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Abstract
Advances in next-generation sequencing technology have identified many genes responsible for inborn errors of immunity (IEI). However, 
there is still room for improvement in the efficiency of genetic diagnosis. Recently, RNA sequencing and proteomics using peripheral 
blood mononuclear cells (PBMCs) have gained attention, but only some studies have integrated these analyses in IEI. Moreover, 
previous proteomic studies for PBMCs have achieved limited coverage (approximately 3000 proteins). More comprehensive data are 
needed to gain valuable insights into the molecular mechanisms underlying IEI. Here, we propose a state-of-the-art method for 
diagnosing IEI using PBMCs proteomics integrated with targeted RNA sequencing (T-RNA-seq), providing unique insights into the 
pathogenesis of IEI. This study analyzed 70 IEI patients whose genetic etiology had not been identified by genetic analysis. In-depth 
proteomics identified 6498 proteins, which covered 63% of 527 genes identified in T-RNA-seq, allowing us to examine the molecular 
cause of IEI and immune cell defects. This integrated analysis identified the disease-causing genes in four cases undiagnosed in 
previous genetic studies. Three of them could be diagnosed by T-RNA-seq, while the other could only be diagnosed by proteomics. 
Moreover, this integrated analysis showed high protein–mRNA correlations in B- and T-cell-specific genes, and their expression 
profiles identified patients with immune cell dysfunction. These results indicate that integrated analysis improves the efficiency of 
genetic diagnosis and provides a deep understanding of the immune cell dysfunction underlying the etiology of IEI. Our novel 
approach demonstrates the complementary role of proteogenomic analysis in the genetic diagnosis and characterization of IEI.
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Significance Statement

Genetic diagnosis plays a central role in the clinical management of patients with inborn errors of immunity (IEI). However, the diag
nostic yield for IEI based on the sequencing of germline DNA is still low and is estimated to be approximately 30%. This study shows 
the utility of integrated analysis with proteomics and targeted RNA sequencing (T-RNA-seq) of peripheral blood mononuclear cells. 
We identified the molecular cause and immune cell defects in patients with IEI, increasing the diagnostic yield by 6%. Notably, even in 
cases missed by T-RNA-seq, proteomics could identify the genetic etiology of the disease, suggesting the pivotal role of proteomic ana
lysis in diagnosing IEI. Our novel approach improves the efficiency of the genetic diagnosis and elucidates the pathogenesis of IEI.
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Patients with inborn errors of immunity (IEI), previously known 
as primary immunodeficiency disorders, demonstrate increased 
susceptibility to infectious diseases, autoimmunity, autoinflam
matory diseases, allergies, and malignancies (1). These conditions 
are generally caused by monogenic germline defects resulting in 
the dysfunction of encoded proteins. The latest classification of 

IEI from the International Union of Immunological Societies 
(IUIS) Expert Committee includes 485 genes as genetic etiologies 
of IEI, representing an increase of 55 genes since the 2019 IUIS up
date (2). This breakthrough occurred predominantly due to the ap
plication of next-generation sequencing (NGS) technologies, such 
as targeted gene panel NGS (T-NGS), whole-exome sequencing 

PNAS Nexus, 2023, 2, 1–12 

https://doi.org/10.1093/pnasnexus/pgad104
Advance access publication 28 March 2023 

Research Report

https://orcid.org/0000-0003-1424-2433
https://orcid.org/0000-0003-0036-451X
https://orcid.org/0000-0003-3257-5071
https://orcid.org/0000-0002-3328-9571
https://orcid.org/0000-0002-4622-5657
mailto:sokada@hiroshima-u.ac.jp
mailto:ohara@kazusa.or.jp
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/pnasnexus/pgad104


(WES), or whole-genome sequencing (3–5). Genetic diagnosis plays a 
pivotal role in the clinical management in IEI patients because elu
cidating the molecular etiology paves the way for fundamental 
therapies; 34% of genetically diagnosed cases have distinct thera
peutic options (5). However, the diagnostic yield of NGS for IEI is still 
low and is estimated to be approximately 30 to 40% (6, 5, 7–9). WES 
and T-NGS have several inherent limitations, explaining these un
diagnosed cases. The most challenging of those limitations is the 
difficulty of interpreting variants of unknown significance (10, 11). 
Other drawbacks are the inability to detect variants in noncoding 
regions (12).

RNA sequencing (RNA-seq) has been well employed as one of 
the most valuable tools to study Mendelian disorders (10, 13), be
cause it provides complementary information about the down
stream consequences of genomic variants, such as variations in 
RNA abundance, allele-specific expression (ASE) and alternative 
splicing isoforms (13, 14). Especially the use of targeted RNA-seq 
(T-RNA-seq) is a well-established approach for investigating low- 
abundance transcripts or low-input RNA samples (15, 16) and is 
advantageous in studying IEI, in which the expression of disease- 
causing genes is often suppressed. Indeed, many studies on IEI 
have confirmed the effectiveness of RNA-seq or T-RNA-seq (17– 
21). However, the diagnostic yield of IEI remains in the 7.5–36% 
range for patients for whom T-NGS or WES is uninformative (10, 
22, 23). One of the most significant current discussions regarding 
RNA-seq is the discordance of RNA and protein expression levels. 
The controversy about the relationship between protein abun
dance and its coding mRNA abundance has continued unabated 
due to the development of high-throughput technologies that 
simultaneously interrogate the global abundance of protein and 
mRNA (24–26).

More recently, researchers have shown an increasing interest 
in proteomics due to technological advances in mass spectrom
etry (MS)-based protein identification (27, 28). To date, more 
than 90% of the proteins corresponding to known protein-coding 
genes have been detected by MS-based proteomics (29). A recent 
literature review concluded that MS-based proteomics contrib
uted substantially to our understanding of innate immunity 
(30). This review also pointed out that overcoming problems asso
ciated with low abundance of cellular fractions and high abun
dance of degradative proteases will be required to obtain an 
unbiased and comprehensive protein profile. Since hematopoietic 
cells form the basis of the pathogenesis of IEI, expression analysis 
of peripheral blood mononuclear cells (PBMCs) is useful to deter
mine the molecular pathogenesis. However, previous PBMC pro
teomics studies using data-independent acquisition (DIA)-MS, 
which provides higher sensitivity, higher protein coverage, and 
greater reproducibility than classic data-dependent acquisition, 
have identified only approximately 3000 proteins (31–33). 
Considering that patients with IEI have a variety of immune cell 
defects and disease-causing protein defects, more comprehensive 
proteomic data are needed to gain rational insights into the mo
lecular mechanisms underlying aberrant immune systems. A 
few studies have applied proteomics to the genetic diagnosis of 
IEI (34, 35). However, the current study is the first to examine 
the utility of in-depth proteomics in integrated analysis in com
bination with T-RNA-seq.

Here, we propose a state-of-the-art method for diagnosing IEI, 
providing notable insights into the pathogenesis of IEI. Our single- 
shot DIA-MS approach, which was high-throughput and cost- 
effective, enabled proteomic analysis of PBMCs at greater depth. 
Furthermore, this improved analytical depth achieved protein 
coverage nearly equivalent to the depth of transcriptome analysis 

by RNA-seq and allowed integrated analysis with T-RNA-seq. This 
study aims to highlight the complementary role of integrated ana
lysis of proteomics and T-RNA-seq to canonical genomic analysis 
in determining the molecular pathogenesis of IEI.

Results
In-depth proteomic data from PBMCs covered 
many IEI-related genes
The current study encompassed a cohort of 70 patients diagnosed 
with IEI but without a known genetic etiology. Of these, 48 pa
tients underwent WES, and the remaining 22 underwent T-NGS 
of a 400 IEI gene panel. Prior genetic analysis was conducted based 
on criteria established by the American College of Medical 
Genetics and Genomics (ACMG), along with the patients’ pheno
types and the disease’s inheritance mode. However, no pathogen
ic variants were identified that satisfied these criteria. (SI 
Appendix, Table S1). The first set of analyses examined the eligibil
ity of the proteomic data. The initial processing of the proteomic 
data identified 8857 proteins; after data optimization, 6498 (73% 
of detected proteins) proteins from 63 IEI patients and six healthy 
controls (HCs) (91% of all participants) were retained for down
stream analysis (Fig. 1A, SI Appendix, Dataset S1). T-RNA-seq pro
vided data for 527 IEI-related genes, almost all of which were 
highly enriched, in 63 cases (Fig. 1A, SI Appendix, Fig. S1A and 
Dataset S2). We then removed the genes with total read counts 
of less than 1000, leaving T-RNA-seq data for 499 genes in 63 cases 
(Fig. 1B). Surprisingly, the refined proteomic data, which excluded 
nontarget proteins such as plasma and RBCs, identified 8641 pro
teins from PBMCs, covering 80% of the genes in T-RNA-seq (399 
out of 496 genes; three noncoding genes were removed) (Fig. 1C). 
Although filtering the data to remove proteins with high missing 
values (MVs) reduced that coverage to 63% (314 out of 496 genes) 
(Fig. 1D), our proteomic data still maintained high coverage. 
Overall, these results show that our proteomic analysis covered 
many known IEI genes and allowed us to perform integrated 
mRNA–protein analysis.

Detailed interpretation of proteomic data enabled 
optimization of initial processing
We next performed data interpretation to ensure the validity and 
reproducibility of the proteomic data. We excluded seven sam
ples with a higher proportion of MVs from this study (E1 to E7) 
based on the PCA for raw data (Fig. 1E). Regarding the assessment 
of MVs with linear regression, the refined protein abundance and 
the proportion of MVs showed a negative correlation, with an 
R-squared value of 0.61 (Fig. 1F), which was markedly higher 
than that of the total protein abundance including nontarget 
proteins. Moreover, the distribution of mean expression levels 
was biased toward lower levels for proteins with MVs compared 
to those without MVs (Fig. 1G). These results indicated that MVs 
were abundance-dependent and left-censored. Another signifi
cant aspect of this result is that the difference in R-squared val
ues between total proteins and targeted proteins indicates that 
the dominance of nontarget proteins overwhelmed the abun
dance of the proteins of interest and increased the number of 
MVs (Fig. 1F). Regarding MVs being left-censored data, we 
adopted small-value imputation methods separately for ex
ploratory and diagnostic analyses. Considering that the MVs 
were below the detection limit, the zero-value method was 
adapted for the diagnostic analysis. Meanwhile, the minimum 
deterministic method was selected for the exploratory analysis 
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because distance-based clustering, such as the k-means method, 
is not sensitive to zero value, especially in cases with a small k 
value. Then, based on the results of the NormalyzerDE compari

son, we normalized the imputed data with quantile normaliza

tion and robust linear regression normalization (SI Appendix, 

Fig. S1B). Similarly, we normalized the T-RNA-seq data with 

the variance stabilizing transformation method (SI Appendix, 

Fig. S1C). In summary, our data interpretation approach revealed 

the nature of the MVs and allowed data optimization (SI 
Appendix, Dataset S1).

Diagnostic analysis identifies disease-causing 
protein
Our study allows direct comparison of protein and mRNA expres
sion profiles because the data were generated from the same 
specimens. Therefore, we examined the utility of proteomic ana
lysis in genetic diagnosis by comparing the protein and mRNA ex
pression levels of 314 overlapping genes (SI Appendix, Dataset S3). 
We identified four cases where a proteomic analysis unveiled the 
disease-causing protein (Table S1). Bruton tyrosine kinase (BTK) 
deficiency (B1_P21) and X-linked inhibitor of apoptosis (XIAP) 
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Fig. 1. Overview of the initial processing of proteomics and RNA-seq data. A) Schematic diagram of proteomic analysis. DIA-MS yielded 8857 proteins 
from 70 IEI patients and six healthy donors. Interpretation for MVs was performed with raw data. MVs filtering was performed on 8641 protein data points 
among 69 patients, resulting in a filtered dataset of 6498 proteins. Downstream analysis was performed using two methods, each with optimal MVs 
imputation and normalization. B) Schematic diagram of targeted RNA-seq (T-RNA-seq). No RNA-seq data from healthy controls were available. Quality 
control was performed with data from 527 target-enriched genes, yielding filtered data for 499 genes among 63 cases. C) Venn diagrams of genes identified 
by proteomics and T-RNA-seq (8641 vs. 524). The blue circle reflects the proteomics data excluding RBC and plasma proteins, and the red circle reflects 
the targeted genes. Among the 527 targeted genes in T-RNA-seq, four noncoding RNAs were excluded. D) Venn diagram for filtered data (6498 vs. 496). 
Three noncoding RNAs were excluded from 499 genes. E) PCA of raw proteomic data showing the eligibility of the data. Batches are indicated by shape and 
color. The x-axis shows the first principal component (PC1), and the y-axis shows the second principal component (PC2). Only excluded samples are 
labeled (E1 to E7). F) Correlation of total protein abundance and MVs proportion. Protein intensity excluding RBCs and plasma proteins (targeted protein) 
is shown in the top figure, and the raw protein abundance is shown in the bottom figure. The linear regression, its formula, and R-squared values are 
shown in the figure. The shape and color coding are the same as in E). G) Density plot represents the distribution of protein abundance with or without 
MVs. The blue area contains proteins with MVs, and the red area contains proteins without MVs.
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deficiency (B1_P22) exhibited impressive reductions in protein 
(z-scores; −6.7 and −8.1, respectively) and mRNA (z-scores; −5.3 
and −7.8, respectively) (Fig. 2A and B), despite a lack of significant 
findings in the initial genomic analysis. In contrast, adenosine de
aminase 2 (ADA2) deficiency (B1_P29) and LPS-responsive beige- 
like anchor protein (LRBA) deficiency (B2_P35) presented no 

reduction in mRNA expression (z-scores; −0.8 and −0.6, respect
ively) but a considerable reduction in protein expression (z-scores; 
−5.2 and −6.3, respectively) (Fig. 2C and D). In these cases, only 
monoallelic variants were identified in genome analysis, and no 
genetic diagnosis was made. Proteomic analysis thus provided 
unique information directly related to a definitive diagnosis in 
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Fig. 2. Diagnostic analysis of disease-causing genes and Correlation analysis of proteomics and T-RNA-seq. A–D) The bar plot shows the distribution of 
disease-causing protein and mRNA expression levels per sample. Throughout the figure, protein expression is shown at the top and mRNA expression is 
shown at the bottom; the case is shown in black, and other samples are shown in gray. A) BTK deficiency, B) XIAP deficiency, C) ADA2 deficiency, and D) 
LRBA deficiency. E–H) Decreased expression of disease-causing proteins compared to healthy controls (HCs). MA plot shows that the disease-causing 
protein is prominently downregulated (left panel). The x-axis shows the log mean expression of each protein, and the y-axis shows the log fold change of 
protein expression between the patient and HCs. The plots shown on a straight line in the lower left of the figure are proteins showing the MVs in the 
patients. The right panel shows the distribution of disease-causing protein expression in the patient and HCs. E) BTK deficiency, F) XIAP deficiency, G) 
ADA2 deficiency, and H) LRBA deficiency.
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these two cases. In addition, the protein expression profiles of 
these four cases were compared to HCs as a means of making a 
diagnosis in a single case. Each disease-causing protein was highly 
expressed in HCs, while its expression was markedly decreased 
with log2-fold change <−5 in each patient, indicating a decrease 
of more than 1/32 from the average expression (Fig. 2E–H, 
Dataset S3).

Validation analysis links the results of the 
diagnostic analysis to the clinical diagnosis
Since genetic diagnosis is based on genomic variants, we per
formed further analysis to validate the results of our diagnostic 
analysis. The results are summarized in Table 1. In a BTK- 
deficient case, the intronic variant of c.−196+1G>T was detected 
by follow-up genomic analysis. This 5′-UTR was not only a 
splice site but also contained a number of transcriptional regu
lators that may have explained the results of the diagnostic 
analysis (SI Appendix, Fig. S2), but detailed pathogenicity is cur
rently under analysis. In an XIAP-deficient case, Western blot
ting and RT–PCR also showed decreased protein and mRNA 
expression levels. In addition, targeted sequencing covering 
the entire XIAP region identified a large deletion containing a 
noncoding exon with promoter activity. These results were pre
viously reported by Sbihi et al., and “patient 2” corresponded to 
this case (36). In an ADA2-deficient case, decreased ADA2 activ
ity was observed in the patient and was a supportive laboratory 
finding. Some results have already been reported by Nihira 
et al., and “patient 2” corresponded to this case (37). 
T-RNA-seq revealed aberrant splicing in this case (SI Appendix, 
Fig. S3A). The results of LeafCutter show that the aberrant junc
tion is specific to this case (SI Appendix, Fig. S3A). Moreover, vari
ant calling on T-RNA-seq revealed the intronic variant of c.972 
+102T>G, which generated an abnormal splicing profile, and 
the known missense variant led to ASE, with unequal expres
sion between the wild-type and mutant alleles (20% and 80%, 
respectively) (SI Appendix, Fig. S3B). Given that aligned reads 
harbored missense and intronic variants separately, compound 
heterozygous variants in ADA2 were the cause of the disease. In 
LRBA deficiency cases, the results of the diagnostic analysis are 
under verification. However, the patient showed various auto
immune abnormalities consistent with the phenotype of LRBA 

deficiency. In addition, we observed supportive laboratory find
ings of decreased CTLA4 expression in Tregs and decreased 
LRBA expression, as determined by Western blotting. These re
sults suggest that our diagnostic analysis can contribute to clin
ical diagnosis. In summary, although genetic diagnosis was 
possible in three patients by T-RNA-seq alone, integrated ana
lysis with proteomics enabled genetic diagnosis in one addition
al patient, increasing the efficiency of genetic diagnosis by 6% in 
patients who could not be diagnosed by genetic analysis 
(Table 2).

The protein and mRNA expression levels of B- and 
T-cell-specific genes show strong correlations
Considering that a discrepancy between protein and mRNA ex
pression of the disease-causing gene was noted in two cases in 
our diagnostic analysis, we systematically analyzed the correl
ation between protein and mRNA levels. We first calculated 
Spearman’s correlation coefficients for 314 genes identified by 
both proteomics and T-RNA-seq among our 63 patients (Fig. 3A 
and SI Appendix, Dataset S4) and found that the median correl
ation was 0.29 (interquartile range of 0.07–0.52). Furthermore, 
the distribution of correlation coefficients indicates that more 
than half of the genes have an absolute correlation coefficient of 
less than 0.4, that is, weak or no correlation (Fig. 3B). These results 
indicate a discrepancy between protein and mRNA expression lev
els. Because the genes targeted in T-RNA-seq included the 
immune-cell-specific genes used as cell markers, we also com
pared protein–mRNA correlations of B-, T-, and NK-cell-specific 
genes. We identified 10 B-cell- and 13 T-cell-specific genes among 
the 314 genes but no NK-cell-specific genes. Interestingly, the cor
relation coefficients for B-cell-specific and T-cell-specific genes 
were 0.84 and 0.74, respectively, showing a strong correlation 
(Fig. 3C).

Exploratory analysis of B-cell-specific proteins 
enables the identification of B-cell-deficient cases
Based on the strong correlation of proteomic and T-RNA-seq data 
in B and T cells detected in the current study, we investigated 
whether proteomic analysis could discriminate the population 
with immune cell defects, which play a pivotal role in the patho
genesis of IEI. We thus analyzed proteomic data with k-means 

Table 1. Summary of the results of the diagnostic analysis and its validation analysis.

Patient 
ID

Pathogenic 
gene

Variants detected in prior 
genetic analysis

Results of diagnostic 
analysis

Genomic variants detected in 
follow-up analysis

Supportive laboratory findings

B1_P21 BTK No pathogenic variants Decreased protein and 
mRNA expression 
levels

c.-196+1G>T (variant in 
splice-site and cis-regulatory 
region)

B-cell defects via flow 
cytometry (0.1% of total 
lymphocytes)

B1_P22 XIAP No pathogenic variants Decreased protein and 
mRNA expression 
levels

Large deletion in promoter 
region (36)

Decreased XIAP expression in 
RT–PCR and WB (36)

B1_P29 ADA2 c.982G>A: p.Glu328Lys 
(heterozygous)

Decreased expression 
only at the protein 
level

• Aberrant splicing with 
intoronic variant of c.972 
+102T>G

• Allele specific expression

Decreased ADA2 activity (37)

B2_P35 LRBA c.1219_1220del: 
p.Leu408Valfs*7 
(heterozygous)

Decreased expression 
only at the protein 
level

Being analyzed • Decreased CTLA4 
expression in Tregs

• Decreased LRBA 
expression via WB

RT–PCR, reverse transcription PCR; WB, Western blotting; CTLA4, cytotoxic T-lymphocyte associated protein 4; Tregs, regulatory T cells.
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Table 2. Diagnostic efficiency in undiagnosed patients using WES or T-NGS.

Method Number of diagnosed patients The increase in 
diagnostic efficiency

Notes

T-RNA-seq 3 
(BTK deficiency, XIAP deficiency, 
ADA2 deficiency)

4% ADA2 deficiency could possibly be diagnosed via T-RNA-seq 
alone by identifying aberrant splicing

Proteomics 1 
(LRBA deficiency)

2% • Proteomics was the only diagnostic evidence of LRBA 
deficiency

• Proteomics provided supportive findings at the protein 
level in BTK, XIAP, and ADA2 deficiency

T-RNA-seq + Proteomics 4 6%
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Fig. 3. Correlation analysis of IEI-related genes. A) Spearman correlation coefficients of protein and mRNA levels for genes identified by proteomics and 
T-RNA-seq. The color scale reflects the degree of correlation, with red bars indicating a strong correlation, pink bars indicating a moderate correlation, 
blue bars indicating a weak correlation, and gray bars indicating no correlation. B) The bar chart indicates the frequency of each degree of correlation 
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clustering based on immune cell-specific protein profiles (SI 
Appendix, Dataset S5). First, we extracted 18 B-cell-specific pro
teins (based on public databases) from our proteomic data 
(Fig. 4A) and selected three according to the criteria described in 
the Methods (see “Exploratory analysis of B- and T-cell defi
ciency”). We then segregated 12 cases into B-cell-deficient cluster 
by k-means clustering (Fig. 4B). Interestingly, eight out of 12 cases 
categorized as B-cell-deficient cluster were classified in IUIS cat
egory 3 as “predominantly antibody deficiencies,” and five of 
them showed apparent B-cell defects in flow cytometry (FCM) 
analysis (SI Appendix, Table S2). To validate the clustering results, 
we performed GO analysis of significantly downregulated genes 
(log-fold-change <−1.5 and p-value <0.05) in a two-group com
parison (B-cell-deficient clusters vs. others). The results showed 
that many genes involved in B-cell function were strongly down
regulated in the B-cell-deficient group, even in the total protein 
profile, suggesting that the clustering results were valid (Fig. 4C 
and D). For further validation of the proteomics results, we com
pared the results with those of T-RNA-seq (SI Appendix, Fig. S4A). 
The 14 B-cell-deficient cases identified by T-RNA-seq included 
all 12 B-cell-deficient cases in the proteomics, indicating the 
strong protein–mRNA correlation of B-cell-specific genes (Fig. 4E, 
SI Appendix, Table S3). In summary, PBMC proteomics enabled 
the identification of cases with B-cell dysfunction based on their 
quantitative changes.

Comprehensive protein analysis reveals T-cell 
dysfunction in diverse disease types, and 
T-RNA-seq reveals diversity in the expression 
profiles of T-cell-specific genes
Next, we examined T-cell dysfunction, which provides a helpful 
benchmark for the validity of our study because T-cell function 
is diverse, and its dysfunction is implicated in the pathogenesis 
of various forms of IEI. Our proteomic analysis identified 32 
T-cell-specific proteins (Fig. 5A and SI Appendix, Dataset S5), and 
clustering analysis identified 23 cases of T-cell deficiency 
(Fig. 5B). The Results show that half of the T-cell-deficient cluster 
are either combined immunodeficiency or IUIS category 4 as “dis
eases of immune dysregulation,” in which T-cell dysfunction is 
the predominant pathological feature (SI Appendix, Table S4). 
Most of the remaining cases were suggested to be common vari
able immune deficiency (CVID), but only three of them were also 
classified as B-cell deficient. On the other hand, a case of 
X-linked agammaglobulinemia, which presents as a pure B-cell 
defect, was not included in the T-cell-deficient cluster, indicating 
the heterogeneous nature of CVID. GO analysis of the proteins 
downregulated in the T-cell-deficient cluster vs. others showed 
that terms involved in ribosome biogenesis and ribosomal RNA 
were highly enriched (Fig. 5C), and the protein expression of those 
involved in T-cell function was also suppressed to the same extent 
(Fig. 5D). In contrast to the analysis of B-cell deficiency, only 17 
T-cell-deficient cases in T-RNA-seq matched the cluster in the 
proteomic analysis (Fig. 5E, and SI Appendix, Table S5). This is an 
unexpected result but is attributed to the fact that clustering 
based on T-cell-specific genes was highly variable (SI Appendix, 
Fig. S4B), and the elbow point, which indicates the optimal num
ber of clusters, was uniquely greater than a value of two in 
T-cell analysis of T-RNA-seq (SI Appendix, Fig. S5A and B). These 
results suggest that T-cell function in IEI is more complex than 
B-cell function, and in particular, the mRNA expression of 
T-cell-specific genes exhibits a diverse profile.

Discussion
This study analyzed 63 patients with IEI through in-depth prote
omic analysis of PBMCs, identifying 6498 proteins that covered 
63% of the genes covered by the T-RNA-seq. The improved com
prehensiveness and mRNA coverage allowed an integrated ana
lysis of protein and mRNA and revealed the discrepancies 
between protein and mRNA expression levels. These findings 
demonstrate the importance of proteomic analysis and its role 
as a complement to RNA-seq for IEI. The most important clinically 
relevant result was that these gene expression analyses enabled 
genetic diagnosis in four cases, two of which could be diagnosed 
only by proteomic analysis. In addition, an integrated study with 
T-RNA-seq elucidated the genomic basis of the disease in one 
case. Another significant finding was that proteomic data allowed 
us to classify the cases of immune cell defects based on protein 
profiles specific to those cells. Exploratory analysis then revealed 
immune cell dysfunction in terms of comprehensive molecular 
interactions. These findings suggest that an integrated analysis 
of proteomics and T-RNA-seq facilitates the understanding of 
the pathogenesis and underlying immune cell defects in IEI cases.

One fascinating finding was that diagnostic analysis revealed 
the disease-underlying protein in four cases. Among them, BTK- 
and XIAP-deficient cases demonstrated a noticeable reduction in 
both protein and mRNA expression. Further analysis proved 
that these results were due to genomic variants in the promoter 
region. In contrast, ADA2- and LRBA-deficient cases exhibited dis
cordance between protein and mRNA expression, where de
creased expression was observed only at the protein level. In 
these cases, the identification of the lack of ADA2 activity and re
duced LRBA expression in western blotting aided in the clinical 
diagnosis. Proteomic analysis thus provides essential information 
that contributes to clinical diagnosis. Moreover, T-RNA-seq for 
ADA2 deficiency showed ASE in genomic locations bearing mis
sense variants which may trigger nonsense-mediated decay 
(NMD). This finding is consistent with previous findings by Rivas 
et al., who demonstrated that variants generating premature 
stop codons and predicted to trigger NMD were prone to demon
strate ASE (38). Nevertheless, NMD occurring in the allele of the 
intronic variant in ADA2 did not significantly affect the mRNA ex
pression levels, and its pathological significance was identified via 
the decrease in protein expression levels. These findings are con
sistent with those of Jiang et al., who showed that protein informa
tion could explain genetic disease phenotypes that could not be 
explained by transcript information alone (39). Additionally, re
duced expression of disease-causing proteins can be identified 
through comparison with healthy controls, and the discovery of 
downregulated proteins does not necessarily require a cohort. 
These findings suggest that they can be applied in the clinical set
ting for diagnosing a single patient.

Another important finding was that target enrichment of 
RNA-seq allowed us to identify the genomic basis of an 
ADA2-deficient case. The expression levels of aberrant transcript 
was very low due to mRNA instability; Leafcutter results show 
that the number of aberrant splicing reads is only 0.008% of the 
cluster. However, target enrichment increased the read depth 
and revealed the aberrant splicing with intronic variant. These re
sults reflect those of Gildea et al. who also found that target 
RNA-seq method increased the efficiency of identification of 
rare splice isoforms, which was difficult with standard RNA-seq 
(40). Given that the guidelines from ACMG state that a null variant 
in a gene where loss of function (LOF) is a known mechanism of 
pathogenicity is the strongest evidence of pathogenesis (41), inte
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grated analysis of T-RNA-seq and proteomics provides significant 
support for genetic diagnosis by detecting an aberrant splicing 
and reduced protein levels. In addition, integrated analysis can 
be a useful tool for the diagnosis of IEI because more than 75% 
of the known IEI variants show autosomal recessive or X-linked 
recessive inheritance and are considered LOF (2). Taken together, 
this study contributes to the clinical management of IEI by provid
ing a rationale for essential specific treatment options, such as 
TNF inhibitors for ADA2 deficiency (42), abatacept for LRBA defi
ciency (43), and HSCT for XIAP deficiency.

As mentioned in the literature review, lymphocyte subset ana
lysis, which provides the initial evidence of immune system insuf
ficiency, is a fundamental diagnostic approach for IEI, along with 
genetic testing (44). We classified all cases into two groups based 
on the profiles of three proteins specific to B- and T cells and per
formed DEA to explore immune cell defects. The results of GO 
analysis for B cells are reasonable, with many proteins involved 
in B-cell function showing decreased expression. Interestingly, 
patient B1_P17, clinically diagnosed with late-onset combined im
munodeficiency, was assigned to the B-cell-deficient cluster, even 
though the CD19(+)-B-cell abundance in the peripheral blood was 
13.1% and no reduction was observed by FCM. These results fur
ther support the suitability of proteomics for IEI diagnosis, as its 
unbiased comprehensiveness provides a quantitative and func
tional information regarding immune cell status. However, the 
B-cell-deficient cluster of T-RNA-seq showed no decreased ex
pression in AICDA. This rather contradictory result may be due 
to inadequate target enrichment of AICDA; in fact, some cases 
showed missing values. In contrast to B-cell analysis, T-cell ana
lysis showed that the proteins involved in ribosome biogenesis 
and ribosomal RNA processing were downregulated to the same 
extent as those involved in T-cell function. However, paradoxical
ly, these results coincide with those of well-regarded studies indi
cating that T-cell activation via T-cell receptor signaling enhances 
ribosome biosynthesis (45, 46); in other words, T-cell dysfunction 
inhibits ribosome biogenesis. Overall, these findings suggest that 
comprehensive proteomics provides insight into not only quanti
tative abnormalities of immune cells but also the functional as
pects of immune cells based on quantitative changes in the 
molecules involved in their cellular function.

Even though the data processing yielded optimized proteome 
data, the presence of nonnegligible numbers of MVs remains the 
major limitation of this study. Seven ineligible cases, which 
were PCA outliers, were excluded to ensure protein coverage of 
the data, but 2143 proteins (27% of the total) were excluded due 
to the large number of samples containing MVs for that protein. 
Moreover, these proteins included 85 genes covered in the 
T-RNA-seq (decreasing the total from 399 to 314 genes), which 
may have caused some bias in the results of correlation analysis. 
Additionally, analyzing only at a one-time point may underesti
mate the correlation as proteins and mRNAs have different tem
poral contexts (47, 48). In part, this is why it is important to 
analyze protein and mRNA in an integrated manner. Another po
tential weakness of this study is that proteomic analysis cannot be 
directly linked to genetic diagnosis when disease-causing proteins 
show no quantitative changes. In such cases, the changes in the 
molecules associated with the pathogenic protein could provide 
the initial clues to the pathogenesis of the disease. However, we 
did not find such results in the current study. Despite these limi
tations, this study indicates that integrated analysis of PBMCs is a 
novel and valuable diagnostic tool for IEI to identify immune cell 
dysfunction that reflects disease pathogenesis and, in several 
cases, disease-causing proteins. Further improvements in 

proteomics data analysis and measurement sensitivity, in com
bination with its use in multilayered expression analysis with 
RNA-seq, will contribute to increases in diagnostic yield and a 
deeper understanding of IEI.

Materials and methods
Clinical samples
Seventy IEI patients were recruited from five institutions in three 
cohorts, with 34, 28, and 8 patients, respectively. In addition, six 
HCs participated in another period. Throughout this paper, we re
fer to the cohorts as Batch1 (B1), Batch2 (B2), Batch3 (B3), or Ctrl 
(C), and patients are identified by group and a unique ID, for ex
ample, B1_P1, B2_P35, or B3_P63. Clinical information, such as 
classification from IUIS, presumptive diagnosis, and candidate 
genes, was obtained from clinicians. The primary inclusion criter
ion for IEI patients was the lack of genetic diagnosis via a canon
ical diagnostic approach such as WES or T-NGS; that is, patients 
without pathogenic variants in genes consistent with their clinical 
features and mode of inheritance, and the interpretation of 
“pathogenic” was according to the ACMG criteria (41). Therefore, 
when we identified no pathogenic variants, we designated them 
as “no candidate.” On the other hand, when we identified variants 
that matched the clinical characteristics but did not meet the 
ACMG criteria or the mode of inheritance, we designated the 
gene as a “candidate gene.”

The local ethics boards approved this study of Hiroshima 
University, Tokyo Medical and Dental University, National 
Defense Medical College, Gifu University, and Kyoto University.

Sample preparation
Methods for sample preparation are described in “SI methods.”

Proteomics and targeted RNA sequencing
Methods for Mass spectrometry-based proteomics and T-RNA-seq 
are described in “SI methods.”

Integrated proteomics and targeted RNA 
sequencing analysis
To understand the etiology and pathogenesis of IEI, we carried out 
three different approaches using R v4.1 and Bioconductor v3.14 
packages.

Comparison of proteomics and targeted RNA 
sequencing in genetic diagnosis for inborn errors 
of immunity
First, to assess whether proteomic data could contribute to the 
genetic diagnosis, we examined changes in the abundance of pro
teins encoded by candidate genes in individual cases and com
pared these results with those of T-RNA-seq. It was impossible 
to investigate the DEA by comparing individual cases and HC be
cause statistical significance is not a logical criterion in a single- 
case situation. Therefore, we analyzed the distribution of the pro
tein abundance and the quantitative differences were calculated 
using z-scores. The absolute value of the z-score greater than 
two was defined as significant change. The absolute value of the 
z-score greater than or equal to 2 was defined as significant 
change. We also analyzed the quantitative differences between 
each case and the HCs to obtain further information about the bio
logical significance. We calculated the log fold-change (LFC) and 
mean expression values using limma (49) and visualized the data 
using ggplot2 (R package). We also used Integrative Genomics 
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Viewer (IGV) v2.8.7 (50) to visualize aligned reads to detect sequence 
variants and allele-specific expression in T-RNA-seq.

Correlation analysis of proteomics and targeted 
RNA sequencing
Second, we examined the discrepancy between protein and mRNA 
expression levels. Based on the gene profiles identified by both pro
teomics and T-RNA-seq in 63 of the cases analyzed, the protein– 
mRNA correlation for each gene was analyzed using Spearman’s 
correlation coefficient. In addition, the correlation coefficients of 
genes specific to B, T, and NK cells were compared for later explora
tory analysis. Cell-specific proteins were obtained from the data
base of Immune Cells (51) in The Human Protein Atlas (52). The 
degree of correlation was set as follows based on the absolute value 
of the correlation coefficient: 0.7 or higher is strong, 0.4 to 0.7 is 
moderate, 0.2 to 0.4 is weak, and 0.2 or lower is no correlation.

Exploratory analysis of B- and T-cell deficiency
Finally, we conducted an exploratory process to identify B-cell- or 
T-cell-deficient populations. In proteomic analysis, three cell- 
specific proteins were selected according to the following criteria: 
(i) proteins with higher specificity and (ii) proteins without MVs or 
with fewer MVs. In T-RNA-seq, on the other hand, the analysis 
was based on gene profiles selected based on the criteria described 
in (i), since T-RNA-seq data are already target-enriched and contain 
no MVs. We then normalized the data with the z score using 
Genefilter (53), and performed a heatmap analysis of k-means clus
tering using ComplexHeatmaps (54). The k value was set to two to 
discriminate the data points into cell deficiency clusters and others, 
and the results of proteomics and T-RNA-seq were compared. The 
validity of the k-value was examined by PCA and the elbow method, 
which determines the optimal number of clusters. We performed 
differential expression analysis (DEA) on the comprehensive prote
omic data to further validate the clustering results. DEA was com
pared in the cell-deficient cluster vs. others and was performed 
using DEP (55), which borrows its statistical models from limma 
(49). In the DEP results, P values of <0.05 and LFC of <−1.5 were 
set as the thresholds for significant differential expression. We 
then performed Gene Ontology (GO) enrichment analysis of signifi
cantly suppressed proteins using ClusterProfiler (56). GO terms re
lated to biological processes were selected, and those with 
adjusted P values below 0.01 were considered significant.
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