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Abstract
This paper develops a novel procedure for proxying economic activity with daytime satellite imagery across time periods and spatial 
units, for which reliable data on economic activity are otherwise not available. In developing this unique proxy, we apply machine- 
learning techniques to a historical time series of daytime satellite imagery dating back to 1984. Compared to satellite data on night 
light intensity, another common economic proxy, our proxy more precisely predicts economic activity at smaller regional levels and 
over longer time horizons. We demonstrate our measure’s usefulness for the example of Germany, where East German data on 
economic activity are unavailable for detailed regional levels and historical time series. Our procedure is generalizable to any region 
in the world, and it has great potential for analyzing historical economic developments, evaluating local policy reforms, and 
controlling for economic activity at highly disaggregated regional levels in econometric applications.
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Significance

Reliably measuring regional economic activity poses a key challenge for social scientists as administrative statistics often have insuf
ficient regional detail, limited time series, or politically motivated biases (e.g. in autocratic regimes). While the use of proxy variables 
(e.g. night light intensity from satellite data) has resolved some of these issues, these proxies are still insufficient for some settings (e.g. 
break-off regions from the former Soviet Union bloc states). This paper develops a novel proxy from daytime satellite imagery to 
measure economic activity in longer time series and much smaller regional units (anywhere in the world) than any previous satellite 
data.
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Introduction
The lack of credible data hampers our understanding of regional 
economic development, especially in historical contexts. Most 

countries lack data at the regional or even municipal levels, and 

the extant data either focus only on recent years or lack consist

ency across regions and/or time. To fill these data gaps across 

time and space, researchers have increasingly used satellite 

data on night light intensity as a proxy for economic activity 

[e.g. (1–4)].
However, night light intensity data have significant weak

nesses. They are available only for a limited time series (from 

1992) and, due to their spatial resolution (one kilometer at the 

equator), they are not reliable for disaggregated regional units 

such as municipalities or suburbs (5–7). Administrative or survey 

data on economic activity encounter similar problems. They are 

typically not available for longer historical time series, not 

regionally disaggregated, or otherwise unreliable or unavailable 
to the research community. In a recent literature review, the 
lack of long time series and regional scalability have been identi
fied as key weaknesses of former satellite-based metrics (8).

This paper solves these key weaknesses by offering an econom
ic proxy from daytime satellite imagery with worldwide applic
ability based on a procedure that we developed in 2020 and that 
applies machine-learning techniques to Landsat imagery (9). We 
show how this proxy enables economic analyses across time peri
ods and for highly disaggregated spatial units in an example that 
identifies the innovation effect of higher education institutions in 
East and West German regions—an analysis that would otherwise 
be impossible due to unavailable and unreliable data (as in former 
communist or developing countries). The proxy presents valuable 
information on economic activity over a uniquely long time series 
(from 1984) at a level of regional disaggregation that is smaller 
(30-m resolution) than any alternative.
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Daytime satellite imagery from the Landsat program has so far 
received almost no attention in economics applications. The few 
existing applications rely on visual interpretation for identifying, 
for example, agricultural land use, (de)forestation, or urbaniza
tion [e.g. (10, 11)]. Developing new and more accurate proxies 
with Landsat data requires novel machine-learning techniques 
to adapt these data to economic settings. Tools such as the 
Google Earth Engine facilitate the processing and analysis of 
Landsat’s large geographic datasets (12).

Landsat daytime satellite data have three advantages over oth
er data sources. First, Landsat data have substantially higher dis
aggregation (30-m resolution) than regional administrative or 
other satellite data such as night light intensity (1-km resolution) 
(13). This higher resolution entails more precise information at a 
much more disaggregated regional level. Our economic proxy 
can characterize economic development at regional levels and 
even in much smaller localities such as municipalities or urban 
districts.

Second, NASA launched the first satellite of the Landsat pro
gram (Landsat-1) in 1972, making Landsat the earliest existing 
source of regionally highly disaggregated satellite data (14, 15). 
While Landsat did not reach its full potential until 1984, the 
long time horizon of the data allows researchers to construct lon
ger historical data than other regional economic administrative 
data or other proxies based on satellite data such as night light in
tensity (which is available from 1992). In comparison to regional 
economic data, which might be available for some administrative 
locations, Landsat daytime data pre-date the break-up of the for
mer Soviet Union, German Reunification, and other significant 
changes in regional or even local economic development.

Third, Landsat satellites collect multispectral imagery of the 
earth, that is, they observe the energy that the earth reflects in dif
ferent spectral bands (e.g. infrared). The geographic remote- 
sensing literature has been using algorithmic techniques for 
detecting land cover in Landsat scenes for half a century [e.g. 
(16–20)]. It provides successful applications of machine-learning 
techniques that exploit Landsat’s multispectral information in 
the identification of different types of land cover from subsets of 
Landsat data [e.g. (21–25)]. We extend this literature by creating 
a procedure that combines all Landsat data available from 1984 
to map six different types of land cover, which we refer to as sur
face groups: built-up surfaces, grassy surfaces, forest-covered sur
faces, surfaces with crop fields, surfaces without vegetation, and 
water surfaces.

As some surface groups are more closely related to economic 
activity than others (26, 27), mapping surface groups yields im
portant information on regional economic activity. For example, 
increases in built-up surfaces, which include agglomerations of 
cities or transportation networks, coincide with increases in eco
nomic activity (28, 29). Even holding built-up surfaces constant, 
the other surface groups provide greater predictability of local 
economic conditions. While previous research finds that the raw 
spectral values of Landsat-7 imagery can serve as a slightly better 
proxy than night light intensity in Vietnamese regions (30), we 
show that identifying the different surface groups through 
machine-learning techniques results in a substantially improved 
proxy for economic activity over time and space. In so doing, our 
approach goes beyond a previous approach for inferring economic 
data through mapping land cover from single Landsat images in 
Zhousan City, China (31) by developing an automated procedure 
for combining multiple Landsat images into annual data compo
sites. Moreover, compared to a previous application that uses 
Landsat imagery to directly predict village asset wealth in Africa 

(32), our surface groups can function both as an indicator of 
land cover and as a more general proxy for economic activity 
with the potential for worldwide application. Which proxy to 
choose for empirical research depends on the concrete research 
question, with other proxies offering advantages through special
ization in, for example, asset wealth (32) and our proxy offering 
advantages through painting an overall picture of regional (or 
even more subregional) economic activity.

Our procedure for detecting surface groups as a proxy for eco
nomic activity produces a metric with high internal and external 
validity. We lay the foundations for computing and validating the 
proxy using Germany as an example. In the context of the German 
Reunification, our proxy provides important, previously unavail
able, yet reliable information on economic activity in East 
German regions. As such, the surface groups allow the examin
ation of pre-reunification economic developments at highly disag
gregated regional levels and—due to their independence of 
politically motivated economic statistics produced during the 
communist era—with very high validity. To demonstrate the ne
cessity of the surface groups proxy for answering important re
search questions in the social sciences, we apply our proxy in a 
causal analysis comparing the effect of higher education institu
tions on regional innovation in East and West German regions. 
This and similar analyses are otherwise impossible with other 
data. Our data and their applications easily extend to other set
tings and geographies throughout the world, for example, those 
suffering from insufficient regional detail, limited time series, or 
politically motivated biases such as in autocratic or closed polit
ical systems (33, 34).

The value of surface groups as a proxy for 
economic activity
Features of surface groups
We use a supervised machine-learning algorithm to classify 
Landsat pixels into one of six surface groups. This classification 
procedure requires two external data sources. First, the raw im
agery of Landsat satellites constitutes the input data to be classi
fied. Before performing the classification, we pre-process this raw 
imagery to obtain pixel-based annual composites incorporating 
imagery from multiple Landsat satellites. Second, CORINE Land 
Cover (CLC) data (which are available only for the five reference 
years 1990, 2000, 2006, 2012, and 2018) serve as an external source 
of ground-truth information, that is, they indicate the true surface 
group for a subset of the input pixels. The training data for the 
classification algorithm consist of a stratified random sample of 
Landsat pixels matched to their true surface group from CLC 
data. The details of the classification procedure are outlined in 
Materials and methods and in the supplementary material (Text 
S1, Fig. S1, and Tables S1 and S2).

Following prior literature utilizing land cover classifications 
[e.g. (35–39)], we identify and map six different types of land 
cover—the surface groups—which are similar to previous work 
in a Chinese region (25). These groups include the following: (1) 
built-up surfaces feature buildings of non-natural materials 
such as concrete, metal, and glass (e.g. residential buildings, in
dustrial plants, roads); (2) grassy surfaces are covered by green 
plants or groundcover with similar surface reflectance (e.g. nat
ural grassland); (3) surfaces with crop fields include vegetation 
for agricultural purposes (e.g. grain fields); (4) forest-covered sur
faces contain trees or other plants with similar surface reflectance 
(e.g. mixed forests); (5) surfaces without vegetation have (almost) 
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no reflective vegetation or buildings (e.g. bare rock); and (6) water 
surfaces comprise any type of water surface (e.g. lakes). Our algo
rithm classifies these respective surfaces, which we then combine 
to form our proxy for economic activity.

The output of our procedure for detecting surface groups is a da
taset containing the surface group of every Landsat pixel location 
in Germany annually from 1984 through 2020. One year comprises 
more than 630 million Landsat pixels, amounting to more than 23 
billion pixel-year observations in the output data. Of these observa
tions, 16.2% are classified as built-up; 20.9% as grass; 29.5% as 
crops; 25.6% as forest; 3.3% as no vegetation; and 3.8% as water. 
Only 0.6% of observations contain missing values due to, for ex
ample, cloud cover that is uninterrupted within a given year for sin
gle pixels in the Landsat data. For applications in research projects, 
researchers can aggregate this pixel-level information to the geo
graphical unit matching their respective research objective (e.g. ad
ministrative regional units or ZIP code areas).

Fig. 1 illustrates the data sources we use and the output data we 
produce. As examples, the left column of Fig. 1 shows a large-scale 
area with the metropolitan region of Nuremberg (situated in mid- 
south Germany) in the center of the picture. The right column shows 
a small-scale area with the village of Muhr-am-See (Muhr-at-the-lake, 
situated about 30 miles south-west of Nuremberg) in the upper 
part of the picture and its accompanying lake (Altmühlsee) in the 
lower part of the picture (framed area in the left column). 
Fig. 1A, which uses Landsat’s visible spectral bands to approxi
mate the perception of the human eye, shows the Landsat com
posite for 2018 (the input data). Fig. 1B illustrates the six 
different types of land cover we identify from the CLC data (the 
ground-truth data). Fig. 1C shows the surface group that our clas
sification algorithm produces for every Landsat pixel location in 
2018. As a reference, Fig. 1D shows current high-resolution satel
lite images from Esri World Imagery (40).

Internal validity
To evaluate whether we achieve an accurate classification of 
Landsat pixels into the six surface groups (i.e. the measure’s in
ternal validity), we assess several indicators of prediction accur
acy. In so doing, we follow the standard procedure in the 
remote-sensing literature that uses supervised machine learning 
to classify land cover [e.g. (21, 22, 41)] and derive these indicators 
from five-fold cross-validation. This method draws five subsets 
from the input data and uses these subsets to perform five itera
tions of pixel classification (see Materials and methods and Text 
S1.5 in the supplementary material for more details).

Using the classification output from the five-fold cross- 
validation, we calculate five common indicators of prediction 
accuracy with respect to each surface group: overall accuracy, 
true-positive rate, true-negative rate, balanced accuracy, and 
user’s accuracy. Overall accuracy denotes the percentage of pixels 
correctly classified, true-positive rate the percentage of pixels cor
rectly classified as belonging to the respective surface group, true- 
negative rate the percentage of pixels correctly classified as not 
belonging to the respective surface group, balanced accuracy 
the average of true-positive rate and true-negative rate, and user’s 
accuracy the percentage of pixels correctly classified as belonging 
to the respective surface group among all pixels belonging to the 
respective surface group.

Table 1 shows the five-fold cross-validation results with re
spect to each surface group. With 82.8%, overall accuracy for 
built-up surface areas is similar to that in other studies detecting 
built-up land with Landsat data [e.g. (21, 22)]. The other four 

indicators are also in line with other studies [e.g. (22, 41)]. 
Furthermore, we achieve very high overall accuracy for forest 
(89.5%), areas with no vegetation (87.0%), and water (90.9%).

The five-fold cross-validation results show that our output data 
constitute an internally valid measure of land cover. All indicators 
of prediction accuracy reinforce that our classification algorithm 
accurately identifies the six surface groups, suggesting that we ad
equately implemented the procedures from the remote-sensing 
literature. The high internal validity of the surface groups is a pre
requisite for their external validity as a proxy for economic 
activity.

External validity
To evaluate the external validity of surface groups as a proxy for 
economic activity, we empirically analyze how much they explain 
of the variation in direct measures of regional economic activity 
(which are available for parts of our time series). We draw on 
two such external direct measures: First, from administrative sta
tistics, we extract a regionally disaggregated direct measure of 
gross domestic product (GDP), the most commonly used economic 
indicator in the literature evaluating previous satellite-based 
proxies for economic activity [e.g. (5, 42)]. For Germany, this meas
ure is available at the administrative county (Kreis) level from 
2000. Second, we use a socioeconomic dataset that provides 
household income as a further indicator of economic activity 
with a very high level of regional detail (43). This indicator is avail
able at the level of grid cells sized 1 km2 (and thus independent of 
administrative borders), but annually only from 2009. See 
Materials and methods and the supplementary material (Text 
S2.2) for more details on the two external validation data sources.

We analyze the external validity of our proxy by comparing the 
amount of variation in GDP that our proxy and night light inten
sity generate. We obtain this result from comparing Ordinary 
Least Squares (OLS) regressions of GDP on the surface groups 
with OLS regressions of GDP on night light intensity (see 
Materials and methods and supplementary material Text S2.3, 
Tables S9, S10, S25, and S26 for more details on the methodology). 
Our preferred surface groups specification, which additionally in
cludes year and federal state fixed effects to cancel out any bias 
due to potential measurement error in the dependent or inde
pendent variables, explains 62.3% of the variation in GDP. Using 
night light intensity instead of surface groups in the same specifi
cation explains only 47.1% of this variation, that is, our proxy 
achieves 32.3% higher precision than previous data at the disag
gregated regional level of counties.

The value of surface groups as a proxy for regional economic 
activity becomes even more obvious at the very small regional 
level of grid cells. In a similar OLS analysis, our preferred 
surface-groups specification explains a much larger percentage 
of the variation in household income than the corresponding 
night lights specification, with 67.5% vs. 30.7% (i.e. 119.9% higher 
precision).

The value of surface groups in comparison to night light inten
sity as a proxy for economic activity thus substantially increases 
with the degree of regional disaggregation. This finding is sup
ported by an additional analysis on the prediction of county-level 
GDP by county-size category (see Text S2.3 and Fig. S5 in the 
supplementary material). On average, the surface groups explain 
a larger percentage of the variation in GDP for smaller counties 
than for larger counties.

Fig. 2 underscores and visualizes these findings. It plots the 
statistical distribution of the OLS regression residuals, which are 
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smaller when the measure is a better proxy for economic activity. 
The plots show that, for both GDP and household income, this dis
tribution is smoother and narrower for surface groups (Fig. 2A 
and C) than for night light intensity (Fig. 2B and D). For household 
income, the residual distribution of the night lights specification 

even exhibits a plateau—instead of a real peak—around the value 
zero, whereas the surface groups show a very clear peak and a 
narrow residual distribution.

Furthermore, we conduct four additional validation analyses in 
the supplementary material (Text S2). First, we find that surface 

Fig. 1. Visual comparison of data sources. Pictures in the left column show the same approx. 78 × 49 square kilometers area with the metropolitan region 
of Nuremberg in the center. Pictures in the right column show the same approx. 1.3 × 0.8 square kilometers area with the village of Muhr-am-See in the 
upper part and its accompanying lake (Altmühlsee) in the lower part (framed area in the left column).
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groups are a temporally and spatially less biased proxy for eco
nomic activity than night light intensity (Figs. S2–S4, S6, S7). 
This feature is important for the surface groups to serve as a valid 
proxy for comparisons of economic activity over time and be
tween regions. Temporal bias would occur if the OLS residual is 
constant for a given region throughout all observation years, 
and spatial bias would occur if this residual is equal for clusters 
of regions. Surface groups yield a considerably smaller temporal 
bias that outweighs their somewhat larger spatial bias in compari
son to night light intensity. Second, in line with their smaller bias, 
surface groups offer more information on within-region changes 
in economic activity than night light intensity through higher 
within-region heterogeneity (Figs. S8 and S9, Tables S15–S17). 
That is, our surface groups allow for a more precise determination 
of which subregional units drive the change in a region’s economic 
activity by isolating the change in each subregional unit. Third, 
surface groups outperform also newer night light intensity data 
with higher spatial resolution in proxying economic activity 
(Tables S11 and S12). Fourth, we validate surface groups as a 
proxy for economic conditions in developing countries by compar
ing their predictive power to that of a prior metric of village asset 
wealth in Africa (32), a similar but more specialized outcome vari
able (Tables S18 and S19). This analysis shows that the validity of 
surface groups is not restricted to developed European countries 
such as Germany, but that surface groups can also provide valu
able insights on economic conditions in developing countries 
across the world.

Essential improvements in social science research 
through surface groups data
To demonstrate the usefulness of our surface groups proxy for re
gional analyses in general and for applications in the social and 

economic sciences in particular, we tackle a perennial research 
question for which an empirical answer requires accurate data 
on regional economic activity before the German Reunification 
—a period for which reliable (administrative) East German data 
do not exist. Studies in education and innovation economics find 
that higher education institutions improve innovation outcomes 
in developed regions [e.g. (44–46)]. However, whether similar ef
fects would occur in less developed regions remains open due to 
the lack of adequate data for causal analyses.

One example for such a less developed region is East Germany, 
which—like many countries with a history under a communist re
gime—lagged dramatically behind in economic development 
compared to West Germany (47, 48). Germany offers an ideal set
ting for studying whether otherwise identical higher education in
stitutions affect developed and less developed regions differently 
provided that the necessary data are available. The surface groups 
proxy provides exactly these necessary and otherwise unavailable 
data because it constitutes an unconfounded measure of pre- 
reunification economic activity in all East German regions. As 
the proxy is also available for all West German regions, we can dir
ectly compare regions in both parts of the country with a high de
gree of disaggregation (e.g. municipalities). With the surface 
groups proxy, we can estimate causal effects by adjusting for dif
ferences in prereunification economic trends. Surface groups are 
thus crucial for answering the research question on the different 
effects of higher education institutions. While we use surface 
groups to exploit the German setting as an example, they can be 
a similarly crucial source of information on developing countries 
or other countries without reliable (administrative) data.

To study differences in the effects of higher education institu
tions in East and West Germany, we compare regional innovation 
outcomes in East and West German regions with a University of 
Applied Sciences (UAS) campus. In addition to surface groups, 
we use a municipality-level dataset [from (49)] that annually indi
cates whether a municipality lies within the catchment area of a 
UAS campus. Moreover, these data contain two well-established 
indicators of regional innovation, patent quantity (the number 
of priority patent applications per municipality and year) and pa
tent quality (the average number of forward citations three years 
after a patent’s publication per municipality and year). These 
patent-based indicators are complete for all German municipal
ities from 1991.

Descriptive analyses show that in 1991 (i.e. immediately after 
reunification), East German municipalities lag far behind West 
German ones in both patent quantity and patent quality. 
Moreover, in both indicators, East German municipalities never 
reach the same level as West German ones over time. With this 
descriptive evidence as a starting point, surface groups allow us 

Table 1. Five-fold cross-validation results.

Surface 
group

Overall 
accuracy

True- 
positive 

rate

True- 
negative 

rate

Balanced 
accuracy

User’s 
accuracy

Built-up 0.828 0.606 0.877 0.741 0.514
Grass 0.831 0.451 0.910 0.680 0.511
Crops 0.832 0.381 0.932 0.657 0.563
Forest 0.895 0.685 0.938 0.812 0.708
No veg. 0.870 0.756 0.886 0.821 0.490
Water 0.909 0.672 0.958 0.815 0.765

Notes: Indicators calculated with respect to each surface group. Values indicate 
the average over all five iterations and all five reference years in the CLC data. See 
Materials and methods and the supplementary material (Text S1.5) for more details 
(including the results separately for every reference year in Tables S3–S8).

Fig. 2. Statistical distribution of OLS regression residuals. See the supplementary material (Text S2.3, Tables S9 and S10) for details on the regression 
specifications. Bin width of histograms is 0.05 in panels A and B and 0.1 in panels C and D.
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to identify whether UASs have a causal impact on decreasing the 
innovation gap, thus bringing East German municipalities closer 
to their West German counterparts.

Our surface groups proxy is the only available reliable measure 
on pre-reunification economic activity in East German regions, 
thus enabling a comparison of municipalities with similar pre- 
reunification economic characteristics. We perform propensity- 
score matching on average pre-reunification growth in the six 
surface groups. The estimated propensity score allows us to 
econometrically adjust for pre-reunification differences.

Our causal propensity-score matching estimations show that 
the post-reunification increase in patent quantity is significantly 
smaller in East German UAS regions than in West German ones. 
Thus, while previous studies on higher education institutions in 
developed countries in general and on UASs in particular show 
positive innovation effects [e.g. (50, 51, 46)], the policy instrument 
of opening UASs for regional development has a much smaller ef
fect in a less developed country than in a developed country. This 
result highlights the importance of reliable economic data at suf
ficiently disaggregated regional levels for causal analyses, par
ticularly for less developed countries. Our surface groups proxy 
provides such data for historical time series and detailed regional 
levels. For details on the dataset, the methodology, and the results 
of the UAS analysis, see Materials and methods and the 
supplementary material (Text S3, Fig. S10, and Table S27).

Surface groups economic proxy
As having one single proxy may be desirable when economic ac
tivity is the dependent variable in an analysis, we compute pre
dicted county-level GDP using our OLS model. To assess the 
external validity of this single-variable proxy, we use one random
ly selected quarter of the sample to train the coefficients showing 
the predictive power of our surface groups proxy, and then for a 
randomly selected half of our sample compute predicted GDP 
(see Text S2.5 and Tables S20 and S21 in the supplementary 
material for more details). Corroborating the results of the first 
analysis of external validity, GDP predicted using surface groups 
explains 63.2% of the variation in actual GDP in the left-out half 
of the sample, whereas GDP predicted using night light intensity 
explains only 50.6% of this variation (i.e. 24.9% higher precision). 
The corresponding values for household income are 67.6% using 
surface groups vs. 30.9% using night light intensity (i.e. 118.8% 
higher precision). However, when using the proxy as an independ
ent variable, we recommend using the full set of proxy variables to 
minimize the noise and measurement error that might come from 
the predictive process.

Finally, Fig. 3 demonstrates the usefulness of our economic 
proxy in the historical context by plotting the three-year moving 
average of administrative GDP and the surface groups proxy. 
The curves marked with triangles show the extant data for region
al economic activity in four regions of Germany—including areas 
in both East Germany (Rostock, Börde) and West Germany 
(Groß-Gerau, Passau). The thicker curves without triangles show 
our single-variable proxy for economic activity (with OLS coeffi
cients trained on the entire sample) for the years for which reli
able administrative data are available. First, Fig. 3 shows that as 
the surface groups are available from 1984, they almost double 
the number of available years compared to administrative data 
(which start in 2000 for Germany). Compared to other proxies 
such as night light intensity (which starts in 1992), surface groups 
are the only proxy pre-dating the German Reunification. Second, 
Fig. 3 shows that all curves exhibit identical trends over time, 

although the variation between years in the surface groups proxy 
is larger than in the administrative metric. The longer time series 
and the differences in the developments of the regions over time 
(e.g. GDP in Börde falls below that in Rostock after reunification) em
phasize the proxy’s potential for enabling previously impossible 
analyses.

Furthermore, although reliable, regionally disaggregated data 
to validate our trends obviously do not exist, we can use other 
types of historical information to support our claim that the nega
tive trends we find in our economic proxy for the East German re
gions correspond to real historical developments. Previous 
literature provides strong quantitative and qualitative support 
for a declining overall economic trend (in indicators such as em
ployment rate, industrial output, or competitiveness) in East 
Germany after reunification [e.g. (52–54)]. These findings are 
thus consistent with the negative trends we find in our disaggre
gated economic proxy. For later years with sufficiently disaggre
gated validation data from administrative statistics (see Fig. 3), 
the trends of our surface groups proxy and the validation data 
are identical, again supporting the proxy’s validity.

Improving precision by combining data sources
Depending on the research purpose, even better proxies can be 
constructed by combining our surface groups data with additional 
data sources. As an example, we combine our surface groups with 
a metric that offers additional information on built-up volume but 
is available only in five-year intervals (see Texts S2.4 and S2.6 and 
Tables S13, S14, S23, and S24 in the supplementary material). As 
built-up land cover can grow both horizontally and vertically, a 
metric that uses additional information on built-up volume can 
increase the precision in proxying economic activity. Our analyses 
confirm that the combination of surface groups and built-up vol
ume performs well in proxying economic activity in German re
gions. However, due to the built-up volume metric’s availability 
in five-year intervals only, this combination of datasets does not 
help in answering research questions that require annual eco
nomic data, such as our example of studying immediate economic 
effects after the fall of the Iron Curtain or similar applications 
studying local policies with immediate economic consequences. 
Similar limitations would arise, for example, for a combination 

Fig. 3. Time series of GDP measures in four counties. Plots show 
three-year moving averages. Curves marked by triangles show the 
natural logarithm of GDP in administrative data for all years for which 
county-level administrative GDP data are available. Thick curves without 
triangles show the surface groups proxy for GDP (predicted from OLS 
estimates, see Text S2.5 and Table S22 in the supplementary material for 
details). Groß-Gerau is situated in mid-west Germany, Passau in south 
Germany (at the border to Austria), Rostock in north Germany (at the Baltic 
Sea), and Börde in mid-north Germany.
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of surface groups and night light intensity, an approach that 
would not allow studying events before 1992.

Nevertheless, the combination of different metrics with our 
surface groups proxy to increase precision in proxying economic 
activity is a powerful tool. Therefore, depending on the regional 
level and the time series required for a specific research purpose, 
a proxy that combines our surface groups with other metrics can 
even outperform the use of single proxies. The methodology for 
such combinations is provided in the supplementary material
(Text S2.6 and Tables S23 and S24).

Conclusion and discussion
When other data are unreliable, inaccessible, or entirely inexis
tent, the proxy we create from daytime satellite imagery is a 
strong proxy across time periods and across highly disaggregated 
regional levels (as Fig. 3 demonstrates). Moreover, in this particu
lar example, the proxy provides valuable, previously unavailable 
information on economic activity for East German regions before 
the fall of the Iron Curtain.

More generally, our procedure has worldwide relevance. While 
we apply our procedure to Germany and establish its validity for 
this country, the procedure is transferable to any region or country 
in the world (as we demonstrate in Texts S1.6 and S2.4 in the 
supplementary material). Our analyses for Germany exemplify 
that our machine-learning approach using daytime satellite im
agery can predict both disaggregated and potentially missing or er
roneous economic activity data (e.g. GDP at highly disaggregated 
levels within a country). However, the methodology and the data 
it provides for countries across the world can be extended globally 
to additional contexts where specific economic and developmental 
markers are needed. Our insight is to demonstrate that our method
ology can be helpful for many economic and social science applica
tions where varying degrees of disaggregation are required and 
where missing or incorrect data are prevalent. Surface groups 
thus constitute a valuable resource for analyzing historical develop
ments, evaluating local policy reforms, and controlling for econom
ic activity in econometric applications within a country. Although a 
country’s history or industry structure affects the economic import
ance of different types of land cover (55), the principle that land cov
er, which the surface groups reflect, relates to economic activity 
applies to any country in the world. Therefore, surface groups 
have a potential for economic research that investigates small re
gions within the same country or within a homogeneous group of 
countries. Furthermore, surface group measurement could have 
relevance for such issues as climate change, sustainability, and 
equity as businesses and policymakers formulate investment and 
development options for decades to come.

The Landsat daytime satellite data are available for extremely 
small regional units such as municipalities or urban districts, thus 
providing new opportunities for urban and regional economic re
searchers to understand differences in even small regional vari
ation in economic development. The surface groups we derive 
from these data thus contribute to analyses of the regional im
pacts of local policy reforms by providing information on econom
ic activity at very detailed regional levels, for which other data 
sources are entirely unavailable for the necessary observation pe
riod, unreliable, less precise, or inaccessible for non-residents of 
the respective country. With these particular features, the surface 
groups complement other satellite-based measures for economic 
activity such as night light intensity.

The use of satellite data is a significant advancement in meas
uring regional economic activity and over time will generate new 

opportunities to strengthen our understanding of local economic 
conditions. While our paper is one of the first to proxy for econom
ic activity at scale, further improvements are possible. For 
example, analyzing daytime satellite data with image segmenta
tion procedures based on convolutional neural networks (CNNs) 
such as U-Net (56) or ResNet (57) could provide an even more ac
curate classification of land cover and thus a better economic 
proxy by allowing consideration of contextual information from 
neighboring pixels in the classification process. Moreover, CNNs 
could allow researchers to be more discerning about built-up sur
faces (e.g. differentiating between building types such as stores or 
industrial buildings, evaluating housing quality) at a global scale. 
While CNNs have been successfully applied in classifying land 
cover for specific geographic study areas [e.g. (58, 59)], their exten
sion to economics could provide new insights. Although the appli
cation of CNNs to land cover classification could have higher 
computing-power demands and may require additional region- 
specific calibration of ground-truth data [e.g. mentioned in (60, 
61)], these additional challenges could be solved by introducing 
additional instruments such as hyperparameter tuning and mod
el pre-training. Therefore, using CNNs to classify land cover has 
large potential for future research to investigate regional or even 
subregional economic activity at a global scale.

Moreover, retrieving more sophisticated metrics on economic 
activity requires satellite data with an even finer spatial resolution 
than Landsat data, such as the Advanced Spaceborne Thermal 
Emissions and Reflection Radiometer (ASTER) or the Sentinel mis
sion. These or other satellite data also offer promising venues for 
future research, for which this paper lays first methodological 
foundations. While the ASTER and Sentinel data are less valuable 
for historical analyses because they cover only substantially 
shorter time series than Landsat, they are potentially very valu
able for research studying more recent events, particularly in 
areas for which reliable data are otherwise unavailable.

Materials and methods
Computation of surface groups
In developing our procedure for detecting surface groups, we follow 
the remote-sensing literature that has successfully applied 
machine-learning techniques to identifying, for example, built-up 
land cover from subsets of Landsat data [e.g. (23, 62)]. Our procedure 
adds to this literature by combining data from four Landsat satel
lites to produce a time series of data on different types of land cover 
starting in 1984. We produce these data in Google Earth Engine and 
apply supervised machine-learning techniques with the objective of 
classifying the annual type of land cover of every Landsat pixel loca
tion. We proceed in three steps that we shortly outline here and de
scribe in detail in the supplementary material (Text S1).

First, we prepare the Landsat data to retrieve the input data for 
the classification algorithm. We combine the data of Landsat-4, 
Landsat-5, Landsat-7, and Landsat-8 to produce composite data 
containing the qualitatively best observation per pixel location 
and year. In so doing, we choose those observations that best dif
ferentiate between vegetated and unvegetated areas, because we 
expect economic activity to concentrate in urban or industrial 
areas. The composite data constitute the input data that we 
pass on to the classification algorithm.

Second, to be able to classify observations in the input data, we 
add CLC data as an external source of ground-truth information. 
This ground-truth dataset comes from a pan-European project 
commissioned by the European Environment Agency and maps 
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land cover in 44 categories. To obtain a classification of land cover 
types that we can use to train our algorithm, we survey the litera
ture that uses CLC data or Landsat data for classifying land cover 
[e.g. (35–37)] and aggregate the 44 categories to larger groups with 
similar surface characteristics—the six surface groups. The classi
fication algorithm requires this ground-truth information on sur
face groups for a subset of the input pixels to be able to recognize 
patterns in the input data and link these patterns to the different 
surface groups. By using external ground-truth data, we overcome 
the resource-intensive necessity of visually interpreting (i.e. manu
ally classifying) input pixels to retrieve ground-truth information.

Third, we produce the training data for the classification algo
rithm. To obtain these training data, we draw a stratified random 
sample of pixels from the input data and match the ground-truth 
information on surface groups to the pixels in this sample. We 
then use the training data to train a Random Forest algorithm, 
which classifies every observation in the input data into one of 
the six surface groups.

Although we apply various filters for excluding invalid Landsat 
pixels (e.g. cloud shadow) from the composite input data, potential
ly erroneous pixel classifications might occur in few regions in years 
with scarce Landsat imagery (particularly in the 1980s). When ap
plying our surface groups proxy in empirical analyses, we recom
mend removing outlier observations for these particular regions 
and years from these analyses. We do so in the comparison of 
county-level GDP developments in Fig. 3 and in the municipality- 
level analysis of higher education institutions. From 1984 through 
2020, we identify 6.2% of all county-year observations and 8.4% of 
all municipality-year observations as outliers, which are independ
ent of the analyses (e.g. independent of the locations of higher edu
cation institutions). For more details on this outlier removal, see the 
supplementary material (Texts S2.5 and S3).

External validity analyses
We obtain two indicators of regional economic activity for the ex
ternal validity analyses, which we shortly outline here and de
scribe in more detail in the supplementary material (Text S2). 
First, we use administrative GDP, which the German Federal 
Statistical Office provides at the county-level from 2000 and which 
we deflate for our analyses. Second, we use RWI-GEO-GRID (43), a 
dataset containing socioeconomic indicators collected from a var
iety of public and private sources but annually only available from 
2009. This dataset indicates household income at the level of grid 
cells sized 1 km2, an extremely high level of regional detail. Again, 
we use deflated household income for our analyses.

In addition, to compare the quality of the surface groups as a 
proxy for economic activity to that of night light intensity, we 
use night lights data from the U.S. Air Force Defense 
Meteorological Satellite Program Operational Linescan System 
(DMSP OLS), available from 1992 through 2013. Similar to previous 
research (5, 42), we use stable night lights (which are corrected for 
unusual lighting). To achieve regional correspondence with the 
administrative GDP data and RWI-GEO-GRID, we calculate aver
age night light intensity at the county and at the grid level. In 
the supplementary material (Text S2.4), we proceed similarly for 
comparing the surface groups proxy to Visible Infrared Imaging 
Radiometer Suite (VIIRS) night light intensity.

Application to analysis of higher education 
institutions
We use data from prior work (49) that combines patent data from 
the European Patent Office’s Worldwide Patent Statistical 

Database (October 2019 version) with self-collected data on cam
pus openings. These data contain two established patent-based 
indicators for regional innovation (patent quantity and patent 
quality) and each municipality’s annual treatment status. We de
scribe the details on these data and on the methodology used in 
our analysis in the supplementary material (Text S3).

Combination of surface groups and built-up 
volume
In our combination of data sources, we use data from the Global 
Human Settlement Layer (GHSL). Among other things, these 
data include information on regional built-up surfaces and built- 
up volume in five-year intervals. We describe the details on these 
data and how we use them for our analyses in the supplementary 
material (Text S2).
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