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Abstract
The log response ratio, lnRR, is the most frequently used effect size statistic 
for meta- analysis in ecology. However, often missing standard deviations (SDs) 
prevent estimation of the sampling variance of lnRR. We propose new methods 
to deal with missing SDs via a weighted average coefficient of variation (CV) 
estimated from studies in the dataset that do report SDs. Across a suite of simulated 
conditions, we find that using the average CV to estimate sampling variances for all 
observations, regardless of missingness, performs with minimal bias. Surprisingly, 
even with missing SDs, this simple method outperforms the conventional approach 
(basing each effect size on its individual study- specific CV) with complete data. 
This is because the conventional method ultimately yields less precise estimates 
of the sampling variances than using the pooled CV from multiple studies. Our 
approach is broadly applicable and can be implemented in all meta- analyses of 
lnRR, regardless of ‘missingness’.
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INTRODUCTION

Meta- analyses are frequently used to quantitatively syn-
thesise the outcomes of ecological studies and explain 
inconsistencies among findings (Gurevitch et al., 2018). 
Meta- analyses often compare the means of two groups, 
and the most widely used effect sizes for this are the 
standardised mean difference, SMD (i.e. Cohen's d and 
Hedges' g), and the natural logarithm of the response ratio, 
lnRR (Hedges et al., 1999; Koricheva & Gurevitch, 2014; 
Nakagawa & Santos,  2012). Both the SMD and lnRR 
require the standard deviations (SDs) of the two groups 
to estimate the effect size's precision (i.e. sampling vari-
ance). However, many empirical papers do not report 
SDs or statistics from which SDs can be calculated (e.g. 
standard errors). A recent review found incomplete re-
porting of SDs is pervasive and threatens the validity of 
meta- analytic evidence. Of 505 ecological meta- analytic 
studies, nearly 70% of the datasets included studies with 
missing SDs (Kambach et al.,  2020). The same review 
also showed that many meta- analysts exclude studies 
with missing SDs, also known as a ‘complete- case’ anal-
ysis. Unfortunately, excluding studies with missing SDs 
reduces the overall sample size (i.e. number of included 
studies) and can bias results (Kambach et al., 2020).

An alternative to excluding studies with incomplete 
data is to impute missing SDs via multiple imputa-
tion (MI; Ellington et al.,  2015; Kambach et al.,  2020). 
As a tool to handle missing data, MI was introduced 
to ecologists more than a decade ago (Nakagawa & 
Freckleton, 2008). However, MI is not widely used in the 
context of meta- analysis likely for two major reasons. 
First, the implementation of MI is tedious because it in-
volves three steps: (1) creating m (e.g. m = 100) versions 
of the dataset, each containing its own set of imputed 
values for the missing SDs, (2) analysing each of these 
m datasets separately, and (3) aggregating the m param-
eter estimates (e.g. regression coefficients) via Rubin's 
rules (Rubin, 1987) (for details, see Nakagawa, 2015; van 
Buuren, 2018). The second reason MI is not widely used 
in meta- analysis is uncertainty around its implementa-
tion. For example, it is unclear if Rubin's rules are al-
ways appropriate for aggregating estimates of variance/
heterogeneity (e.g. τ2, I2 and R2) or information crite-
ria (e.g. AIC, BIC; cf. Nakagawa & Freckleton,  2011). 
Furthermore, MI cannot easily be implemented for mul-
tilevel (mixed- effects/hierarchical) meta- analyses, and 
those implementations that do exist are limited to rela-
tively simple models (van Buuren, 2018). For example, as 
far as we are aware, there is no off- the- shelf implementa-
tion of MI for the phylogenetic multilevel meta- analytic 
models that are recommended for multi- species meta- 
analyses— a near universal feature of ecological meta- 
analyses (Cinar et al., 2022).

Another alternative to excluding studies with miss-
ing SDs (i.e. complete- case analysis) is to perform an 

‘unweighted’ meta- analysis with lnRR (Koricheva & 
Gurevitch, 2014; O'Dea et al., 2021). This approach does 
not include the sampling variances of effect sizes and 
thus does not require SDs. However, unweighted anal-
yses are generally inferior to ‘weighted’ meta- analyses 
for two reasons (cf. Buck et al.,  2022). First, weighted 
meta- analyses appropriately give more weight to the 
more precisely estimated effect sizes in the dataset (e.g. 
those studies with larger sample sizes and hence smaller 
sampling variances). This weighting improves precision 
of model parameter estimates, and imparts resilience 
to publication bias (Gurevitch et al.,  2018; Hedges & 
Olkin, 1985), because smaller studies, which are down- 
weighted in a weighted analysis, tend to be most affected 
by this phenomenon. This is an important consideration 
since publication bias is a common problem in ecology 
(e.g. Yang et al., 2022). Second, a weighted meta- analytic 
model can also quantify heterogeneity (i.e. variation 
among effect sizes not due to sampling variance) while 
unweighted models cannot. Quantifying heterogene-
ity is essential because the overall mean effect size can 
only be appropriately interpreted in the context of the 
level of heterogeneity (Gurevitch et al., 2018; Hedges & 
Olkin, 1985; Nakagawa et al., 2017; Spake et al., 2022).

Here, we propose four new methods for handling 
studies with missing SDs when the lnRR is the ef-
fect size of choice (Kambach et al., 2020; Koricheva & 
Gurevitch,  2014; Nakagawa & Santos,  2012). We note 
here that our methods do not readily extend to the SMD 
because the point estimate of SMD is extremely sensitive 
to the SD, which adds complexity. However, our meth-
ods integrate with formal meta- analytic models, includ-
ing traditional random- effects models and the multilevel 
models that are often more appropriate in ecology (see 
Figure  1). We start with an adjusted sampling vari-
ance formula for lnRR developed by Doncaster and 
Spake  (2018), which we improve and extend to provide 
two methods for handling missing SDs: using this adjust-
ment only for effect sizes with missing SDs (the ‘missing- 
cases’ method) and using this adjustment for all effect 
sizes regardless of missingness (the ‘all- cases’ method). 
We then describe a third method that extends tradi-
tional weighted regression (the ‘multiplicative’ method). 
Finally, we combine the missing- cases and multiplicative 
methods, to give a ‘hybrid’ method. To compare the per-
formance of these four methods, we carried out a simu-
lation study including a standard meta- analytic model 
without missing SDs as a reference. Under a very broad 
range of simulated conditions, the all- cases method per-
forms best. Surprisingly, even with missing SDs, the all- 
cases method outperforms the reference method with 
complete data. Finally, we make recommendations for 
future meta- analyses. Importantly, we implement and 
illustrate these new methods via the widely used R pack-
age, metafor (Viechtbauer,  2010; all relevant data and 
code are available at a GitHub repository; see below).
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F I G U R E  1  Visual schematics of a hypothetical dataset with missing standard deviations (SDs) and five different approaches used in this 
study, including 3 new methods. The symbols: lnRR2 (Equation 4), lnRR3 (Equation 6), v (Equation 5), ṽ (Equation 7), and �ṽ (Equation 12). 
Note that, under some circumstances, we could replace Equations 4 and 6 with Equation 1 while Equation 7 can be replaced by Equation 15 
(see the text for more details).
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N EW STATISTICA L M ETHODS

More precise sampling variances: The missing- 
cases and all- cases methods

The effect size statistic, lnRR, was first proposed by 
Hedges et al. (1999) as follows:

where m1 and m2 are the means of groups 1 and 2, respec-
tively (e.g. experimental and control groups), v represents 
the sampling variance, sd and n are the corresponding SDs 
and sample sizes, respectively, and CV (sd/m) is the coeffi-
cient of variation.

However, when the sample size (n; i.e. number of rep-
licates) per effect size is small, the CVs in Equation 2 are 
often imprecise. This is because the CV is based on sd 
and m, which are themselves estimates that become less 
precise with small sample sizes. If we assume the CV 
values for group 1 and group 2 are reasonably homoge-
neous across effect sizes (studies), we can obtain a sin-
gle more precise estimate of CV2 by averaging across all 
values in the dataset (Doncaster & Spake, 2018; see also 
Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Berkey 
et al., 1995):

where CV2

1i
 and CV2

2i
 are the CVs from the ith study 

(study; i  =  1, 2, …, K; we assume the number of effect 
sizes = the number of studies = K). Indeed, Doncaster and 
Spake (2018) have demonstrated that the use of Equation 3 
over Equation 2 improves the accuracy and precision of 
the overall (meta- analytic) mean estimate, especially when 
n is small (e.g. n = 3– 10 observations, with n1 + n2 = 6– 20). 
Notably, they also suggested this formula could be used 
when SDs are missing from some studies, although this ap-
plication was not investigated by simulation.

Here, we propose two improvements to Equation  3. 
Using simulations, Lajeunesse  (2015) showed that 
Equations 1 and 2 are biased when sample sizes are small 
to moderate, and that the following estimators— based 
on the second- order Taylor expansion— can reduce these 
biases (see also Senior et al., 2020):

Therefore, unifying Equations 3 and 5, and using the 
square of the weighted average CV (rather than average of 
CV2, which is more sensitive to the assumption of normal-
ity; see Section “The accuracy and limitation of lnRR”) 
gives the following new estimators for the effect size and 
sampling variance:

We can use Equations 6 and 7 to calculate effect sizes 
and sampling variances when SDs are missing by simply 
imputing the pooled CV from the subset of studies that 
do report SDs. We call this approach as the ‘missing- 
cases’ method because we only apply Equations  6 and 
7 to studies with missing SDs, while the standard ap-
proach of Equations 4 and 5 are applied to studies that 
report SDs (see Figure 1 and Table 1 where we have con-
solidated information about the different methods and 
their assumptions).

Alternatively, one may use Equation  7 for all effect 
sizes/studies regardless of the missingness of SDs; we call 
this approach the ‘all- cases’ method (Table 1). The key 
difference between the missing-  and all- cases methods 
is that the former assumes that Equation 5 (which bases 
sampling variances on the study- specific CVs) provides 
the best estimate of a given effect size's sampling vari-
ance, reverting to Equation  7 in cases where SDs are 
not available. In contrast, the all- cases method assumes 
that Equation 7 always gives more precise estimates of 
the sampling variance. Two issues to note are: (1) it is 
important to use the square of the weighted average CV 
(Equations 6 & 7) rather than a weighted average of CV2; 
CV2 is very sensitive to non- normally distributed effect 
sizes (with large outlying CVs) which might be generated 
from count data (see Section “The accuracy and lim-
itation of lnRR” below), and (2) when we have multiple 
effect sizes per study (most meta- analytic datasets in 
ecology; Nakagawa & Santos, 2012), we need to first cal-
culate a weighted average of CVs within studies before 
taking the weighted average of these cross- study CVs. 
Alternatively, we could estimate the weighted average 
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using a multilevel meta- analysis of lnCV (Nakagawa 
et al., 2015; cf. Vachon et al., 2019).

A weighted- regression- like approach: The 
multiplicative method

In the absence of SDs, it has been suggested that in-
formation on sample sizes, which are more commonly 
available, can be used to approximate the sampling vari-
ances for lnRR (or SMD), using the inverse of the fol-
lowing (e.g. Gurevitch & Hedges, 2001; Lajeunesse, 2013; 
Rosenberg et al., 1997):

However, treating Equation  8 (originally proposed in 
Hedges & Olkin, 1985) as an estimate of the ‘exact’ sam-
pling variance is erroneous because it ignores the other 
terms in Equations 2 & 5 (i.e. mean and SD) (see the review 
by Kambach et al., 2020). A more realistic assumption is 
to treat 1/ñ as proportional to the sampling variance; in-
deed, Equation  2 reduces to the inverse of Equation  8 
(i.e. 1/ñ) when we set both CVs to 1. Weighted regression 
models, commonly used to correct for heteroscedasticity, 
make this assumption of proportionality. Note that this 
differs from the classical random- effects meta- analytical 
model, which assumes that the exact sampling variances 
are known (and not just up to a proportionality constant). 
Many ecologists are likely to be familiar with weighted 
regression models that specify sample sizes as weights 
(Fletcher & Dixon, 2012).

The simplest random- effects meta- analytic model 
using lnRR can be written as follows:

where �0 is the overall/average effect (or meta- analytic 
mean); si is the between- study effect for the ith effect size, 
sampled from a normal distribution with a mean of zero 
and variance �2

s
 (sometimes referred to as �2), mi is the sam-

pling error for the ith effect size, which is also normally dis-
tributed with variance equal to the ith sampling variance 
(note that i = 1, 2, …, K, the number of effect sizes = the 
number of studies). As mentioned earlier, this model as-
sumes that the sampling variance of lnRR is known (i.e. 
either Equation 2 or 5 = vi in Equation 9). The ratio be-
tween �2

s
 and the total variance is often used to quantify 

heterogeneity (I2):

where v is known as the ‘typical’ (or ‘average’) sampling 
variance (originally referred to as ‘typical within- study 
variance’; sensu Higgins & Thompson, 2002), which can 
be estimated in several ways (Xiong et al., 2010).

Unlike the meta- analytic model above, in a weighted 
regression, the following is assumed: 
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TA B L E  1  Equations and assumptions for different methods, including the case with no missing data (see also Figure 1)

Method Point estimatea
Sampling variance 
(SD not missing)

Sampling variance 
(SD missing)

Assumptions in relation to sampling 
variance

Reference (No missing data) Equation 4 Equation 5 Not applicable Equation 5 estimates sampling 
variance well (observed mean 
and SD values are reasonable 
estimates of true values)

Missing cases Equations 4 and 6 Equation 5 Equation 7 When SD values are missing, 
Equation 7 can estimate 
sampling variance for these 
missing cases well

All cases Equations 4 and 6 Equation 7 Equation 7 Equation 7 estimates sampling 
variance better than Equation 5 
regardless of missing SD

Multiplicative Equations 4 and 6 Equation 12 Equation 12 Equation 12 estimates sampling 
variance better than Equation 5 
or 7 regardless of missing SD

Hybrid Equations 4 and 6 Equation 5 Equation 12 When SD is missing, Equation 12 
can estimate sampling variance 
for these missing cases well 
(better than Equation 7)

aApplying both Equations 4 & 6 (the latter for observations/rows with missing SD) or applying only Equation 6 (even for all studies where SDs are not missing) 
would make little difference for (effect size) point estimates, unless effect sizes fulfil Equation 14.
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where � , which is estimated by the model, functions as 
a ‘multiplicative’ parameter fulfilling the assumption 
of proportionality (i.e. 1∕ ñi ∝ vi ). The key point here is 
that the missing-  and all- cases methods both assume that 
Equations 5 and/or 7 provide an accurate estimate of a 
study's sampling variance (Table 1). However, Doncaster 
and Spake's simulation suggests that the sampling vari-
ance (using Equation  3) is likely to be imprecise when 
sample sizes are small (e.g. n1 + n2 = 6– 20). Therefore, it 
may instead be advisable to assume that v∗

i
 (Equation 3) 

is proportional to the true sampling variance. In the case 
that we have missing data, we can extend the assumption 
of proportionality to Equation  7 to estimate the sam-
pling variance as: 

Practically, this can be implemented as a version of a 
weighted- regression model that estimates � and assumes 
proportionality for the sampling variance as in Equation 
12 (Figure 1). We refer to this as the ‘multiplicative’ method. 
This method also assumes that Equation 12 provides the 
best estimate of sampling variance for all studies/effect 
sizes regardless of SD missingness (Table 1).

Combining missing- cases and the multiplicative 
method: The hybrid method

In the multiplicative method, Equation 12 is used regard-
less of whether SDs are missing or not. We can, however, 
combine the missing- cases and multiplicative methods 
together into a ‘hybrid’ method (Figure 1). In this case, 
when SDs are available, we can use Equation 5 to obtain 
the sampling variance of lnRR (along with Equation 4 
for the point estimate). When SDs are missing, we can 
use the multiplicative method (Equation 12, for the sam-
pling variance and Equation  6 for the point estimate). 
The hybrid method assumes that Equation  5 gives the 
best estimate of the sampling variances like the missing- 
case method, but that Equation 12 is an acceptable sub-
stitute when SDs are missing. We can write the hybrid 
method, using a multilevel meta- analysis (including 
modelling multiple effect sizes per study) as follows:

where si is the between- study effect for the ith study (i = 1, 
2, …, K), normally distributed with a mean of 0 and vari-
ance �2

s
 (often referred to as τ2), uij is the between- effect- size 

effect (or within- study effect) for the jth effect size in the ith 
study, distributed with a mean of zero and variance �2

u
 ( j = 1, 

2, …, Li, where Li denotes the number of effect sizes within 
the ith study), V is a diagonal matrix with vij (Equation 5) 
when no SDs are missing and �ṽij (Equation 12) for cases 

of missing SD. For example, when we have five effect sizes 
in three studies, V would be:

where 1st, 2nd and 5th effect sizes have SDs while the 3rd 
and 4th are without SDs, and as above, � is estimated 
in the model. Because this model can account for non- 
independence, it is appropriate in ecological meta- analyses 
that include correlations among- effect sizes such as when 
there is more than one effect size per study or species 
(Nakagawa & Santos, 2012; Noble et al., 2017; Nakagawa 
et al., 2022; but for a more complex model with V including 
covariances, or sampling variances with dependencies, see 
Appendix  S1; https://alist airmc nairs enior.github.io/Miss_
SD_Sim/). Importantly, all methods described in Table 1 
can be used with multilevel meta- analysis making this ap-
proach comparable with others.

SIM U LATION

Simulation overview

We conducted a simulation study to compare the per-
formance of the missing- cases, all- cases, multiplicative 
and hybrid methods on meta- analytic datasets with 
varying proportions of missing SDs. A full descrip-
tion of the simulation is given in Appendix S2 (also see 
Table S1 for a summary of key parameters and their val-
ues). Briefly, meta- analytic datasets were simulated with 
characteristics that are often seen in ecological studies. 
These characteristics included both high and low levels 
of among- study heterogeneity in the overall mean, SD 
and sample size. We simulated datasets where the under-
lying studies typically had small (mean n = 5), and larger 
(mean n = 30) sample sizes. We implemented a version of 
the simulation where there were multiple effect sizes per 
study (i.e. non- independence), which we refer to as Set I, 
and a version were there was just one effect size per study 
(i.e. complete independence), which we refer to as Set II.

For each simulated dataset, we analysed the full data-
set using the conventional approach, before deleting SDs 
for 5%, 15%, 25% 35%, 45% or 55% of the studies. We 
treated 55% as the upper limit of missingness after con-
sulting earlier surveys (e.g. Senior et al., 2016; Kambach 
et al.,  2020; the latter found ecological meta- analyses 
had missing SDs for up to 30% of cases). We then anal-
ysed each dataset using the ‘rma.mv’ function in metafor 
(Viechtbauer, 2010) with the four proposed methods for 
handling missing SDs. To evaluate performance, for each 
model, we calculated: (i) bias (as the difference between 

(12)vi = �ṽi .

(13)lnRRij = �0 + si + uij +mij,

si ∼
(
0, �2

s

)
, uij ∼

(
0, �2

u

)
,mij ∼ (0,V)

V=

⎡
⎢⎢⎢⎢⎢⎣

v11 0 0 0 0

0 v12 0 0 0

0 0 �ṽ21 0 0

0 0 0 �ṽ22 0

0 0 0 0 v31
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https://alistairmcnairsenior.github.io/Miss_SD_Sim/
https://alistairmcnairsenior.github.io/Miss_SD_Sim/
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the estimated and the true, parametrised value) for the 
meta- estimate of the overall mean effect size, (ii) bias for 
the (log) total amount of heterogeneity (τ2 = �2

s
 + �2

u
 in 

Equation  13) and the estimated intra- class correlation 
for study (ICCs), and (iii) coverage of 95% confidence in-
tervals (CIs) for the overall mean.

Simulation results

Figure  2a shows the distribution of median bias in 
estimated overall effects under each simulated condi-
tion with complete data and using the four different 

methods for missing SDs. Even with full data, upward 
and downward biases were possible for the estimated 
effect size, and this was also observed in the analyses 
using the missing- cases and hybrid methods to handle 
missing SDs. Notably, even at its most extreme, this 
bias only amounted to a little over 2% of the true effect 
size and was usually ~0.5%, meaning all the proposed 
methods performed well (all methods had a median 
bias across conditions <0.0001). Nonetheless, the all- 
cases and multiplicative methods, both of which use the 
weighted average CV to estimate the sampling variance 
for all effect sizes regardless of missingness, yielded 
the lowest bias on average and were less variable than 

F I G U R E  2  Results on overall meta- analytic mean from multi- level meta- analytic models: (a) violin plot showing the distribution of median 
bias in the estimated effect under each simulated condition as a function of the method used to handle missing data (distribution assuming full 
data shown for reference). (b) Pairwise correlations between the degree of bias under each simulated condition for each method. (c) Distribution 
of the difference between the missing- cases and all- cases methods in the absolute degree of bias under each condition (positive values indicate 
greater median bias under the missing- cases method). (d) Violin plot showing the distribution of range bias (log10 transformed) in the estimated 
effect under each simulated condition as a function of the method used to handle missing data. (e) Violin plot showing the distribution of 
range bias (log10 transformed) in the estimated effect using the all- cases method under each simulated condition as a function of the degree 
of heterogeneity in SDs among studies under two different (within- )study sample size conditions. Our plots were drawn using the R package 
ggplot2 (Wickham, 2009).
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other methods (Figure 2a). The all- cases and multipli-
cative methods were consistently less biased than the 
other approaches, regardless of the degree of missing-
ness (Figure S4a). The degree of bias across conditions 
in the full data analysis correlated strongly with that 
of bias from the missing- cases and hybrid methods, 
while bias in the all- cases and mulitplicative methods 
correlated strongly with each other (Figure  2b). This 
observation suggests that the methods fall into two 
classes that perform similarly across situations: the 
all- cases and multiplicative methods and the missing- 
cases and hybrid methods. Contrasting the missing- 
cases and all- cases methods, the absolute level of bias 
in the missing- cases method was almost always higher 
than that for the all- cases method (Figure 2c). Further, 
where the all- cases method had a higher bias than 
the missing- cases method, this difference was small 
(Figure 2c). Although the all- cases and multiplicative 
methods outperformed the other approaches on aver-
age, they yielded extremely biased estimates on rare 
occasions; Figure 2d shows the range in bias among the 
individual replicates under each simulated condition 
as a function of the different methods. With the all- 
cases method, large ranges in bias only occurred when 
the SDs among studies were highly heterogeneous, and 
within- study sample sizes were low (Figure 2e).

All methods for handling missing data, and the full 
data analyses, could produce 95% CIs that were too nar-
row, or wide under different scenarios (Figure 3a). The 
full data, and the missing- cases and hybrid methods 
tended to produce CIs that were too narrow, whereas 
the all- cases and multiplicative methods were prone to 
producing wider CIs (Figure 3a and Figure S4b). Again, 

contrasting the missing- cases and all- cases method, 
the all- cases method tended to produce CIs that were 
too wide when the heterogeneity among studies is low 
(Figure 3b,c). However, where total heterogeneity is high, 
the all- cases method performs as well as the missing- 
cases method (Figure 3b,c).

Figure 4a shows the median bias in the estimated 
heterogeneity under each condition and method. 
Under most conditions, the missing- cases, all- cases 
and hybrid methods estimated heterogeneities with 
little bias, but could also overestimate the total het-
erogeneity, although to a similar degree to the full 
data analysis (Figure 4a). The multiplicative method 
tended to underestimate heterogeneity (Figure  4a). 
Any bias in the estimation of heterogeneity was inde-
pendent of the actual level of missingness (Figure S4c). 
Overestimation of heterogeneity occurred where the 
actual level of heterogeneity was low (Figure 4b). On 
average, most methods did a good job of partitioning 
heterogeneity between the within-  and among- study 
levels, although the multiplicative method displayed 
a slight bias (Figure 4c). Under some circumstances, 
all methods could be biased in partitioning heteroge-
neity (Figure  4c). As an example, the missing- cases 
and all- cases methods were prone to biased parti-
tioning when the total heterogeneity was low; over-
estimating the ICC when the simulated study effect 
was absent and underestimating when it was present 
(Figure 4d,e).

In summary, although the all- cases method performed 
with the least bias under the broad range of simulated 
conditions tested, all the methods fared surprisingly well, 
compared with the full data analysis (see Discussion for 

F I G U R E  3  Results on coverage from multi- level meta- analytic models: (a) Violin plot showing the distribution of coverage of 95% CIs 
under each simulated condition as a function of the method used to handle missing data (distribution assuming full data shown for reference). 
(b) Violin plot showing the distribution of coverage under each simulated condition as a function of the simulated level of total heterogeneity 
and the ICC for study using the missing- cases method to handle missing SDs. (c) Violin plot showing the distribution of coverage under each 
simulated condition as a function of the simulated level of total heterogeneity and the ICC for study using the all- cases method to handle 
missing SDs. In (b) and (c), low heterogeneity is τ2 = 9 × 10−6 (or τ / θ = 0.01), and high heterogeneity is τ2 = 0.09 (or τ/θ = 1).
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F I G U R E  4  Results on heterogeneity from multi- level meta- analytic models: (a) violin plot showing the distribution of median bias in the 
estimated heterogeneity under each simulated condition as a function of the method used to handle missing data (distribution assuming full 
data shown for reference). Bias in heterogeneity is calculated as the log ratio of the estimated and parametrised value. (b) Box plot showing 
the median bias in estimated heterogeneity under each simulated condition as a function of the method used to handle missing data (colours 
as in panel a), and the simulated level of heterogeneity. (c) Violin plot showing the distribution of the median bias in the estimated ICC for 
study under each simulated condition as a function of the method used to handle missing data. Bias in the ICC was calculated as the difference 
between the estimated and parameterised value. (d) Violin plot showing the distribution of the median bias in the estimated ICC for study under 
each simulated condition as a function of the simulated level of total heterogeneity and the ICC for study using the missing- cases method to 
handle missing SDs. (e) Violin plot showing the distribution of the median bias in the estimated ICC for study under each simulated condition 
as a function of the simulated level of total heterogeneity and the ICC for study using the all- cases method to handle missing SDs. In (d) and (e), 
low heterogeneity is τ2 = 9 × 10−6 (or τ / θ = 0.01), and high heterogeneity is τ2 = 0.09 (or τ/θ = 1).
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more). The results presented here pertain to the per-
formance of these methods in the context of multilevel 
meta- analytic models (Equation  13, which models non- 
independence). However, these conclusions are mirrored 
for traditional random- effects models (i.e. analyses with-
out non- independence; Figures 2– 4 vs Figures S1– S3).

IM PLEM ENTATION

The accuracy and limitation of lnRR

The accuracy of the sampling variance for lnRR de-
pends on whether lnRR is normally distributed. Hedges 
et al. (1999) suggested a simple test to check the assump-
tion of normality based on Geary (1930), who originally 
advocated screening for effect sizes with 

√
n∕CV ≥ 3 . 

This test was improved by Lajeunesse (2015) as: 

 If many effect sizes fail to fulfil this relationship, 
then, meta- analytic results are unlikely to be robust. 
Lajeunesse  (2015) suggests a sensitivity analysis, which 
excludes effect sizes that fail Equation 14. However, such 
tests are rarely used. Count data and related types (e.g. 
counts per a given time and space), which are extremely 
common in ecology (Spake et al.,  2021), may often fail 
Equation 14. This is because such data is usually over- 
dispersed, meaning CV >1. For example, it is not un-
common for count data to have CV = 5, especially when 
the mean is close to zero (cf. Lajeunesse,  2015). When 
CV = 5, the sample sizes need to be >226 for each group 
to pass Equation 14, which would be difficult for most 
ecological studies to attain.

All meta- analyses of lnRR are sensitive to the as-
sumption of normality to some degree, but our pro-
posed formulations may be more sensitive because 
the Taylor expansion used in Equations 4– 7 assumes 
normality. Therefore, it may be advisable to use 
Equation  1 for the point estimate and the follow-
ing estimator of the sampling variance (rather than 
Equation 7) when many effect sizes fail Geary's test 
(see also Table S2):

This formula still relies on the first- order Taylor 
expansion, but not the second- order, and is therefore 
less sensitive than Equation 7 to violations of Geary's 
test. Other limitations (and advantages) of lnRR are 
discussed elsewhere (e.g. Spake et al.,  2021; Yang  
et al., 2022).

Worked examples

Bird et al.  (2019) conducted a meta- analysis exploring 
the impacts of competition on herbivorous insect fit-
ness when occupying a host plant with another species 
or in isolation. In brief, they collected data on a series of 
fitness measurements (e.g. abundance, body size, devel-
opment time, fecundity; see Table 2 in Bird et al., 2019) 
and quantified the impact of competition on those meas-
ures using phylogenetic multilevel meta- analyses (Cinar 
et al., 2022; Appendix S1).

For demonstration purposes, we focused on the 
largest dataset that used measures of abundance (pop-
ulation size). We restricted our analysis to data on the 
ratio scale (i.e. having true zero, which is a condition 
required for lnRR) and those effect sizes that passed 
the ‘improved’ Geary's test (Equation  14 above), giv-
ing a total of 173 effect sizes from 62 studies. We use a 
multilevel meta- analytic model (Equation  13) to esti-
mate the overall impact of competition on focal insect 
fitness (i.e. intercept or overall meta- analytic mean) 
while controlling for phylogeny, research group and 
research year (as per the analysis by Bird et al., 2019). 
We then introduced missing data at the study (article) 
level, so that a randomly selected ~20% of articles had 
effect sizes with missing SD in the control and experi-
mental groups; a scenario that is typical of many meta- 
analyses (cf. Kambach et al., 2020).

An analysis of these data applying the different meth-
ods compared to the full data is provided in Table 2. We 
can see that the complete- case analysis (excluding all 
data with missing SDs) gives slightly larger confidence 
intervals that cross zero, and a reduction in the meta- 
analytic mean effect size, relative to most of the other 
methods. The missing- cases, multiplicative and hybrid 
methods all suggest the overall meta- analytic is slightly 
larger and result in greater precision around this esti-
mated effect size than the complete- case analysis. The 
all- cases method had the smallest overall effect size 
magnitude, which was not significantly different from 
zero, while the other three methods yielded mean esti-
mates that were significant (see Discussion). Using this 

(14)1

CV

(
4n
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)
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TA B L E  2  Results from the re- analyses of a subset of data from 
Bird et al. (2019) using the methods we propose to deal with missing 
SD data estimating the overall effects of competition on focal insect 
abundance (LCI = lower, or 2.5%, confidence limit; UCI = upper, or 
97.5%, confidence limit)

Method Est. SE 95% LCI
95% 
UCI

Full data 0.202 0.085 0.036 0.369

Complete case 0.176 0.102 −0.024 0.377

Missing cases 0.186 0.091 0.008 0.364

All- cases 0.146 0.096 −0.043 0.334

Multiplicative 0.192 0.083 0.03 0.354

Hybrid 0.185 0.086 0.017 0.353
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example, we show how each approach is implemented in 
the supplement (Appendix S3) along with an additional 
example (McDonald et al., 2019; Appendix S4).

DISCUSSION

In this study, we developed new methodological proce-
dures to handle missing SDs in meta- analyses of lnRR. 
Our methods will enable researchers, including ecologists 
and evolutionary biologists alike, to incorporate studies  
with missing SDs in their meta- analyses, while also 
using appropriately weighted formal meta- analyses 
rather than unweighted counterparts. Our simula-
tion suggested that the least biased estimates were 
obtained by the ‘all- cases’ method. This method uses 
the weighted average CV (estimated from those stud-
ies with SDs) to calculate point estimates and sampling 
variances for all effect sizes, regardless of missingness 
in SD (Table  1). In terms of implementation, this is 
also the easiest method of those that we describe (see 
Appendixes S3– S4).

The all- cases method effectively uses ‘single impu-
tation’ (rather than ‘multiple imputation’), and single 
imputations are generally believed to fare worse than 
meta- analysis with full data (using Equations 4 & 6, see 
Table 1; Nakagawa & Freckleton, 2008; Nakagawa, 2015; 
van Buuren, 2018; Kambach et al., 2020; see also Fletcher 
& Dixon, 2012). Yet, this is not what we found. In their 
previous simulation, Doncaster and Spake (2018) found 
that Equation 3, which uses the average CV for all effect 
sizes, performed better than analysis with Equation  2, 
which uses study- specific CVs. Thus, on reflection, we 
might have expected the all- cases method to do well (see 
also Lin & Aloe, 2021).

The all- cases method and Doncaster and Spake's pro-
cedure (i.e. using Equation  3 rather than Equation  2) 
perform well because, even where they are reported, 
the CV values from individual studies are often impre-
cise due to the small within- study sample size. This, in 
turn, results in imprecise estimates of the sampling vari-
ance. However, using a pooled CV improves estimates 
of the sampling variance, with benefits to the down-
stream analyses. Of relevance, another simulation study 
by Bakbergenuly et al.  (2020) suggests that sample size 
(more precisely, ñ as in Equation 8) is the most import-
ant component of weighting in the analysis of lnRR. 
This insight explains why the all- cases and multiplica-
tive methods do well even in simulations that violate the 
assumption that CV is homogenous across studies, espe-
cially when the number of effect (K) is large (see more for 
this point below).

It is important to note that our simulation built on 
those in Doncaster and Spake (2018) in at least three re-
spects. First, Doncaster and Spake  (2018) never tested 
how their method fared with missing data. Second, our 
simulation uses multilevel models that are now being 

applied to many ecological datasets. Third, our simula-
tion has shown that, as well as reducing bias in overall 
estimates, using a pooled CV does not compromise the 
accuracy of heterogeneity estimates (i.e. variance com-
ponents). Between our work and the previous publica-
tion by Doncaster and Spake (2018), we have established 
that using a cross- study averaged CV in the estimation 
of effect sizes can improve ecological meta- analyses in a 
range of realistic scenarios.

Incidentally, Doncaster and Spake (2018) are not the 
first to use the ‘averaging’ method. For example, Hedges 
and Olkin (1985) also proposed to use the average of the 
observed standardised mean differences in the computa-
tion of their sampling variances when meta- analysing a 
large number of small studies. Also, Hunter and Schmidt 
(1990) proposed to use the weighted average of correla-
tions in the sampling variance for the correlation coef-
ficient. Similarly, Berkey et al. (1995) showed that using 
averages of counts or proportions in the Equations for 
computing the sampling variances of log relative risks 
and odds ratios led to less biased estimates.

There were two conditions where the all- cases 
method could result in biased estimates. The first sce-
nario is when CVs are very different between studies, 
and within- study sample size is relatively small. As 
discussed below, parallel analysis with the missing- 
cases method (or alternatively the hybrid method, al-
though the latter is more difficult to implement) could 
help establish the stability of meta- analytic results. In 
addition, a meta- analysis of lnCVR (log CV ratio) or 
lnCV (log CV) could help to evaluate how large the 
between- study variance in CV is (Nakagawa et al., 2015; 
Senior et al.,  2020). Large variation in between- study 
CVs would violate our assumption that the CV is rel-
atively constant (cf. Nakagawa et al., 2015). Note, how-
ever, that our simulation shows this assumption is less 
important when studies have larger sample sizes. The 
second scenario is when there is very low total hetero-
geneity (τ2 = �2

s
 + �2

u
, which usually translates to low I2; 

see Higgins et al., 2003; Nakagawa & Santos, 2012; also 
see Borenstein et al.,  2017). As mentioned earlier, het-
erogeneity is typically high in meta- analyses in ecology 
(and evolutionary biology). Indeed, Senior et al. (2016) 
showed that on average, ecological and evolutionary 
meta- analyses have high heterogeneity with I2 of around 
90%. Therefore, the second scenario may not be of con-
cern to most ecologists.

Based on the simulation results alone it would be 
natural to recommend the use of the all- cases method 
as the default. While we believe the all- cases method 
is generally the most robust, we advocate that analysts 
take caution and adopt the following procedure: One 
should conduct a meta- analysis using both the missing- 
cases and all- cases methods in tandem, which is very 
straightforward (see Supplementary Information). If 
the results of the two methods are qualitatively the 
same (e.g. both statistically significant, with similar 
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effect size magnitudes), one can present the all- cases 
method in confidence. If, however, the results are qual-
itatively different, both results should be presented 
(e.g. our worked example: see Table 2). In such a case, 
one should conclude carefully and emphasise uncer-
tainty about their results. An analysis of the hetero-
geneity among CVs may help guide the user to decide 
which results to favour; if the CVs are quite different 
across studies, results from the missing- cases method 
may be more reliable (see above).

Notably, our simulation assumes that SDs are missing 
completely at random. Therefore, when cases with miss-
ing SDs are non- random and have consistently higher or 
lower CVs than cases with SDs, one could use the hybrid 
method. The hybrid method was shown to work as well 
as the all- cases method, but this method also can adjust 
for higher or lower CVs via the multiplicative term � (see 
Equations 12). A complication here is that one is unlikely 
to ever know what the CVs of missing cases are, and 
therefore may have to just try the hybrid method to find 
out (i.e.,� being more or less than 1). We do however re- 
emphasise that all the methods we proposed work well 
under many conditions (i.e., were not more/less biased 
than an analysis of the full data). Regardless, it is import-
ant to report the % of missing SDs, and which methods 
have been used to handle missing data, in accordance 
with the PRISMA- EcoEvo (Preferred Reporting Items 
for Systematic reviews and Meta- Analyses in Ecology 
and Evolutionary biology) reporting guidelines (O'Dea 
et al., 2021).

Finally, our proposed methods are easy to imple-
ment and readily extend to a host of complex models. 
We hope that meta- analysts in ecology and evolution will 
adopt these two new approaches to improve their meta- 
analytic estimation, especially the all- cases approach 
which performs well even in the absence of missing data. 
Importantly, we should also all be aware of the limita-
tions of the lnRR for meta- analyses, for example, by 
more routinely evaluating the underlying assumptions 
using the improved Geary's test.
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