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FXR and NASH: an avenue for tissue-specific regulation
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Abstract

NASH is within the spectrum of NAFLD, a liver condition encompassing liver

steatosis, inflammation, hepatocyte injury, and fibrosis. The prevalence of

NASH-induced cirrhosis is rapidly rising and has become the leading

indicator for liver transplantation in the US. There is no Food and Drug

Administration (FDA)-approved pharmacological intervention for NASH. The

farnesoid X receptor (FXR) is essential in regulating bile acid homeostasis,

and dysregulation of bile acids has been implicated in the pathogenesis of

NASH. As a result, modulators of FXR that show desirable effects in

mitigating key characteristics of NASH have been developed as promising

therapeutic approaches. However, global FXR activation causes adverse

effects such as cholesterol homeostasis imbalance and pruritus. The

development of targeted FXR modulation is necessary for ideal NASH

therapeutics, but information regarding tissue-specific and cell-specific FXR

functionality is limited. In this review, we highlight FXR activation in the

regulation of bile acid homeostasis and NASH development, examine the

current literature on tissue-specific regulation of nuclear receptors, and

speculate on how FXR regulation will be beneficial in the treatment of NASH.

INTRODUCTION

NAFLD is the most common chronic liver condition in
the US, with an estimated 25% of US adults suffering
from this disease, particularly simple fatty liver. NAFLD
encompasses a spectrum of liver conditions charac-
terized by fat accumulation in the liver, not caused by
excessive alcohol consumption, which may develop

into NASH. Approximately 20%–25% of the NAFLD
population have NASH (5% of US adults). NASH is
characterized by hepatocyte ballooning, inflammation,
and varying degrees of fibrosis, in addition to steatosis.
Excessive fibrosis can lead to cirrhosis, an end-stage
liver disease, and increase the risk of HCC.[1,2] NASH-
induced cirrhosis has become the leading indicator for
liver transplantation in the country, and its prevalence is
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rapidly rising.[3–5] The progression from simple fatty liver
to NASH is not well elucidated, and although the
pathogenesis of NASH has been speculated and
theorized, its etiology has yet to be confirmed.[6] The
current recommended treatment of NASH is lifestyle
modification such as diet and exercise with no FDA-
approved pharmacologic interventions.

A ligand-activated transcription factor (TF) and type II
nuclear receptor (NR), farnesoid X receptor (FXR), has
been identified as a clinical target for therapeutic
intervention for NASH and other chronic liver diseases.
FXR has a wide range of functions that are beneficial in
the treatment of NASH, including the reduction of
steatosis, inflammation, and fibrosis, through the tran-
scriptional activation and/or suppression of various
biological pathways.[7] Synthetic steroidal or nonster-
oidal agonists of FXR have been developed for the
treatment of NASH and are currently undergoing clinical
trials, such as obeticholic acid, cilofexor, nidufexor, and
tropifexor.[8,9] The current FXR agonists activate whole-
body FXR and display favorable effects in the treatment
of NAFLD/NASH[10–12]; however, adverse side effects
such as pruritus, cholesterol homeostasis imbalance
(increases in LDLs and decreases in HDLs), fatigue,
and abdominal discomfort have been reported in
patients with NASH and other chronic liver diseases
after treatment with FXR agonists.[9,13] There is an
urgent need to determine the tissue-specific role(s) of
FXR to prevent adverse effects and to develop targeted
and efficacious therapies for NASH patients (Figure 1).
This review examines factors that contribute to FXR
tissue-specific modulation and their potential effect on
the therapeutic development for NASH.

FXR

Introduction to NRs

NRs are a family of ligand-activated TFs that regulate
various biological processes and functions. There are
over 500 members of this superfamily that are further
divided into 7 subfamilies or subclasses: NR1 (thyroid
hormone-like), NR2 (HNF4-like), NR3 (estrogen-like),
NR4 (nerve growth factor IB-like), NR5 (fushi tarazu-
F1-like), NR6 (germ cell nuclear factor-like), and NR0
(which do not contain a DNA binding domain).[14,15]

FXR is an adopted orphan NR1 that is activated by bile
acids (BAs). Specifically, the FXR gene (Nr1h4) was
first cloned in 1995 from mouse and rat liver,[16] and
BAs were discovered to be endogenous ligands of
FXR in 1999.[17] FXR is highly expressed in several
organs and cell types, including hepatocytes, kidneys,
adrenal glands, enterocytes, and to a lesser extent,
HSCs, cholangiocytes, white adipose tissue, and
immune cells.[18] Six isoforms of FXR have been
discovered (FXRα1-4 and FXRβ1-2), with FXRα being

greatly expressed in the liver, distal small intestine
(ileum), and adrenal glands, and FXRβ in the colon,
proximal small intestine (duodenum), and kidney in
humans.[19–21]

FXR and BA regulation

BAs are amphipathic molecules essential in the absorption
of dietary fats, cholesterol, and lipid-soluble vitamins
(vitamins A, D, E, and K). They are synthesized by
hepatocytes through complex and tightly regulated proc-
esses involving at least 17 different enzymes[22] through
2 major pathways as a result of cholesterol catabolism, the
classical and alternative pathways. The classical, also
known as the neutral pathway, is initiated with the rate-
limiting enzyme cholesterol-7α-hydroxylase (CYP7A1),
followed by sterol 12α-hydroxylase (CYP8B1) to yield
cholic acid (CA), whereas the alternative, or acidic path-
way, consists of sterol-27-hydroxylase (CYP27A1) and
25-hydroxycholesterol 7-alpha-hydroxylase (CYP7B1) to
make chenodeoxycholic acid (CDCA).[23,24] In mice, CDCA
is converted to β-muricholic acid by CYP2C70, which
is more hydrophilic and regarded as a strong FXR
antagonist.[25,26]

CA and CDCA are produced in the liver, where they
are conjugated with glycine (mainly in humans) or taurine
(mainly in mice), which decreases their initial hydro-
phobicity and increases solubility. Once conjugated, the
bile salts are effluxed out of hepatocytes by the bile
salt export pump (BSEP) and multidrug resistance-
associated protein 2 (MRP2) into the bile canaliculi to
be excreted out of the liver through bile ducts. Chol-
angiocytes, epithelial cells of the bile duct, modify bile
salts by diluting and alkalizing bile through bicarbonate or
other secreted compounds.[27] Bile is stored in the
gallbladder in most species until stimulated for release
by cholecystokinin, postprandial, into the duodenum
through the Sphincter of Oddi for emulsification, diges-
tion, and absorption of lipids in the small intestinal tract.
The primary BAs that make up the human BA pool are
CDCA and CA, which are converted to secondary BAs,
lithocholic acid and deoxycholic acid, respectively, in the
gut due to microbial modification.[28] BAs also affect the
gut microbiota composition, which can in turn alter the BA
species pool through a variety of modifications, including
deconjugation, dehydroxylation at carbon 7, and oxida-
tion and epimerization, increasing BA diversity.[29]

Bacteria expressing the bile salt hydrolase gene can
cleave glycine and taurine[24] from conjugated BAs, and a
complex of bacterial enzymes encoded by the Bai
operon can further modify BAs into secondary structures
that are not toxic to the microbiota population.[29,30]

Approximately 95% of BAs are reabsorbed in the
terminal ileum into enterohepatic circulation through ileal
apical sodium-dependent BA transporter (ASBT) and
organic solute transporter alpha and beta (OSTα/β).[31,32]
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Circulated BAs enter the liver through hepatic Na+/
taurocholate cotransporting polypeptide (NTCP) for
conjugated BAs or by organic anion-transporting poly-
peptide (OATP) for unconjugated BAs. The remaining
5% of BAs can be deconjugated by gut microbes and
passively absorbed by the colon (like deoxycholic acid)
or excreted from the body through the feces (mainly
lithocholic acid).[33] Secondary BAs are, in general, more
hydrophobic and toxic than primary BAs.[34]

BAs not only function as critical components of
digestion but also as powerful signaling molecules and
endogenous ligands of several NRs, including pregnane
X receptor and vitamin D receptor, in addition to
activating FXR.[35] CDCA is the most potent BA activator
of FXR, followed by CA, deoxycholic acid, and lithocholic
acid.[33,36,37] FXR is themain regulator of BA homeostasis
and is especially important in activating negative feed-
back inhibitionmechanisms, such as ileal FGF15 in mice,
FGF19 in humans, and hepatic small heterodimer
partner (SHP) to suppress BA synthesis.

Tissue-specific role of FXR in regulating BA
homeostasis

Because of amphipathic chemical properties, BAs
behave as detergents and, if not properly regulated,
can induce liver injury, inflammation, hepatocyte apop-
tosis, and cholestasis.[38–41] Extensive or chronic liver
damage can lead to cholestasis and even malignancy
development in patients, making the regulation of BA
synthesis a key topic in the field of hepatology.[42] FXR
is expressed in various organs and cell types such as
the pancreas, lungs, kidneys, liver (hepatocytes,
cholangiocytes, and stellate cells), and intestine

(enterocytes).[43–47] FXR function is largely understood
in hepatocytes and ileal enterocytes, but its role in other
cell types is not fully understood.

Intestinal FXR, specifically in the ileum, is the main
regulator of BA synthesis by means of the FXR-FGF15/
19 pathway that operates by mechanisms of negative
feedback inhibition.[48] FXR’s activation in the ileum
induces FGF15 secretion in mice[49] and FGF19 in
humans,[50] into the portal vein to the liver where it binds
and activates its receptor, FGF receptor 4 along with β-
Klotho, in hepatocytes to activate mitogen-activated
protein kinase signaling pathways.[51,52] FGF receptor 4
activation signaling inhibits the gene expression of
Cyp7a1, suppressing the classical pathway of BA syn-
thesis. Intestinal FXR controls BA synthesis, mainly at
night, through high Fgf15 expression in the intestine[53];
however, hepatic FXR regulates BA synthesis through
induced expression of Shp, which binds to liver receptor
homolog 1 inhibiting Cyp8b1 gene transcription and
minorly Cyp7a1.[51] Hepatocyte FXR activation also
induces the expression of BA efflux transporters, such
as Bsep and Ostα/β, in the liver to promote enterohepatic
BA circulation and prevent cholestasis.[54,55] Because of
the lack of FXR specificity for primary and secondary BAs
and BA dose-dependent cellular toxicity, the generation
of synthetic ligands for FXR activation has been of
increased interest.

Pioneer Factors

Regulators of transcription

With genome-based studies becoming especially crit-
ical in the study of NASH and other chronic liver

F IGURE 1 Overall significance. NASH develops following fat accumulation and subsequent hepatic inflammation and scarring. There are
currently no approved pharmaceutical therapeutics for NASH patients, and global FXR agonists, currently undergoing clinical trials, demonstrate
debilitating adverse effects like pruritus, abnormal cholesterol levels (elevated LDL and decreased HDL), fatigue, and abdominal discomfort.
Because of visualized varied FXR functions, it is critical to understand how FXR activation affects NASH development in an organ-specific manner
to identify proper therapeutic targets. Abbreviations: FDA, Food and Drug Administration; FXR, farnesoid X receptor.
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diseases, understanding gene expression in an organ-
specific manner may hold the key to identifying ideal
therapeutic targets. Pioneer factors (PFs), a subset of
TFs recognized as the proteins capable of binding
condensed chromatin to regulate transcription in a cell-
specific manner,[56] have recently been recognized as
an avenue for chronic liver disease research. Through
this process, PFs, and their dynamic expression,
implement cell fate and organ development[56]; how-
ever, it has been recently proposed that chromatin
opening, and subsequent expression of silent genes, is
mediated by PFs and non-PFs alike.[57] To target these
silent areas in the genome, PFs must recognize their
target DNA sequences on the nucleosome.[58] Despite
these controversies, understanding the organ-specific
role of TFs remains a key area of study for drug
development.

Forkhead Box A (FOXA) is a family of TFs vital in
foregut endoderm for hepatic differentiation and induc-
tion of liver-specific genes such as albumin.[59] The DNA
binding domain of FOXA (“winged helix” structure)
resembles the nucleosomal binding domain of the linker
histone, causing its displacement and opening of the
chromatin.[60] The winged helix structure, also known as
the forkhead domain, is highly conserved in each
isoform. In the liver, FOXA1 and FOXA2[61] are required
for early organ induction,[56,62] with FOXA2 deletion
being embryonically lethal, whereas another set of PFs
known as GATA-binding proteins, specifically GATA-4
and GATA-6,[63,64] is redundantly expressed and
required for the early organ development from the
foregut endoderm. Conditional triple-knockout of Foxa1/
2/3 in hepatocytes of adult mice resulted in eventual
liver failure 15–20 days after deletion.[65] In these mice,
hepatocyte nuclear factor 4 alpha (HNF4α) was
continually expressed, but there was minimal chromatin
accessibility at FOXA-HNF4α cobound sites, confirming
that FOXA chromatin manipulation is necessary for
adult liver function.[65] It has been found that over-
expression of GATA-6 in patients with NAFLD resulted
in increased HSC activation and subsequent fibrosis.[66]

Interestingly, hepatocyte-specific deletion of GATA-4,
through the albumin promoter, resulted in increased
steatosis and insulin resistance in a murine model fed
high-fat diet.[67] These studies demonstrate the com-
plexity of PFs postdevelopment and highlight an
important role for them in the development and
progression of steatosis and NASH. There are limited
studies investigating PF function in NASH; however, the
proteome created by PF and TF binding may provide
the key to organ-specific therapeutic targeting.

FOXA2 and BA homeostasis

FOXA2 (previously known as HNF-3β) is essential for
murine liver development and remains critical in the

adult liver for BA, glucose, and lipid homeostasis.[68–71]

Foxa2-deficient mice display an accumulation of BAs in
the liver (Figure 2).[72] Furthermore, FOXA2 has been
shown to regulate hyperbilirubinemia in mice and
patients with sepsis and acute liver failure by the
upregulation of MRP2.[73] FOXA2 directly and indirectly
regulates the gene expression of hepatic transporters,
Oatp2, Mrp2, Mrp3, and Mrp4, and indirectly regulates
Cyp3a11 that encodes a key P450 phase I enzyme,
contributing to BA accumulation.[69,73] Chromatin
immunoprecipitation (ChIP) conducted with an anti-
FOXA2 antibody on livers with no FOXA2 suggests that
Mrp2 and Oatp2 genes are direct targets of FOXA2
in vivo. FOXA2 replaces FXR to maintain the
expression of Mrp2 in patients with acute liver failure
excluding sepsis.[73] In fact, mice with hepatocyte-
specific Foxa2 ablation displayed reduced Cyp7a1,
Cyp7b1, Cyp8b1, Cyp27a1, and Ntcp gene expression
following standard diet feeding, insinuating a key role for
Foxa2 in BA regulation.[69] It has also been shown that
pediatric and adult cholestatic patients have reduced
hepatic FOXA2 expression, further exemplifying its
importance in liver disease progression.[69] FOXA2
and FOXA1 also regulate bile duct and gallbladder
development by manipulating chromatin accessibility for
glucocorticoid receptor binding.[74,75]

It is possible that BA activation of FXR may acutely
activate the transcription of Foxa2.[76] In mice, FXR
and FOXA2 bind the upstream regulatory region of
Shp, with Shp induction decreasing BA production by
downregulation of Cyp7a1 transcription (Figure 2).[77]

The field remains controversial on the actual
interactions of FXR and FOXA2. There are several
proposed interactions. It is believed that the binding of
FOXA2 is dependent on FXR, and FOXA2 may
repress FXR transcriptional activity on several
genes, including Shp, by a tethering mechanism.[78]

This proposed mechanism would explain how FOXA2
could regulate FXR tissue-specific functionality.
Contrarily, it has been suggested that FXR ligand–
directed activation remains FOXA2-independent while
its chromatin binding is FOXA2 dependent[76,79];
however, it has also been shown that FOXA2 is
required for ligand-bound FXR DNA binding and
activation.[78,79] Similarly, FOXA2 occupancy is
increased dramatically when FXR is bound by an
agonist, leading to the belief that FOXA2 is not bound
to DNA before FXR ligand activation. FOXA2 evicts
nucleosomes allowing for the opening of chromatin for
FXR-binding accessibility and increased transcription.
However, FOXA2 is believed to repress the transcrip-
tional activity of FXR appropriate for the maintenance
of a particular physiological state. These works
suggest an interdependent relationship between
FOXA2 and FXR DNA binding during ligand activation
(Figure 3). The mechanism of interaction between
FXR and FOXA2 is not well understood, and further
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studies may allow for a deeper understanding of their
complex interactions in health and disease.

Importance of FXR tissue specificity in the
treatment of NAFLD/NASH

Implications of BAs in NAFLD/NASH
progression

Dysregulation of BAs is linked to NASH pathogenesis;
therefore, modulating BA homeostasis opens potential
therapy of NASH through their signaling effects.[80] The
ratio of secondary BAs to primary BAs is inversely
correlated to the NAFLD Activity Score, indicating a
relationship between BA species and disease
stage.[81,82] Free fatty acid accumulation from diet
inhibits Shp expression, leading to decreased repres-
sion of Ntcp and Cyp7a1 and continued BA production
and accumulation in the liver, which promotes hepato-
cyte injury and the development of NASH.[83,84]

Because of the close relationship between the micro-
biome and BA composition, it has been established that
there are differences in microbiome composition
between healthy and NAFLD patients. Glycine-
metabolizing and taurine-metabolizing bacteria were
increased in NAFLD patients, which may help explain
the increase in secondary BAs in the BA pool.[85]

Furthermore, when intestinal microflora composition is
altered, conjugated BAs and their metabolites can be
increased, which inhibits intestinal FXR signaling
leading to reduced BA secretion from the liver and
promotion of NAFLD.[86]

Benefits of tissue-specific FXR activation/
inactivation in the treatment of NASH

The current challenge is the design of tissue-specific
FXR agonists capable of regulating BA homeostasis,
lipid metabolism, and inflammation without off-target
effects. Systemic FXR activation is proven to be
beneficial in protecting against steatosis, inflammation,
and fibrosis because of its activation of FXR. Systemic
FXR agonists, such as obeticholic acid, reduce the
accumulation of triglycerides in the liver and free fatty
acids in mice fed high-fat diet.[11] Obeticholic acid also
decreases liver inflammation and fibrosis while increas-
ing the risk of pruritus and LDLs.[8,87] GW4064, a
selective FXR agonist, has been shown to reduce
hepatic inflammation in high-fat diet or high-fat, high-
cholesterol diet–fed mouse models.[10] WAY-362450
decreased fibrosis severity in methionine and choline-
deficient mouse models[88] and increased VLDL and
LDL while decreasing HDL in fructose-fed rats.[89]

Cilofexor (GS-9674) is beneficial in decreasing steato-
sis and fibrosis in both mice and humans but increases
the risk of pruritus.[90,91] Tropifexor (LJN452) is also
beneficial in decreasing liver fat and fibrosis while
increasing the risk of pruritus and is associated with
minor increases in LDLs.[9] The benefits and conse-
quences of whole-body FXR agonists demonstrate the
importance of understanding mechanisms and/or roles
of FXR tissue-specific activation to negate adverse
effects in patients with liver diseases.

Genome-wide ChIP-seq technologies have allowed
insight into tissue-specific gene expression of FXR in
mice.[92] There was only an 11% overlap between liver

F IGURE 2 FOXA2 and BA homeostasis. In the liver, FOXA2 directly regulates the expression of genes of transporters Oatp2 and Mrp2
involved in BA transport and, indirectly, Cyp3a11. Deficiency of FOXA2, as seen in cholestatic patients, has decreased the gene expression of
Oatp2, Mrp2 (along with Mrp3 and Mrp4, not shown), and Cyp3a11, contributing to cholestasis and increased BA accumulation within the liver.
Excess BAs activate FXR, which in turn induces gene expression of Shp to suppress the expression of genes encoding rate-limiting enzymes for
BA synthesis, Cyp7a1 and Cyp8b1, to mitigate cholestasis and excess BAs in the liver. FOXA2 is also believed to bind alongside FXR in the
upstream regulatory region to elicit these effects. Abbreviations: BA, bile acid; FXR, farnesoid X receptor.
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and intestinal FXR-binding sites in mice, suggesting
underlying regulation of FXR tissue-specific function-
ality.[92] Activation of hepatic FXR has been shown to be
a protective mechanism against hepatic steatosis.[93] It
was determined that when feeding hepatic FXR knockout
and intestinal FXR knockout mice a high-cholesterol diet,
the hepatic FXR deficiency exacerbated hepatic stea-
tosis while intestinal FXR deficiency did not.[93] Hepatic
FXR also inhibits lipogenesis by inducing SHP expres-
sion, which suppressed sterol regulatory element-binding
protein 1c and its downstream lipogenic target genes.[94]

In addition, hepatic FXR is important in modulating
hepatic inflammation, specifically by inhibiting NF-κB, an
important inflammatory modulator.[7] In vitro, FXR inhib-
ited NF-κB activation in HepG2 cells and primary
hepatocytes.[7] In vivo, FXR knockout mice treated with
LPS had greater induction of hepatic proinflammatory
mediators, such as cyclooxygenase-2 and inducible
nitric oxide synthase, compared with the control
group, implicating an anti-inflammatory characteristic of
hepatic FXR.

The activation and inhibition of intestinal FXR have
been beneficial in the treatment of NASH in rodents.
The benefits of the inhibition of intestinal FXR have
been attributed to the microbiome-intestine-liver ceram-
ide axis.[95] Ceramides are intracellular signals for
apoptosis[96] and also increase sterol regulatory ele-
ment-binding protein 1c activity in the liver, which
promotes lipogenesis.[97] Intestinal FXR has been
shown to increase the expression of genes involved in
ceramide synthesis.[86,97] Mice fed a high-fat diet treated
with a bile salt hydrolase inhibitor, caffeic acid phenethyl
ester, displayed reduced intestinal FXR activity and
ceramide synthesis. Treatment with caffeic acid phe-
nethyl ester lowered average body weight and improved

insulin sensitivity and glucose tolerance.[98] The reduc-
tion in ceramide levels also reduced hepatic endoplas-
mic reticulum stress. It is also known that caffeic acid
phenethyl ester activates the cAMP-CREB pathway,
which may be the mode of action for bile salt hydrolase
gene downregulation. Benefits of activating intestinal
FXR, outside of BA synthesis regulation, include
improvements in energy metabolism. Mice fed control
or high-fat diet treated with fexaramine, an intestinal-
specific FXR agonist, demonstrated increased energy
expenditure, reduced body weight and body fat mass,
decreased systemic inflammation and glucose produc-
tion, and increased brown adipose tissue mass when
compared with vehicle-treated mice on the high-fat
diet.[99] Because of the complex responses of tissue-
restricted FXR activation, identifying tissue-specific or
cell-specific modulators of FXR is required to develop
safe and effective therapies for NAFL and NASH
patients.

Tissue specificity of NRs

TF complexes in NASH

It is widely accepted that TFs work in a complex network
for the regulation of gene transcription and repression,
which can become altered in diseased states.[100,101]

HNF4α is a well-studied TF highly enriched in the liver
and is important for maintaining liver function and
mature hepatocyte function. C57BL/6J mice overex-
pressing human HNF4α exhibited protective effects
against diet-induced NASH, whereas loss of HNF4α
displayed opposite effects.[102] The explained mecha-
nisms involve transcriptional regulation of BA, lipolytic,

F IGURE 3 Proposed FXR and FOXA2 interactions. Three proposed FXR and FOXA2 interactions: (1) FOXA2 binding is dependent on FXR.
In addition, when bound, FOXA2 may repress FXR (which heterodimerizes with RXR) transcriptional activity. (2) Activation of FXR by ligand-
binding (such as BAs) is independent of FOXA2, and activation of FXR leads to transcriptional regulation of various genes such as Shp, Bsep, and
Fgf15/19. (3) FXR chromatin binding and activation is dependent on the presence of FOXA2, which displaces histones in highly condensed areas
of chromatin for a more open configuration to allow FXR binding. Abbreviations: FOXA1/2, forkhead box A1/2; FXR, farnesoid X receptor.
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and p53 signaling pathways. Restoration of HNF4α
through mRNA delivery improves the functionality of
fibrotic primary hepatocytes isolated from mice and
humans.[103] HNF4α also interacts with other TFs to
elicit liver protective effects. It has been shown that
HNF4α is required for activating transcription factor 3
(ATF3)-associated improvement of steatohepatitis.[104]

Mice fed a high-fat diet displayed increased hepatic
carbohydrate-responsive element-binding protein and
the inclusion of fructose to a high-fat diet increases both
carbohydrate-responsive element-binding protein and
Srbep1 expression.[105] In addition, it has been found
that zinc fingers and homeoboxes 2 (ZHX2), and its
downstream target protein PTEN, are suppressed in
murine models of NASH and in steatotic hepatocyte
culture.[106] Hepatocyte-specific deletion of ZHX2
exacerbated murine NASH phenotype, whereas
hepatocyte-specific overexpression ameliorated hepatic
steatosis, lipid accumulation, and liver fibrosis
and inflammation through increased expression of
PTEN.[106] A case for cellular programming through TF
regulation in NASH has also been speculated during
fetal development.[107] Pups born to female rats with
50% food restriction during pregnancy and nursed by
control dams had reduced hepatic peroxisome prolifer-
ator-activated receptor (PPAR)–α and -γ until 9 months
of age, which may indicate a complex and develop-
mentally linked role for PFs and TFs in NASH
development.[108] Together, these studies allow for the
speculation that FXR expression and function in NASH
may be disrupted through protein complex dysregula-
tion; however, the varied expression of FXR through the
body, and lack of FXR proteome knowledge, make it a
difficult target for study.

Therapeutics of tissue-specific NRs

Cell-specific modification of the functions of 1 NR,
estrogen receptor (ER), has been successful in the
development of efficacious and safer medicines in the
tissue-specific treatment of diseases. ERs are type I
NRs whose tissue specificity has allowed researchers
to design cell-specific agonists and antagonists, which
have been extensively reviewed.[109,110] Three types of
predominant ERs have been discovered and charac-
terized: ERα, ERβ, and an estrogen G protein–coupled
ER (GPER1) with 2 main signaling mechanisms,
genomic and nongenomic.[109] Studies of estrogens
and ERs in cancer, like breast and ovarian, have
provided seminal knowledge on targeted drug develop-
ment of selective ER modulators (SERMs) and identi-
fication of xenoestrogens to control ER function in a
tissue-specific manner.[109,110] Tamoxifen is a widely
used SERM that can serve as an ERα agonist in uterine
tissue and antagonist in breast tissue for the treatment
of patients with breast cancer.[109] Tamoxifen exerts its

inhibitory function in breast tissue by interacting with
ERα to shift the side chain to block coactivator
binding[111]; however, its weak activator function for
uterine ERα has been shown to increase endometrial
proliferation and carcinogenesis.[109,110]

Chronic liver diseases, like NASH, with no FDA-
approved therapeutic treatment, have benefitted from
liver-specific NR targeting like thyroid hormone receptor–
β (TR-β).[112] TR-β is a nonsteroidal type I NR with
extensive effects on metabolism, including body weight
and LDL reduction and increased hepatic fatty acid
β-oxidation on activation by thyroid hormones.[113]

Selective modulation of TR-β in the liver by promising
drugs such as resmetirom (MGL-3196) and VK2809
(MB07811) have shown to be beneficial in NASH
patients participating in phase 2 studies. Resmetirom
significantly reduced hepatic fat after 12 and 36 weeks
of treatment in NASH patients, whereas VK2809
significantly reduced liver fat content in treated NAFLD
patients compared with a placebo on 12 weeks of
administration.[114,115] The ability of these compounds to
specifically activate the TR-β isoform in the liver is critical
to minimize any potential off-target effects of TR-β
agonism in the central nervous system and hypothala-
mic-pituitary-thyroid axis, as TR-β has been demon-
strated to affect remyelination.[116] In addition, activating
liver-specific TR-βminimizes side effects that occur in the
heart and bone, which express TR-α. Through the tissue-
specific effects of ER and TR-β treatments, the existence
of unique tissue-specific FXR function is a promising
avenue to investigate pharmacological strategies that
can be implemented in the treatment of NASH.

SUMMARY

BAs are instrumental in fat and lipid digestion and in the
activation of numerous metabolic pathways; however,
their accumulation in tissues can lead to cell damage.
FXR, the master regulator of BA homeostasis, is critical
in suppressing BA synthesis by negative feedback
pathways and promoting BA transport therefore
decreasing the risk of developing cholestasis and liver
injury. NASH is one of the most common liver diseases,
and cholestasis contributes to NASH development and
progression into irreversible ailments. The regulation of
BAs has been a key therapeutic strategy to maintain a
healthy state in NASH patients. Whole-body FXR
agonism often results in adverse effects such as
pruritus and elevated serum LDL. Because of its
ubiquitous expression, understanding and manipulating
cell-specific FXR function may be the key for developing
NASH therapeutics. PFs such as FOXA2 provide a
novel area of study that contributes to underlying
mechanisms determining tissue-restricted FXR modu-
lation. After previous studies on NRs like ERα and TR-β,
we are hopeful that the discovery of the tissue-specific
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transcriptional function of FXR will allow us to examine
the targeted therapeutic approaches for NASH and
other liver diseases.
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