Table 4.
Reference | Classes used from TrashNet | Architecture | Accuracy reported (%) |
---|---|---|---|
Hulyalkar et al. (2018) | Metal, glass, paper, plastic | 3 convolutional layers with max-pooling, 2 fully connected layers | 84 |
Bircanoğlu et al. (2018) | All classes | RecycleNet | 81 |
Shi et al. (2021) | All classes | MLH-CNN | 92.6 |
Aral et al. (2018) | All classes | MobileNet | 84 |
Xception | 82 | ||
Inceptionv4 | 94 | ||
DenseNet | 95 | ||
Adedeji and Wang (2019) | Metal, glass, paper, plastic | ResNet50 + SVM | 87 |
Ruiz et al. (2019) | All classes | VGG-19 | 79.3 |
Inception | 87.71 | ||
ResNet | 88.66 | ||
Vo et al. (2019) | All classes | Densenet121_Aral | 91 |
ResNext-10 | 90 | ||
RecycleNet | 68 | ||
ResNet_Ruiz | 72 | ||
DNN-TC | 94 |
CNN: convolutional neural network; MLH-CNN: multilayer hybrid convolution neural network; SVM: support vector machine.