical volumes. Age had a significant positive correlation
with RLV, TLV, and TCV. Although white people had significantly larger lung and thoracic
cavity volumes compared with other races, their relationship is weak as suggested by the
correlation coefficients. There was no association between smoking status and the anatomical
volumes. However, interestingly, smoking history (pack years) was significantly associated with
the anatomical volumes.

Fig. 2 Examples demonstrating the performance of the U-Net segmentation models in segment-
ing the heart, lungs, and thoracic cavity. (a), (e), and (i) Original CT images, (b), (f), and (j) manual
annotation; (c), (g), and (k) model segmentation results; (d), (h), and (l) 3D visualization of the
automated segmentation results.

Table 2 CT volumes of right lung, left lung, heart, and thoracic cavity.

All subjects (n ¼ 4610) Male (n ¼ 2378) Female (n ¼ 2232)

LLV (l), mean (SD) 2.552 ± 0.668 2.952 ± 0.388 2.127 ± 0.400

RLV (l), mean (SD) 2.900 ± 0.691 3.308 ± 0.375 2.466 ± 0.574

TLV (l), mean (SD) 5.452 ± 1.340 6.260 ± 0.762 4.592 ± 0.973

HV (l), mean (SD) 0.543 ± 0.131 0.608 ± 0.103 0.474 ± 0.128

TCV (l), mean (SD) 6.925 ± 1.539 7.981 ± 0.456 5.799 ± 1.545

LLV, left lung volume; RLV, right lung volume; TLV, total lung volume; HV, heart volume; TCV, thoracic cavity
volume
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3.3 Prediction Accuracy of the Regression Models

When developing the regression models, only basic subject demographic information was used,
including age, gender, race, weight, and height. The smoking status was excluded since it was
not significantly associated with the thoracic volumes (Fig. 3). In addition, although smoking
history (i.e., pack/year) was significantly associated with the thoracic volumes, it was excluded
from the prediction modeling because such information may not always be available in practice.
MLP and XGBoost demonstrated the best overall prediction performances (Table 3 and Fig. 4),
but the difference in performance was not statistically different (p > 0.05). Specifically, MLP
showed a slightly higher performance in predicting TCV, RLV, and LLV, whereas XGBoost
showed a slightly higher performance in predicting TLV and HV. In contrast, the decision tree
demonstrated the worst performance. All machine learning methods achieved an MAE of 0.7 to
0.8 L in predicting TCVand TLV, an MAE of 0.4 L in predicting RLVand LLV, and an MAE of
0.1 L in predicting HV, an MAPE of ∼11% in predicting TCV, and an MAPE of 14% to 15% in
predicting RLV, LLV, TLV, and HV. The correlation between the anatomical volumes based on
automated segmentation and predicted volumes based on demographics was strong for all
models (Table 3 and Fig. 5).

4 Discussion

We verified the feasibility of predicting the three-dimensional (3D) volumes of key thoracic
structures from subject demographics. The objective is to facilitate lung size match for lung
transplants. Eight machine learning methods were used to develop the regression models based
on a cohort of 4610 subjects. We note that the novelty of this study is not the development of
novel machine learning algorithms but the idea of predicting 3D volumes of several thoracic
structures from subject demographics. Specifically, this study has several unique characteristics
compared with published reports (Table 4). First, this study developed models to predict heart
and thoracic cavity volumes based on subject demographics, which, to our knowledge, has not
been attempted by other investigators. Second, our large cohort of over 4500 cases is by far the
largest study to date. Third, we evaluated eight popular machine learning methods in predicting
the volumes from subject demographics. Finally, since multiple anatomical volumes were

Fig. 3 Pairwise Pearson correlations between subject demographics and the LLV, RLV, TLV, HV,
and TCV. (n ¼ 4610, **p-value < 0.001).
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Fig. 5 Scatter plots of the CT-derived volumes based on automated segmentation and the predicted
volumes based on theMLP, XGBoost, and decision treemodels based on the 10-fold cross-validation.

Fig. 4 MAPEs of the eight machine learning methods in predicting the anatomical volumes of
key chest anatomical structures.
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predicted in this study, the developed models can be potentially applicable to different lung
transplant approaches, such as single, bilateral, or heart-lung transplantation, and can serve as
a supplement to current methods to improve lung transplantation.

We found no significant differences between the performance of the machine learning pre-
diction models (p > 0.05). This may be caused by the fact that the predictor variables were
relatively simple and their number was limited. Notably, the involved thoracic structures are
dynamic structures, and their volume computations depend on the respiratory state (e.g., inspi-
ration and expiration) and cardiac cycle. In particular, we found that smoking history affected the
anatomical volumes as well. Despite these, our results demonstrated a very promising perfor-
mance, which outperformed other published reports (Table 4). The performance improvement
may be attributed to the use of a much larger dataset.

We trained and validated the classical U-Net model to segment several thoracic structures and
computed their volumes for developing prediction models. The U-Net segmentation models
showed relatively high performance in segmenting these structures. Nevertheless, there were
still errors between the computerized results and the manual outlines. However, the automated
computerized approach makes it possible to efficiently process a large number of chest CT scans
for reliable regression modeling. We did not develop CNN-based segmentation models in
this study because the classical U-Net model demonstrated high accuracy in segmenting these
structures. Specifically, the Dice coefficients for segmenting the right lung, left lung, heart,
and thoracic cavity were 0.951� 0.006, 0.943� 0.007, 0.913� 0.035, and 0.959� 0.013,
respectively. Also, the classical U-Net model is simple and has fewer parameters as compared
with other sophisticated U-Net variates (e.g., R2Unet, UNet++), making it a lighter model
and easy to implement. As demonstrated in other studies,18,24,25 many state-of-the-art CNN
image segmentation models only demonstrated a very limited improvement in segmentation
performance compared with traditional CNN models, and most of them are variants of the
U-Net model.

There are limitations with this study. First, our cohort was created from existing COPD and
lung cancer studies. All the study participants were current or former smokers. Second, the sub-
jects had an age range from 40 to 70 years. It would be beneficial to expand the cohort to include
younger and nonsmoker subjects. Third, most of the subjects are white. Although our results
showed that race contributed little to the prediction performance, this could be caused by our
imbalanced cohort. Additional investigation is needed to clarify this further. Finally, the presence
of thoracic abnormalities may affect the volumes of the relevant structures but were not
considered in this study.

5 Conclusion

Our study demonstrates the feasibility of predicting lung, heart, and thoracic cavity volumes
from subject demographics. Compared with published reports, our study used a much larger
cohort and analyzed more chest volumetric characteristics that may potentially affect lung size
match. Our prediction models also demonstrated higher accuracy in predicting lung volume
compared with other studies. We believe our results demonstrate the feasibility of predicting
the 3D volumes of key anatomical features from subject demographics and that our prediction
models may improve lung size matching for single lung, bilateral lung, and heart-lung
transplants.
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