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Abstract

Transcatheter electrosurgery describes the ability to cut and traverse tissue, at a distance, 

without an open surgical field and is possible using either purpose-built or off-the-shelf devices. 

Tissue traversal requires focused delivery of radiofrequency energy to a guidewire tip. Initially 

employed to cross atretic pulmonary valves, tissue traversal has enabled transcaval aortic access, 

recanalization of arterial and venous occlusions, trans-septal access and many other techniques. 

To cut tissue, the selectively denuded inner curvature of a kinked guidewire (the “Flying V”) 

or a single loop snare is energized during traction. Adjunctive techniques may compliment or 

enable contemporary transcatheter procedures, whereas myocardial slicing or excision of ectopic 

masses may offer definitive therapy. In this contemporary review we discuss the principles of 

transcatheter electrosurgery, and through exemplary clinical applications highlight the range of 

therapeutic options offered by this versatile family of procedures.
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INTRODUCTION

Transcatheter electrosurgery is a newer component of the interventional catheterization 

armamentarium. Remarkably, electrosurgery can be applied not just in an open operative 

field insulated by air, but even within blood spaces, which short-circuit intended electrical 

pathways. Despite the challenge, targeted tissue vaporization is accomplished with simple 

bedside modification of interventional guidewires and other commercially available 
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electrically conductive equipment. Using these tools, operators can traverse blood vessels 

and cardiac chambers, and can lacerate heart valve leaflets and even heart muscle without 

surgery. In this review we discuss the principles of transcatheter electrosurgery and 

exemplary clinical applications[figure 1].

Electrosurgical Principles

Basic physics of electrosurgery

Electrosurgery refers to delivery of high (‘radio’) frequency (240-470kHz) alternating 

current to cut or coagulate tissue. Electrosurgery may be performed in monopolar or bipolar1 

configurations with monopolar being the most common for transcatheter electrosurgery2. In 

monopolar mode, current flows in a circuit from a conductive object (an active electrode) 

to a target tissue, through the patient’s body and back to the electrosurgical radiofrequency 

generator via a dispersive electrode on the patient’s skin[figure 2]. Equal current flows 

through the active and dispersive electrodes, but the contact surface area of the active 

electrode is dramatically smaller and therefore concentrates energy. Tissue adjacent to the 

active electrode imparts resistance to current flow, converting electrical energy to heat. 

Continuous radiofrequency energy delivery (100% duty cycle ‘on’ [figure 2B]) causes rapid, 

focal heating above 100°C at the point of maximum current density, adjacent to the active 

electrode. Cells vaporize which therefore ‘cuts’ the tissue.

Electrosurgery is distinct from electrocautery, in which tissue is heated to induce coagulation 

and escharification. Electrocautery employs “coagulation” mode, which relies on interrupted 

current delivery (low duty cycle ‘on’) that induces heating with attendant denaturation 

(electrocoagulation), dehydration (electrodessication), or spark-spraying (electrofulguration) 

without vaporization.

Adaptations for transcatheter electrosurgery

Surgeons traditionally perform electrosurgery using hand-held active electrodes (such 

as electrosurgery pencils), under direct visualization, and within an insulating medium 

(air). By contrast, transcatheter electrosurgery vaporizes targets at a distance from the 

operator, internally and without visualization, and inside conductive blood or tissue media. 

Conductive metallic guidewires are the most common active transcatheter electrosurgical 

devices.

Guidewire denudation

Most commercial guidewires have polymer coating, such as polytetrafluoroethylene (PTFE) 

to improve mechanical properties such as lubricity and biocompatibility. Serendipitously 

these coatings are electrical insulators. Bedside-modification consists mostly of selectively 

stripping insulative coating —distally to expose/create the active electrode, and proximally 

to create contact points with connectors. The exposed proximal contact point is carefully 

clamped to electrosurgery accessories (such as ‘Bovie” electrosurgery pencils) to minimize 

energy loss when connecting to electrosurgery generators[Figure 3].
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Electrosurgical tissue cutting is usually accomplished using the kinked shaft of a guidewire 

that traverses the tissue, and during traction[Figure 3]. The active electrode is the inner curve 

of the kinked guidewire shaft where it contacts the target tissue. However, electrosurgical 

charge tends to concentrate at convexities such as the outer curve of the kinked guidewire 

shaft. To resist this well-known phenomenon, insulation is selectively denuded from the 

inner curve and retained along the outer curve in order to concentrate electrosurgical 

charge at the tissue laceration target. The resulting “Flying-V” configuration[Figure 3, Video 

S1] self-orients when appropriately positioned across valve leaflets, and assures energy is 

appropriately targeted.

Coaxial catheter insulation of guidewires

Electrosurgical tissue traversal employs the tips of guidewires as active electrodes. Most 

unaltered commercial off-the-shelf guidewires have long uninsulated distal metallic tips 

having excessively large conductive surface area prone to current dispersal and inadequate 

charge concentration.

To counteract this phenomenon, a fundamental technique of transcatheter electrosurgery is 

to insulate all-but-the-tip of the guidewire, or all-but-the Flying-V of the guidewire, with a 

combination of microcatheters and guiding catheters. By exposing only small portions of 

the metallic guidewire beyond microcatheters and guiding catheters, conductive surfaces are 

minimized and charge is concentrated[figure 3].

Infusion of non-ionic solution such as dextrose/iodinated contrast

Blood is a highly conductive medium. When performing transcatheter electrosurgery, the 

active electrode is nearly always in contact with blood, allowing for charge dispersal 

through undesirable alternative current paths. By infusing a non-ionic solution of dextrose 

or iodinated contrast simultaneous with the application of radiofrequency current, blood is 

displaced and charge is concentrated in the target tissue[figure 3]. Blood displacement also 

minimizes electrode carbonization and local blood thromboembolism.

Clinical Applications

TISSUE TRAVERSAL

Pulmonary atresia—The first reported application of transcatheter electrosurgery was in 

pediatrics for pulmonary valve atresia with intact ventricular septum, using purpose-built 

electrosurgery guidewires3. Thereafter, electrosurgery-assisted pulmonary valvulotomy has 

become widely applied to treat pulmonary atresia with4–6 and without7 intact ventricular 

septa.

Transcaval aortic access—Transcaval aortic access describes electrosurgical entry to 

the abdominal aorta from the adjacent inferior vena cava[figure 4]8. First described in 2013 

as an alternative access for TAVR in otherwise ineligible patients9, ‘transcaval’ has now 

been performed in thousands of patients worldwide and in many experienced centers is a 

routine option for large-bore arterial access to the aorta when iliofemoral arteries are small 

or diseased.
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Technical overview: A suitable, calcium free crossing target is identified from a pre-

procedure CT of the abdominal aorta10. Orthogonal fluoroscopic projection angles are 

planned, and the desired crossing site is related to anatomic fiducials, for example the 

superior margin of the iliac crests and nearest lumbar vertebrae which are then used for 

procedural co-registration. Safety and bailout options are planned by evaluating proximity 

of the crossing target to the renal vessels and aortoiliac bifurcation (minimum distance 

15mm), presence of interposed structures such as small bowel, and femoral access for 

bailout covered stent delivery.

Transcaval access offers superior ergonomics and greater operator distance from X-

ray scatter compared with transaxillary and transcarotid approaches. A coaxial system 

comprising CTO-indicated angioplasty guidewire (Astato XS20, Asahi-Intecc), hubless 

locking 0.014”−0.035” microcatheter (Piggyback, Teleflex) or alternative 0.014” 130-150cm 

microcatheter, 0.035” x 90cm microcatheter (e.g. NaviCross, Terumo) and 6-7Fr renal length 

guiding catheter (IM or RDC1) are inserted from the right femoral vein to the crossing 

target and directed towards a single loop snare draped along the aortic target from a femoral 

artery10. The guidewire is electrified with a short burst of 30-50W ‘pure’ cut monopolar 

energy and advanced from vena cava into the awaiting aortic snare. Following guidewire 

ensnarement and advancement to the aortic arch, the coaxial catheters are advanced to the 

aorta to permit exchange for a stiff 0.035” guidewire (e.g. Lunderquist) over which the 

intended large-bore sheath is advanced into the aorta to perform TAVR or percutaneous 

LVAD delivery otherwise per standard practice. On completion, heparin anticoagulation 

is reversed with protamine, the system is withdrawn and the transcaval access tract is 

closed with a nitinol cardiac occluder (Amplatzer Duct Occluder-1, Abbott). Completion 

aortography typically demonstrates complete occlusion or residual aortocaval fistulae. 

Extravasation usually responds to balloon aortic tamponade, but otherwise covered stents 

are required in approximately 1-5% of cases.

Clinical experience and outcomes: Early transcaval access and closure was systematically 

studied with CT in 100 patients in a prospective, multi-center, single-arm, core-lab 

adjudicated, investigational device exemption (IDE) Trial of patients with no other access 

options for TAVR8,11. In this extreme risk cohort (STS predicted mortality 9.6±6.3%) 

access and closure was successful in 99 of 100 attempts, covered stent was required for 

hemostasis in 1, and there were no deaths attributable to transcaval access8. Systematic 

post-procedure CT identified bleeding complications not otherwise ascertained on other 

TAVR studies. At 12-months there were no post-discharge vascular complications despite 

universal implantation of permeable vascular nitinol occluders11. Results were similar in an 

early European12 and Israeli13 reports.

In a more contemporary report, 238 patients undergoing transcaval TAVR were compared 

with 106 undergoing transaxillary access. Transcaval access conferred bleeding and vascular 

complications similar to transaxillary access, but lower “femoral-like” rates of stroke and 

discharge directly to home14. Selection bias does not appear to account for the different 

outcomes, before or after inverse-propensity weighting of baseline characteristics. Sites 

included a mix of operators who preferentially employed one route or the other (3 

transaxillary vs 5 transcaval), and 3 that abandoned the transaxillary approach before 
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the study period. Overall these findings suggest transcaval TAVR is at least as safe as 

transaxillary.

Applications: Transcaval access has been used extensively for TAVR in native vessels 
8,9,14,15, including through aneurysmal segments 16 and surgical abdominal aortic grafts17,18. 

In the setting of resistant aortic walls, transcaval crossing can be accomplished using 

angioplasty balloons or with laser atherectomy 19. Recent creative applications employ 

transcaval access for large bore hemodynamic support devices 20,21, extracorporeal 

membrane oxygenation22, for treatment of congenital heart disease 23 including subaortic 

stenosis 24, for congenital syndromes at prohibitive operative risk 25, and for thoracic aortic 

endovascular aneurysm repair 26.

Arterial occlusion—Pediatric patients with chronically occluded27 or atretic28 pulmonary 

arteries have been successfully recanalized following electrosurgical traversal, as has an 

iatrogenic endograft occlusion of the right pulmonary artery during transcatheter pulmonary 

valve replacement29. Aorto-ostial coronary artery occlusions are challenging due to a lack of 

antegrade options. In cases where conventional retrograde approaches failed, electrosurgical 

traversal (E-CART) has enabled successful coronary artery recanalization 30. In aortic 

coarctation, electrosurgery has enabled stent placement in uncrossable lesions31,32 and in 

late stent thrombosis33.

Venous occlusion—Electrosurgical traversal is possible in complex central and 

peripheral venous occlusions when mechanical approaches fail. Electrosurgery has been 

applied for retrograde pulmonary vein recanalization in complex congenital heart disease34, 

in longstanding left subclavian vein occlusion related to chronic hemodialysis catheters35, 

to enable pacemaker upgrades36, and for a chronically occluded portal vein, recanalized to 

treat recurrent, variceal, upper-gastrointestinal bleeding37. In a single-center experience of 

20 central, otherwise-uncrossable, chronic venous occlusions, electrosurgical recanalization 

was successful in 80% with only one major, conservatively managed, complication38.

Non-anatomic bypass—Electrosurgical traversal between superior vena cava and right 

pulmonary artery enabled a transcatheter Glenn Shunt to successfully palliate an adult 

patient with uncorrected functional single ventricle39. By connecting descending aorta and 

main pulmonary artery, transcatheter reverse Potts shunts have alleviated symptoms in adult 

and pediatric patients with supra-systemic pulmonary arterial hypertension40,41.

Trans-septal access—Electrosurgical atrial transseptal access is straightforward using 

purpose-built needles and guidewires (NRG and VersaCross, Bayliss Medical)42,43 and off-

label angioplasty guidewires44 for both structural heart and electrophysiology procedures. 

Electrosurgery reduces time to cross and number of crossing attempts compared to 

mechanical puncture42,43,45, allows for more precise transseptal access by eliminating the 

forward force required for puncture using transseptal needles, and may reduce unintended 

“back-wall” left atrial injury.
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Electrosurgical fenestration—Electrosurgical fenestration of chronic Type-B aortic 

dissection46,47 creates communication between true and false aortic lumens, allowing access 

to or perfusion of visceral vascular branches.

In situ fenestration has allowed rescue of unintended pulmonary artery branch obstruction 

after transcatheter pulmonary valve implantation 29. More important, electrosurgical 

fenestration has allowed in situ construction of complex endograft landing zones in patients 

with pulmonary arteries otherwise too large for commercial or investigational transcatheter 

pulmonary valve devices 48.

Electrophysiologic applications—Left ventricular access has been established by 

electrosurgical crossing from the right atrium, creating an iatrogenic Gerbode defect, to 

perform VT ablation in patients with mechanical aortic and mitral valves49 and across the 

interventricular septum to enable direct LV endocardial pacing50.

TISSUE LACERATION

Procedures discussed to this point have concentrated charge at guidewire tips, to traverse 

through or between structures. Eccentric denudation and kinking the mid-shaft of an 

angioplasty guidewire to create the “Flying-V” (described above) was a major advancement 

to slice tissues in a variety of settings[Video S1].

CARDIAC VALVE LEAFLET SLICING

LAMPOON (intentional Laceration of the Anterior Mitral valve leaflet to Prevent left 
ventricular Outflow ObstructioN)

Technical overview—LAMPOON is a transcatheter mimic of surgical anterior leaflet 

resection, commonly performed during mitral valve replacement to prevent left ventricular 

outflow obstruction51[figure 5]. In addition to fixed LVOT obstruction, long anterior 

mitral valve leaflets can cause dynamic LVOT obstruction following TMVR despite 

capacious outflow tracts. Moreover, TMVR-displaced overhanging leaflets occasionally 

create flow patterns that disrupt normal TMVR leaflet coaptation52 or create dynamic LVOT 

obstruction. All can be averted using LAMPOON.

LAMPOON works by creating a midline incision in the anterior mitral valve leaflet that 

subsequently splays when displaced by TMVR, exposing THV cells otherwise covered by 

the anterior mitral leaflet. Serendipitously, chordal attachments to the papillary muscles 

remain intact, preserving ventricular function, and pulling the sliced leaflet halves safely 

outwards.

LAMPOON is not helpful when TMVR devices have lengthwise fabric skirts preventing 

blood flow across their stent frames. In this circumstance the risk of LVOT obstruction may 

be mitigated by septal reduction therapy (see SESAME, below).

Base-to-tip variants: In retrograde LAMPOON (“Classique”)53, a guide catheter engages 

the base of the A2 mitral leaflet scallop from a percutaneous retrograde aortic approach. 

A 0.014” guidewire electrosurgically traverses the leaflet into to an awaiting multi-loop 
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snare in the left atrium. The “Flying-V” is positioned at the base of the leaflet. Continuous, 

gentle, guide catheter traction during dextrose infusion and application of 70W “pure cut” 

electrosurgical energy creates a midline incision from base to tip. Because the retrograde 

aortic catheters are intrinsically aligned with the LVOT, retrograde LAMPOON remains the 

most reliable approach to true midline splitting of the A2 anterior mitral valve cusp.

Positioning of the retrograde aortic catheters can be technically demanding and can 

induce or exacerbate valvular regurgitation, and led to the development of an antegrade 

LAMPOON approach, which is now usually preferred for base-to-tip cases54[figure 5]. 

Parallel deflectable sheaths are placed trans-septally in the left atrium to direct a pair of 

guide catheters; one snare catheter through the mitral valve orifice in the left ventricular 

outflow, the other delivering the coaxial electrosurgery crossing system to the atrial surface 

at the base of the anterior mitral valve leaflet. Following echocardiographic confirmation, 

leaflet traversal and snaring are accomplished. The key to successful midline laceration 

is creation of a central fulcrum in the left atrium using the deflectable sheaths; otherwise 

lacerations tend to be oriented obliquely towards the interatrial septum.

Tip-to-base variants: “Reverse,” or “tip-to-base” LAMPOON, is a further simplification 

for patients in whom either a prosthetic surgical ring55 or valve replacement56 creates 

a backstop to excessive laceration, protecting the aorto-mitral curtain and aortic valve. 

Because there is no leaflet traversal, the procedure is straightforward for newcomers. The 

procedure entails a balloon-wedge end-hole catheter floated from left atrium to LVOT to 

aorta to assure a chord-free trajectory. This catheter delivers a guidewire, pre-prepared 

with “Flying-V”, to be ensnared by a retrograde aortic snare. Traction is applied to guide 

catheters in the aorta and left atrium with the Flying-V straddling the leaflet tip. In resistant 

leaflets, laceration can be repeated. It is important during tip-to-base LAMPOON to assure 

no electrification near the aortic leaflets and to assure ring annuloplasty “backstops” protect 

the aortomitral curtain and transverse sinus, both evident on CT.

Rescue LAMPOON57 describes a variation of tip-to-base LAMPOON in which the tip of 

a long anterior mitral valve leaflet that is causing TMVR leaflet dysfunction or dynamic 

LVOT obstruction is lacerated back to the THV frame.

Clinical experience and outcomes—In the prospective NHLBI LAMPOON IDE 

trial, 30 patients at prohibitive risk of LVOT obstruction were successfully treated using 

retrograde LAMPOON58. No procedural deaths were recorded in this extreme risk cohort 

(STS PROM 10.2±6.2) and 30-day survival was 93%. LAMPOON is most commonly 

performed in the setting of TMVR using balloon expandable THVs created for the 

aortic position, but has also enabled implantation of dedicated transcatheter mitral valves 

when overhanging anterior mitral valve leaflet would otherwise cause obstruction59. 

When implanting dedicated TMVR systems without uncovered cells LAMPOON may be 

combined with septal reduction techniques to synergistically prevent LVOT obstruction. 

After guidewire traversal through a non-calcified target, LAMPOON laceration is usually 

successful despite heavy anterior mitral leaflet calcification.
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Liberation of double orifice mitral valve: In patients with prior surgical Alfieri stitch 

(ELASTIC; Electrosurgical Laceration of Alfieri STItCh 60) or transcatheter edge-to-edge 

repair (ELASta-Clip; Electrosurgical Laceration And Stabilization of failed MitraClip(s) 
61,62), positioning of the “Flying-V” on the anterior mitral valve leaflet anteriorly, adjacent 

to the suture- or leaflet-bridge, liberates the leaflets upon electrosurgical laceration[figure 

5]. This procedural adjunct enables TMVR devices to pin the suture or clip harmlessly and 

posteriorly along with the posterior mitral leaflet. As in all such electrosurgery procedures, 

the lacerating guidewire is used “off-label.”

BASILICA (Bioprosthetic or native Aortic Scallop Intentional Laceration to prevent 
Iatrogenic Coronary Artery obstruction)

Technical overview—LAMPOON was adapted to aortic valve therapy as BASILICA63. 

Briefly, CT planning64 assesses mechanisms and likelihood of threatened coronary 

obstruction (sinus sequestration or direct coronary ostial obstruction), and identifies 

procedural fluoroscopic projections. An appropriately sized coronary guide catheter engages 

the hinge-point of the target aortic leaflet; typically an oversized AL shape for the left and a 

JR4 or multipurpose for the right. Catheter shape is fine-tuned using rigid 0.035” guidewire 

back-ends during positioning. A co-axial traversal system comprising guidewire (Astato 
XS20) and microcatheter (e.g. PiggyBack) is advanced to the crossing target, clamped to 

the electrosurgical generator and, during brief application of 30-50W pure-cut energy, is 

advanced to a single-loop snare pre-positioned in the LVOT through a separate guiding 

catheter through the major orifice of the aortic valve[figure 6]. The Flying-V65 is created 

and passed to the base of the leaflet during guidewire externalization. Guide catheters are 

advanced and slack removed from the system with gentle traction. Catheters are withdrawn 

towards the ascending aorta during application of 70W energy and with continuous dextrose 

infusion through both.

Careful electrosurgical technique, including the dextrose flushing, is essential to allow 

electrosurgical leaflet slicing rather than mechanical avulsion. Importantly, appropriately 

sliced leaflets continue to coapt sufficiently to prevent hemodynamic deterioration in 

the period between laceration and TAVR. Following TAVR, the midline leaflet incision 

preserves coronary artery flow through the open cells of the THV. If both arteries are 

at risk of obstruction a “doppio” procedure can be performed without hemodynamic 

decompensation[figure 6].

Clinical experience and outcomes—Approaches to predict iatrogenic coronary artery 

obstruction are sensitive but non-specific. Several high-risk features have been defined, 

including a coronary ostial height <12mm, virtual-valve-to-coronary (VTC) distance <4mm 

in bioprosthetic or <3mm in native valves, virtual-valve-to-sinotubular-junction distance 

<2mm and the presence of externally mounted prosthetic leaflets66. The BASILICA Trial, a 

prospective, investigator-led, IDE trial included 30 patients at risk for coronary obstruction. 

30-day67 and 1-year68 outcomes demonstrated procedural efficacy and safety in native and 

bioprosthetic valves. The Multicenter International BASILICA registry reported real-world 

results from 214 patients at 25 centers in North America and Europe69. Procedural success 

was high, with laceration in 94% of cases. Importantly, stroke (2.8%) and disabling stroke 
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(0.5%) events were low and comparable to that reported in patients who do not undergo 

BASILICA70.

Adaptations and future directions—Subsets of patients carry a higher risk for 

coronary artery obstruction, including those planned for TAVR-in-TAVR71. Balloon-

augmented BASILICA (BA-BASILICA) may increase leaflet splay by expanding the 

traversal centrifugally closer to the bioprosthetic valve ring or native annulus, through 

balloon dilatation of the leaflet crossing point prior to laceration72,73. Purpose-built 

Pachyderm guide catheters74 and custom guidewires are expected further to simplify the 

procedure.

CARDIAC VALVE LEAFLET REMOVAL

CATHEDRAL (CATHeter Electrosurgical Debulking and RemovAL)

A proportion of patients may experience coronary obstruction despite successful BASILICA 

laceration, such as from a prolapsing leaflet73. The CATHEDRAL procedure75 uses 

transcatheter electrosurgery to energize a single-loop snare to cut and excise the aortic 

cusp. Further enhancements may prove important in the management of obstructive leaflets, 

especially for TAVR-in-TAVR.

Technical overview—Similar to BASILICA, the target aortic leaflet is electrosurgically 

crossed at its base, ensnared and externalized. In contrast, the kinked guidewire shaft is 

not denuded, allowing the leaflet to be grasped and minimizing injurious electrosurgical 

coupling in subsequent steps. A single loop snare is positioned over the V, at the base of 

the leaflet, tightened and energized whilst flooding the field with dextrose. Gentle guidewire 

countertraction assists excision and retrieves the excised leaflet.

MODIFICATION OF OTHER CARDIOVASCULAR TISSUE

SESAME (SEptal Scoring Along Midline Endocardium)

LVOT obstruction may still occur from TMVR when the THV fabric skirt obstructs outflow 

despite successful LAMPOON76. The SESAME procedure77,78, still under development, is 

a transcatheter septal myotomy that increases LVOT area in patients with, or at risk for, 

LVOT obstruction from TMVR or hypertrophic cardiomyopathy[figure 7].

Technical overview—A retrograde aortic guiding catheter is engaged to the basal 

most interventricular septum, underneath the aortic valve, between the nadir of the right 

coronary cusp and right-left commissure to avoid conduction tissue. Using Intramyocardial 

Guidewire Navigation, a CTO-tipped angioplasty guidewire (Astato XS20)79 traverses the 

septum and exits to a pre-positioned snare in the left ventricle. This trajectory lies away 

from the conduction system and defines the length and depth of subsequent myotomy. 

A modified “Flying-V” is fashioned with eccentric denudation of the mid-point of the 

guidewire, increasing the lacerating surface in contact with myocardium78. Electrosurgical 

laceration is performed under traction and 70W pure cut energy. The resultant myotomy 

immediately reduces LVOT gradient and splays further over 30 days77. In early experience 
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there have been no major conduction disturbances and few anatomic exclusions, in contrast 

to transcoronary alcohol septal ablation80.

PASTA (Pledget-Assisted Suture Tricuspid Annuloplasty)

In combination with other novel techniques, including guidewire-assisted suture and pledget 

delivery, electrosurgery has enabled tricuspid annuloplasty with the PASTA procedure81,82.

Excision and removal of ectopic structures

Electrosurgery performed by energizing single-loop snares has resulted in successful 

resection of an aortic valve fibroelastoma83, ruptured mitral papillary muscle84 and most 

recently a right atrial myxoma; SEATTLE (Simplified Extraction of Atrial Tumor with 

Targeted Loop Electricity) procedure [personal correspondence, James M. McCabe]. A stray 

central venous catheter was removed from the superior vena cava of a post operative patient 

using a modified electrosurgical guidewire “lasso”85.47

Troubleshooting

When faced with failure to traverse or cut, a few simple remedies usually suffice.

Connections and dispersive electrode

When guidewires are connected to electrosurgery generators via electrosurgery pencils, 

contact points should be examined to assure appropriate denudation of insulation. Avoid 

electrosurgery pencils having insulating (‘Edge’) coating, or otherwise strip the insulation.

The dispersive gel electrode should be in good (moist) condition and have good contact with 

clean and dry skin. We have experienced electrosurgical failure from mal-applied dispersive 

electrodes even when the generator contact quality indicator is illuminated. We recommend 

a low threshold to replace dispersive electrodes.

Catheter positioning

Successful tissue traversal requires orthogonal catheter positioning, which is analogous 

to guide catheter backup support in endovascular interventions. Calcification resists 

electrosurgical traversal, which succeeds only through calcium-free gaps, however small. If 

the guidewire is seen deflecting away from targets during electrosurgical traversal attempts, 

it is advisable to withdraw and reposition the guide and coaxial microcatheters, if only 

minutely, before further attempts.

Carbonization

The active electrode easily becomes coated with insulating organic materials (“carbonized”) 

when energized in the presence of blood or tissue. If other maneuvers do not correct 

electrosurgical failure, inspection and replacement of the guidewire may be required. 

This is part of the rationale for dextrose flushing during electrification, which reduces 

carbonization.
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Power

Up-titration of applied power may aid electrosurgery. Using bedside-modified guidewires, 

we usually first attempt tissue traversal at 30W and increase to 50W as needed; we initiate 

tissue laceration at 50-70W and cautiously increase to 90W as needed.

How to adopt electrosurgery techniques into practice

Industry-sponsored proctorship is not generally available to physicians using significant-risk 

medical devices “off-label.” NHLBI has begun investigation of a dedicated BASILICA 

electrosurgical guidewire (TELLTALE, Transmural Systems, Andover, MA). Until 

commercial availability of such devices, new users can adopt electrosurgical techniques 

into their practices by combining study of medical literature and live or online video 

demonstrations; observing expert operators; and bringing patients to care alongside expert 

operators. On-site proctorship and even video-proctorship86 are options, but proctors may 

require institutional indemnification against tort claims.

In our experience, transcaval TAVR is a good “entry-level” electrosurgical technique, 

followed by solo (single-leaflet) BASILICA. We recommend new users achieve proficiency 

in these techniques before tackling more complex ones such as multi-leaflet BASILICA and 

LAMPOON.

Conclusion

Transcatheter electrosurgery is a versatile tool that continues to inspire novel, innovative 

therapies for patients with complex anatomic challenges. Dedicated transcatheter 

electrosurgery devices will further simplify techniques and encourage routine adoption of 

these broadly applicable transcatheter electrosurgical procedures.
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Abbreviations

BASILICA Bioprosthetic or native Aortic Scallop Intentional Laceration to 

prevent Iatrogenic Coronary Artery obstruction

HCM Hypertrophic Cardiomyopathy

IDE Investigational Device Exemption

LAMPOON Intentional Laceration of the Anterior Mitral leaflet to Prevent left 

ventricular Outflow ObstructioN

LVOT Left ventricular outflow tract

SESAME Septal Scoring Along Midline Endocardium

AVR Transcatheter Aortic Valve Replacement

TMVR Transcatheter Mitral Valve Replacement
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Fig 1. 
Clinical applications of transcatheter electrosurgery.
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Fig 2. Monopolar electrosurgery circuit and radiofrequncy waveforms.
Monopolar electrosurgical circuits (A) consist of an active electrode(+) that receives current 

from an electrosurgery generator (red interrupted-arrow) and conducts through the body 

(black interrupted-arrow) to a dispersive electrode(blue patch), placed on the patient’s 

skin, and thereafter back to the generator (blue interrupted-arrow). (B) Continuous versus 
intermittent radiofrequency application (“duty-cycle”) creates different electrosurgical 

effects. Continuous (100% ‘on’) radiofrequency energy (top panel) vaporizes cells and cuts 

tissue at the point of maximum current density adjacent to the active electrode. In (“low 

duty cycle”) electrocautery(bottom panel), interrupted radiofrequency energy causes tissue 

heating, protein denaturation, and blood coagulation. Reprinted from Khan et al. JACC, 

20202.
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Fig 3. Guidewire modifications that enable transcatheter electrosurgery.
(A) The denuded back-end of a guidewire(yellow arrowhead) is clamped to an 

electrosurgery pencil(**) by hemostatic forceps(red*). (B) A ‘crossing-system’ for 

electrosurgical tissue traversal consists of an 0.014” guidewire inside a hubless-locking 

wire-converter, inside a 0.035” microcatheter. (C) Microcatheters increase current density 

at the guidewire tip increasing electrosurgical efficiency. Focal denudation and kinking the 

mid-shaft of the guidewire (D) create the “Flying V”. When placed at the target tissue, 

inner curvature denudation focuses charge and increases current density (E). Microcatheter 

insulation and dextrose infusion further enhance charge concentration. Reprinted from Khan 

et al. JACC, 20202.
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Fig 4. Clinical applications – Tissue Traversal.
In transcaval aortic access (A), the electrified guidewire is advanced through the walls of 

inferior vena cava and abdominal aorta where it is ensnared. Exchange for a stiff guidewire 

permits large bore access to the aorta in patients with unsuitable femoral arteries. The 

transcaval tract is closed with a nitinol vascular occluder. (B) Electrosurgical transseptal 

puncture using the dilator of a deflectable sheath for insulation. (C) A transcatheter superior 

cavopulmonary shunt was following electrosurgical traversal from superior vena cava to 

right pulmonary artery. RA=Right atrium; LA=Left atrium; SVC=Superior vena cava; 

RPA=Right pulmonary artery. Reprinted from Greenbaum et al. JACC, 20178.
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Fig 5. Clinical applications – Tissue laceration; Mitral leaflet modification.
The original, retrograde LAMPOON (A) crossed the base of the A2 mitral scallop across 

the aortic valve. Technical refinements include an antegrade approach (B) across the 

interventricular septum. One catheter is positioned on the atrial surface at the base (yellow 

arrow) of the A2 mitral leaflet (blue overlay) from where the guidewire is electrified towards 

a snare in the LVOT. Tip-to-base LAMPOON (C) lacerates the mitral leaflet (blue overlay) 

in reverse, without leaflet traversal, in patients with a suitable backstop such as a surgical 

prosthesis. The flying V (red-outline) is positioned on the tip and withdrawn until it meets 

a hard-stop. Rescue LAMPOON (D) similarly lacerates from tip backwards to slice long, 

overhanging leaflets causing dynamic LVOT obstruction after transcatheter mitral valve 

replacement. LAMPOON techniques uncover cells otherwise draped with anterior mitral 

valve leaflet tissue (E&F). (G) A pair of deflectable sheaths(red arrowheads) for ELASta-

Clip to liberate MitraClips from the anterior mitral leaflet to enable TMVR. (H) Positioning 

of sheaths(red arrowheads) anterior to the MitraClip(yellow arrowhead) allows TMVR to 

pin the posterior leaflet(white asterisk) harmlessly. Ao=Aorta; LA=Left atrium; LV=Left 

ventricle; LVOT=Left ventricular outflow tract.
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Fig 6. Clinical applications – Tissue laceration; BASILICA.
Tissue traversal at the base of the offending aortic leaflet (A1), followed by tissue laceration 

(A2) creates a midline slice in target aortic leaflet (A3). BASILICA enables leaflet splay 

following transcatheter heart valve implantation, preventing coronary artery obstruction 

(A4). In cases where both right and left coronary ostia are at risk (B) BASILICA can be 

performed on both leaflets in a ‘doppio’ procedure. In (C) brisk coronary flow remains 

following TAVR despite surgical valve leaflets being visible above left (black arrow) 

and right (white arrow) aortic sinuses. RCA=Right coronary artery; RCC=Right coronary 
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cusp; LCC=Left coronary cusp; LMS=Left main stem. Reprinted from Khan et al. JACC: 

Cardiovascular Interventions, 201863.
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Fig 7. Clinical applications – Myocardial slicing.
(A) In SESAME transcatheter septal myotomy, a guidewire traverses the interventricular 

septum, defining length and depth of subsequent myotomy. Once ensnared (B) the 

flying V (C, red overlay) is positioned on the left ventricular endocardium(broken 

blue-outline). Fluoroscopic (C) and intracardiac echocardiographic (D) appearance of 

catheters, one wholly within septal myocardium(yellow arrowhead), safely deep to right 

ventricular endocardium (green outline), positioned ready to cut muscle during guidewire 

electrification. SESAME creates space in the left ventricular outflow tract to enable TMVR 

(E&F). Ao=Aorta; IVS=Interventricular septum; LV=Left ventricle; RV=Right ventricle. 

Reprinted from Khan et al. Circulation: Cardiovascular Interventions, 202278.
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