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Aging is associated with brain iron accumulation, which has been linked to cognitive decline. However, how brain iron affects the
structure and function of cognitive brain networks remains unclear. Here, we explored the possibility that iron load in gray matter
is associated with disruption of white matter (WM) microstructure within a network supporting cognitive function, in a cohort of 95
cognitively normal older adults (age range: 60–86). Functional magnetic resonance imaging was used to localize a set of brain regions
involved in working memory and diffusion tensor imaging based probabilistic tractography was used to identify a network of WM
tracts connecting the functionally defined regions. Brain iron concentration within these regions was evaluated using quantitative
susceptibility mapping and microstructural properties were assessed within the identified tracts using neurite orientation dispersion
and density imaging. Results indicated that high brain iron concentration was associated with low neurite density (ND) within the
task-relevant WM network. Further, regional associations were observed such that brain iron in cortical regions was linked with lower
ND in neighboring but not distant WM tracts. Our results provide novel evidence suggesting that age-related increases in brain iron
concentration are associated with the disruption of WM tracts supporting cognitive function in normal aging.
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Introduction
Non-heme brain iron is essential for neuronal function and is
involved in multiple cellular processes, such as adenosine triphos-
phate (ATP) generation in mitochondria, neurotransmitter syn-
thesis, and myelin generation. However, non-heme iron is also a
potent oxidizer (Todorich et al. 2009; Mills et al. 2010; Ward et al.
2014; Raz and Daugherty 2018) that contributes to the endoge-
nous production of reactive oxygen species (ROS; Chakravarti and
Chakravarti 2007). ROS can react with cellular structures (e.g.
lipids, proteins, and nucleic acids), interfering with normal cell
processes and damaging neurons, glia, and myelin (Wayne Martin
et al. 1998; Zecca, Youdim, et al. 2004; Chakravarti and Chakravarti
2007; Ke and Qian 2007; Daugherty et al. 2015; Daugherty and Raz
2016; Raz and Daugherty 2018; Butterfield and Halliwell 2019). As
a result, in healthy brain cells, non-heme brain iron is typically
sequestered in intracellular iron storage complexes like ferritin
and is released in a tightly regulated manner (Hentze et al. 2004;
Moos et al. 2007).

However, normal aging perturbs the iron sequestration pro-
cess, allowing non-heme iron to accumulate outside of storage
complexes, which increases oxidative stress (Lauffer 1992; Wayne
Martin et al. 1998; Zecca, Stroppolo, et al. 2004, Zecca, Youdim,
et al. 2004). Age-related accumulation of non-heme brain iron

has been associated with lower cognitive and motor performance,
including on measures of general cognitive ability, working mem-
ory, and episodic memory (Sullivan et al. 2009; Kim et al. 2017;
Acosta-Cabronero et al. 2018; van Bergen et al. 2018; Zachariou
et al. 2020). Recently, several studies have also reported a negative
relationship between brain iron load and functional connectivity
of cognitive brain networks in older adults (Salami et al. 2018;
Rodrigue et al. 2020; Zachariou et al. 2020).

In contrast, the relationship between brain iron load and white
matter (WM) connectivity, which provides the scaffolding for
functional connectivity, has been relatively under-explored. Age-
related increases in non-heme brain iron could disrupt WM tracts
connecting cognitive networks given that increased unbound iron
can contribute to demyelination via several biological mecha-
nisms, including altered ion channel activity (Stys 2005; Lass-
mann and van Horssen 2016), mitochondrial dysfunction (Smith
et al. 1999; Lassmann and van Horssen 2016; Raz and Daugherty
2018), and free radical damage affecting oligodendrocytes and
myelin (Graham et al. 1993; Todorich et al. 2009; Bartzokis et al.
2011).

It is not currently possible to measure iron load in WM using
magnetic resonance imaging (MRI) due to the diamagnetic effect
of myelin on susceptibility relative to other brain compart-
ments such as gray matter (GM) and cerebrospinal fluid (CSF).
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Consequently, existing studies have focused on associations
between GM iron and WM microstructure assessed with diffusion
tensor imaging (DTI). To date, few studies have explored these
associations and this research has generally been limited to
studies of patients with multiple sclerosis (MS), a progressive neu-
rodegenerative disease involving demyelination and increased
iron load (e.g. Raz et al. 2015; Zivadinov et al. 2018) or patients
with cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADISIL), a small vessel
disease characterized by widespread WM tract injury (Jokinen
et al. 2013; Hong et al. 2022).

One study in MS patients reported no relationship between
brain iron assessed with magnetic field correlation (MFC) values
and WM DTI metrics (Raz et al. 2015). In contrast, another study
found a relationship between brain iron load assessed with MRI
phase values in deep GM regions and multiple DTI metrics in a
number of WM tracts in MS patients (Bergsland et al. 2017). Within
healthy controls, this study reported only a single correlation
between MRI phase values in the left caudate and FA. Recently,
an additional study focused on CADASIL reported higher iron load
within deep GM regions of the patients compared to the control
group. Within these deep GM regions, CADASIL patients showed
a negative association between iron load and DTI-based metrics
in WM tracts. In contrast, no associations were observed in the
healthy control group (Hong et al. 2022).

Thus, at present, little remains known about the relationship
between brain iron load, WM microstructure and cognition in
healthy older adults. This may be in part because previous studies
have restricted their analyses to regions showing higher iron load,
or lower WM integrity, in patient compared to control groups
rather than focusing on brain networks supporting specific cogni-
tive tasks. Previous null effects could also relate to the relatively
young ages of healthy control groups (Raz et al. 2015: mean
age 36 years; Bergsland et al. 2017: 45.5 years; Hong et al. 2022:
55.7 years). In the current study, we evaluate associations between
brain iron concentration and WM microstructure in a network of
tracts supporting cognitive performance in healthy older adults
(mean age: 69.7 years). The cognitive domain of working memory
was selected due to the well-documented, negative relationship
between brain iron concentration and working memory perfor-
mance in older adults (Bartzokis et al. 2011; Daugherty et al. 2015;
Darki et al. 2016; Zachariou et al. 2020, 2021).

Brain iron load was assessed using quantitative susceptibility
mapping (QSM), a validated methodology for evaluating brain
iron concentrations (Langkammer et al. 2012; Liu, Surapaneni,
et al. 2012; Sun et al. 2015; Hametner et al. 2018). Specifically,
brain iron concentrations were assessed within working memory
cortical regions identified using a functional MRI (fMRI)-based
visual working memory task. Neurite orientation dispersion and
density imaging (NODDI) was used to assess WM microstructure
health within tracts interconnecting the fMRI-defined working
memory regions, delineated using DTI-based probabilistic trac-
tography. NODDI was used here because it is a more sensitive
method (By et al. 2017; Schneider et al. 2017) and more closely
linked to biology than more traditional DTI-based metrics. For
example, several in-vitro histological studies have linked NODDI-
based neurite density (ND), a voxel-wise estimate of the density of
dendrites and axons, with neurite degradation and demyelination
(Jespersen et al. 2010; Sepehrband et al. 2015; Wang et al. 2019).
Given the link between unbound iron and both demyelination
and neurite degradation (Graham et al. 1993; Smith et al. 1999;
Todorich et al. 2009; Bartzokis et al. 2011; Raz and Daugherty
2018), we hypothesized that QSM-based iron concentration would

Table 1. Group demographics and mean cognitive measures.

n 95

M:F 35:60
Age range (years) 60–86
Age (years) 69.7±5.7a

Education (years) 16.51±2.48a

MoCAb 27.12±2.26a

aMean ± standard deviation is shown for participants. bMoCA: Montreal
Cognitive Assessment.

be negatively correlated with ND in a network of tracts supporting
working memory performance.

Materials and methods
Participants
Ninety-eight healthy older adults were recruited for the experi-
ment from an existing longitudinal cohort at the Sanders-Brown
Center on Aging (Schmitt et al. 2013) and the broader Lexington,
KY, community. All participants provided informed consent under
a protocol approved by the Institutional Review Board of the
University of Kentucky. All participants were cognitively intact
based on either 1) clinical consensus diagnosis and scores from
the Uniform Data Set (UDS3) used by US ADCs (procedure outlined
in Morris et al. 2006; Besser et al. 2018) or 2) a score of 26 or higher
on the Montreal Cognitive Assessment (MoCA; Nasreddine and
Phillips 2005) for those participants recruited from the commu-
nity.

Study exclusionary criteria were self-reported significant head
injury (defined as loss of consciousness for more than 5 min),
heart disease, neurological or psychiatric disorders, claustropho-
bia, pacemakers, the presence of metal fragments or any metal
implants that are incompatible with MRI, diseases affecting the
blood (anemia, kidney/heart disease etc.) or significant brain
abnormalities detected during imaging.

Two participants were excluded from analyses on the basis
of MRI abnormalities. One participant was excluded due to
the presence of an old stroke that was not clinically evident
at study enrollment and another due to being diagnosed with
hydrocephalus based on MRI scans collected during the study.
Additionally, 1 participant was excluded due to excessive motion
during the QSM scan, resulting in a final sample size of 95
participants. Characteristics of the participant cohort are shown
in Table 1. Fifty-five of the subjects in the current study also
participated in Zachariou et al. (2020), while 73 subjects also
participated in Zachariou et al. (2021).

Imaging protocol
Participants were scanned with a Siemens 3 T Prisma scanner
(software version MR_VE11C), using a 64-channel head-coil, at
the University of Kentucky Magnetic Resonance Imaging and
Spectroscopy Center (MRISC). The following sequences were
used: 1) a 3D multi-echo, T1-weighted, magnetization prepared
rapid gradient echo sequence (MEMPR); 2) an fMRI, T2∗-weighted,
gradient-echo, echo-planar imaging (EPI) sequence comprised of
2 runs (4.07 min each); 3) a double-echo gradient-echo field map
sequence for spatial distortion correction of the fMRI data; 4) a
3D, multi-echo, gradient-recalled echo (GRE) sequence used for
quantitative susceptibility mapping (QSM); 5) a multi-shell, spin-
echo, echo-planar diffusion weighted imaging (DWI) sequence
(main DWI scan); and 6) a second spin-echo, echo-planar DWI
sequence with the phase-encoding direction reversed, used to
correct susceptibility-induced distortions in the main DWI scan.
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Several other sequences were collected during the scanning
session related to other scientific questions and are not discussed
further here.

The MEMPR sequence had 4 echoes [repetition time (TR) =
2,530 ms; first echo time (TE1) = 1.69 ms echo time spacing
(�TE) = 1.86 ms, flip angle (FA) = 7◦] and covered the entire brain
[176 slices, field of view = 256 mm, parallel imaging (GRAPPA),
acceleration factor = 2, 1 mm isotropic voxels, scan duration
=5.53 min]. A MEMPR sequence was used to optimize the
FreeSurfer cortical segmentation and accuracy of gray matter
(GM) masks (van der Kouwe et al. 2008). The 2 fMRI runs used
an EPI sequence with the following parameters: TR = 2,500 ms,
TE = 30 ms, flip angle = 90◦, resolution = 3.0 mm isotropic voxels,
64 × 64 matrix, field of view = 192 mm, 40 axial slices covering
the whole brain. The GRE field map scan was acquired right
after the second EPI sequence at the same resolution, field
of view and number of axial slices as the EPI sequences.
The sequence used for QSM was a flow compensated, multi-
echo, 3D spoiled GRE sequence in the sagittal plane with 8
echoes (TR/TE1/�TE/FA = 24 ms/2.98 ms/2.53 ms/15◦). The entire
brain was covered [acquisition matrix = 224 × 224 × 144, parallel
imaging (GRAPPA), acceleration = 2, 1.2 mm isotropic voxels and
scan duration = 6.18 min]. The main DWI scan was acquired
with 126 separate diffusion directions [232 x 232 x 162 mm
acquisition matrix (81 slices), 2 mm isotropic voxels, TR = 3,400 ms,
TE = 71 ms, scan duration = 7.45 min, posterior-to-anterior phase
encoding direction] and 4 b-values (0, 500, 1,000, and 2,000 s/mm2).
The short (28 s) reverse-phase encoding direction (anterior-to-
posterior) DWI scan was acquired immediately following the
main DWI scan. This reverse-phase DWI scan had the same
scan parameters as the main DWI scan but only 4 volumes were
collected at a b-value of 0 s/mm2.

fMRI task design
The visual working memory task is described in detail in our pre-
vious work (Zachariou et al. 2020). Briefly, participants performed
an N-Back visual working memory paradigm with 3 conditions
(compare, 1-Back and 2-Back) in a blocked design. During the
task, participants decided if the stimulus presented in the current
trial (a consonant letter) matched the stimulus in the directly
preceding trial for the 1-Back condition or 2 trials back for the
2-Back condition. Responses (“same” or “different”) were made
using MRI compatible button-boxes (1 in each hand). The 1-Back
and 2-Back conditions were contrasted to a control (compare)
condition in which participants decided if 2 stimuli presented
simultaneously on the screen matched.

Behavioral data analyses
Behavioral data collected during the scans were imported to Excel
in order to calculate D-prime (Stanislaw and Todorov 1999) for
each of the N-Back task conditions. D-prime is a measure of dis-
crimination performance corrected for response bias. That is, the
participants’ tendency to respond with either “same” or “different”
in a trial of the N-back task when they are uncertain or guessing.
For this reason, D-prime is a more optimal measure of task perfor-
mance in forced-choice discrimination tasks than accuracy that
does not account for response bias. N-back task performance was
ultimately expressed as the log of D-prime, averaged across the
1-Back and 2-Back conditions. Log D-prime was used in subse-
quent analyses involving MRI-based measures as done in our pre-
vious work (Zachariou et al. 2020, 2021), and under the assump-
tion that large differences in D-prime are typically associated with
smaller differences in MRI-based measures.

fMRI pre-processing
Functional scans were first corrected for field inhomogeneity
induced geometric distortions using FUGUE and the GRE field
map data in FSL (Smith et al. 2004; Jenkinson et al. 2012).
Subsequently the functional scans were motion corrected
and/or de-spiked where necessary (https://afni.nimh.nih.gov/
pub/dist/doc/program_help/3dDespike.html) and co-registered
to their contrast-corrected (using Siemens Prescan Normalize)
anatomical image, after averaging the 4 echoes of a MEMPR scan
into a single root mean square image and stripping the skull
using FreeSurfer 6.0 (Dale et al. 1999; Desikan et al. 2006; van der
Kouwe et al. 2008). Following registration, the functional scans
were warped to MNI space, using the MNI ICBM152, 1 mm, 6th
generation atlas (Grabner et al. 2006; referred to as MNI152 hence
forth for brevity) and a non-linear transformation (3dQwarp),
smoothed with a Gaussian kernel of 6.0 mm FWHM and mean-
based intensity normalized (all volumes by the same factor) using
AFNI (Cox 1996). In addition, linear and non-linear trends (where
necessary) were removed during pre-processing of the data and
motion parameters were regressed separately for each run from
all analyses. Lastly, all TR pairs in which the Euclidean Norm of
the motion derivative exceeded 0.3 (the AFNI default for adults)
were censored and removed from the analyses.

fMRI analyses
Group-level, whole brain contrasts between N-back conditions
were performed to localize a set of cortical brain regions sup-
porting working memory performance. The group level analysis
of the N-Back task was conducted using the Analysis of Func-
tional NeuroImages software (AFNI; Cox 1996) and a linear mixed
effects model (3dLME; Chen et al. 2013) with participant age
added as a covariate. The functional contrast of 2-Back/2 + 1-
Back/2 > Compare was used to identify brain regions in which
activity for the N-Back task was greater than that of the visual
control task (compare condition). The resulting statistical maps
were adjusted for multiple comparisons using the false discovery
rate (FDR) approach (Genovese et al. 2002). A very conservative
threshold of qFDR < 2 x 10−13 was used to limit brain activity to the
most statistically significant voxels, aiding in the delineation of
distinct peaks of activity. Twelve peaks of activity were identified
using this method (see Results, fMRI N-Back Activation) on which
8 mm diameter spheres were centered and acted as fMRI seed
regions of interest (ROIs) in a subsequent probabilistic tractogra-
phy analysis.

DWI pre-processing
Each participant’s main DWI scan was first corrected for
susceptibility induced field distortions using the corresponding
reverse-phase encoding direction (anterior-to-posterior), DWI
scan in FSL’s topup (Andersson et al. 2003). Subsequently, DWI
scans were skull-stripped using BET (Smith 2002), and non-
linearly corrected for eddy currents and participant head motion
using eddy (Andersson and Sotiropoulos 2016). Specifically, the
Compute Unified Device Architecture (CUDA) version of eddy was
used (eddy_cuda9.1), to significantly increase processing speed.
The eddy corrected DWI scans were then examined visually for
quality and the average head motion across volumes for each
participant was assessed using the eddy QC tools (average voxel
displacement across all voxels within a brain mask relative to the
first volume; Bastiani et al. 2019). Average voxel displacement did
not exceed 2 mm (the size of 1 DWI scan voxel) and, as such, no
participants were excluded during this QC process.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dDespike.html
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dDespike.html
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dQwarp.html
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
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Neurite orientation dispersion and density
imaging processing
The eddy corrected DWI scans for each participant obtained in
the previous section were used as inputs to the NODDI toolbox
(version 1.04; Zhang et al. 2012) in MATLAB (version R2019 Update
7), executed with default/recommended parameters to generate
intracellular volume fraction (ICVF), isotropic volume fraction
(Viso,) and orientation dispersion index (ODI) maps. Specifically,
NODDI models 3 diffusion compartments: 1) an intra-neurite
compartment comprised of hindered anisotropic diffusion, cor-
responding to intra axonal/dendritic space; 2) an extra-neurite
compartment comprised of restricted anisotropic diffusion that
corresponds to the space around neurites, including neuronal and
glial cell bodies; and 3) a free water compartment comprised of
unrestricted, isotropic diffusion corresponding to CSF (Zhang et al.
2012).

ICVF, or ND, is calculated by dividing the intra-neurite com-
partment by the sum of the intra-neurite and extra-neurite com-
partments and represents a voxel-wise estimate of the density of
dendrites and axons. Viso is calculated by dividing the free water
compartment by the sum of all 3 compartments (intra-neurite
+ extra-neurite + free water compartment) and represents a
voxel-wise estimate of isotropically diffusing water; that is, the
portion/fraction of each voxel that overlaps with CSF. Lastly, ODI
is calculated from the orientation distribution function of the
sticks (cylinders of radius 0) used to model water diffusion in the
intra-cellular compartment, constrained to a Watson distribution
(Zhang et al. 2012). In short, ODI represents a voxel-wise estimate
of the degree of fiber coherence (from completely aligned straight
fibers to completely isotropic fibers). Following the generation of
the ND, Viso and ODI maps, the Viso maps were used to suppress
any remaining CSF signal within the ND and ODI maps, as rec-
ommended in Zhang et al. 2012. Specifically, all voxels within an
ND or ODI map with Viso values greater than the 80th percentile
of values in the corresponding Viso map were set to zero.

A focus on neurite density
ND has been associated in previous histological studies with
neurite degradation and demyelination (e.g. Sepehrband et al.
2015; Wang et al. 2019; Rahmanzadeh et al. 2021). Consequently,
consistent with the contribution of unbound iron to demyelina-
tion (Graham et al. 1993; Smith et al. 1999; Todorich et al. 2009;
Bartzokis et al. 2011; Raz and Daugherty 2018), we focused our
analyses on ND as the main measure of WM microstructure
health.

In contrast, ODI in relation to normal aging is typically linked to
alterations in dendritic arborization and/or dendritic complexity
(Dickstein et al. 2013; Nazeri et al. 2015; Merluzzi et al. 2016). How-
ever, we know of no mechanisms linking unbound iron load with
alterations in dendritic arborization and/or dendritic complexity,
per se, in older adults. Similarly, alterations in Viso, are thought to
reflect advanced neurodegenerative change not specific to WM
microstructure (Ji et al. 2017; Maillard et al. 2017, 2019). Therefore,
our hypotheses focused on relationships with brain iron con-
centration and ND. Nonetheless, analyses between frontoparietal
QSM values, ODI and Viso were conducted for completeness.

Probabilistic tractography
The goal of the tractography analysis was to identify a white-
matter network connecting the twelve peak activation fMRI seed
ROIs (i.e. a WM-connectivity mask). To this end, probabilistic
tractography was conducted in FSL, as described in our previous
work (Brown et al. 2015, 2017). Specifically, the following series

of procedures were conducted: first, the CUDA/GPU version of
BEDPOSTX (BEDPOSTX_GPU) was used to construct per partic-
ipant maps of the distribution of diffusion parameters at each
voxel, from the eddy corrected DWI scans as input (Behrens et al.
2007). The distribution of diffusion parameters was modeled using
zeppelins (model 3).

Next, each participant’s skull stripped T1 image was aligned/reg-
istered to the first b0 image of their eddy-corrected DWI scan
using the AFNI function align_epi_anat.py and a local Pearson
correlation cost function. The aligned T1 images were then
non-linearly warped to MNI152 space (MNI ICBM152 1 mm 6th
generation atlas; Grabner et al. 2006) using the AFNI function
auto_warp.py. The inverse of the transformation matrices
obtained from the previous 2 steps (registration and warping)
were then used to inversely warp the 12 seed ROIs from MNI152
space to each participant’s DWI data in native space, using
the AFNI function 3dNwarpApply and a nearest neighbor cost
function. Additionally, the same procedure was used to inversely
warp a brainstem mask, created from the Harvard-Oxford
Subcortical Atlas (Desikan et al. 2006), which is in MNI152 space,
to each participant’s eddy corrected DWI data, in native space.
This brainstem mask was used to constrain the probabilistic
tractography step described below.

Following the steps described above, per participant: distribu-
tion of diffusion parameter maps, 12 native-space-warped fMRI
seed ROIs and brainstem masks, were used as inputs to the
CUDA/GPU version of FSL’s PROBTRACKX2 (PROBTRACKX2_GPU)
in order to calculate per participant estimates of anatomical
connectivity between the fMRI seed ROIs (Behrens et al. 2003,
2007). PROBTRACKX2_GPU was executed using modified Euler
streamlining in network mode. Five-thousand streamlines were
generated from each voxel within each of the seed ROIs, with a
maximum of 2,000 steps per streamline, a step length of 0.5 mm,
a minimum streamline length of 20 mm, a curvature threshold
of 0.2 (curvature angle could not exceed ∼80◦), and the default
fiber volume threshold of 0.01. To prevent tracking of streamlines
in the brainstem, the native-space-warped brainstem mask was
used as an exclusion mask. Streamlines were only included in the
final output (streamline density map) if all of the following criteria
were met: a streamline from 1 seed ROI reached at least 1 of the
other seed ROIs, the minimum streamline length requirements
were met, the streamline curvature threshold was met (80◦ or
less), the streamline did not exit the brain, loop back on itself, or
enter the exclusion brainstem mask.

The output of PROBTRACKX2 is a streamline density map, con-
taining successful streamlines per voxel for each participant. Pro-
portion images were then created by dividing each participant’s
streamline density map by the sum of all voxels across the seed
ROIs. Lastly, each participant’s proportion image was divided by
their waytotal, the sum of all successfully generated streamlines,
in order to account for differences in streamline tracking across
participants. Therefore, the waytotal-adjusted proportion images
provide a quantitative measure of the proportion/percentage
of successful streamlines per voxel. The waytotal-adjusted
proportion images were then warped to MNI152 space using
the auto_warp.py transformation matrices obtained in previous
steps in conjunction with 3dNwarpApply and wsinc5 as the
interpolation method. The MNI152 warped, waytotal-adjusted
proportion images were then used in a subsequent voxel-
wise analysis to obtain a group-level, WM-connectivity mask
(see Results, WM-connectivity mask) representing the WM
connections between the working memory seed ROIs defined
previously.

https://afni.nimh.nih.gov/pub/dist/doc/program_help/auto_warp.py.html
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dNwarpApply.html
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Fig. 1. N-back task activation map. The activation map reflects the voxel-wise functional contrast of 2-back/2 + 1-back/2 > compare. Only positive
activations are depicted in the figure in warm (yellow-orange) colors and reflect regions with higher average N-back activity than the control (compare)
task. The 3D cortical meshes depicted in the figure were created from the MNI ICBM152, 1 mm, 6th generation atlas using FreeSurfer 6 and were partially
inflated to aid identification of activations within sulci. Notes: aCC: anterior cingulate cortex; DLPFC: dorsolateral prefrontal cortex; FPC: frontopolar
cortex; pMFG: posterior middle frontal gyrus; Precun: precuneus; aIPL: anterior inferior parietal lobule; pIPL: posterior inferior parietal lobule. The central
sulci are marked with dashed white lines to aid visual localization.

Quantitative susceptibility mapping processing
Quantitative susceptibility mapping (QSM) maps were generated
using our previously validated software, Ironsmith, which is
described in detail elsewhere (Zachariou et al. 2022). In short,
Ironsmith uses the MEDI Toolbox (De Rochefort et al. 2010; Liu,
Khalidov, et al. 2011; Liu, Liu, et al. 2011; Liu, Liu, et al. 2012)
to invert an estimate of the magnetic field that is structurally
consistent with anatomy in order to generate a distribution of
local magnetic susceptibility values. Ironsmith then uses the
local magnetic susceptibility of CSF within the lateral ventricles
to scale the QSM maps such that positive values corresponded
to local magnetic susceptibility greater than that of CSF and
negative values corresponded to local magnetic susceptibility less
than that of CSF. CSF within the lateral ventricles was selected
as the reference structure for QSM reconstruction because CSF
susceptibility is fairly uniform and does not vary with participant
demographic variables such as age or gender (Straub et al. 2017).

QSM ROIs
The following procedure was used to create GM-only ROIs from
the spherical fMRI seed ROIs. To create these GM-only ROIs,
we first inversely warped the spherical fMRI seed ROIs from
MNI152 space to each participant’s native space using per par-
ticipant transformation matrices provided by Ironsmith. These
transformation matrices are provided by Ironsmith specifically
for inversely warping and registering, user-specified ROIs and/or
masks from MNI152 space onto the QSM map of each participant
in native space. Following the inverse transformation step, all fMRI
seed ROIs were resampled/upscaled to the QSM voxel resolution

Table 2. MNI coordinates of activation peaks and corresponding
anatomical brain regions identified using the voxel-wise
functional contrast of 2-back/2 + 1-back/2 > compare.

Anatomical brain region Hemi-
spherea

MNI coordinates
(X, Y, Z)b

Anterior cingulate gyrus L −6, 24, 43
Dorsolateral prefrontal cortex L −44, 29, 33
Dorsolateral prefrontal cortex R 41, 37, 30
Frontopolar cortex L −33, 52, 6
Frontopolar cortex R 32, 55, 8
Posterior middle frontal gyrus L −26, 12, 52
Posterior middle frontal gyrus R 28, 13, 52
Precuneus L −7, –68, 52
Anterior inferior parietal lobule L −43, –59, 50
Anterior inferior parietal lobule R 44, –60, 49
Posterior inferior parietal lobule L −34, –77, 42
Posterior inferior parietal lobule R 42, –72, 37

aHemisphere (L: left; R: right). bMNI coordinates, in LPI/SPM order.

(i.e. from 3.0 mm isotropic to 1.2 mm isotropic voxels). Lastly, each
upscaled ROI was multiplied (using the AFNI 3dcalc function)
by each participant’s lobar GM masks provided by Ironsmith in
order to eliminate any WM included in the ROIs. The individual
GM-only QSM ROIs were then grouped further into larger frontal
and parietal lobe ROIs in order to limit the number of multiple
comparisons required to test our main hypothesis: that high GM
brain iron concentration is associated with reduced WM health
within neighboring tracts. The same procedure used by Ironsmith
(see section 2.3.9 in Zachariou et al. 2022) was also used here to
extract average QSM values from the frontal and parietal lobe

https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html
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Fig. 2. Group-level, WM-connectivity mask. The figure depicts the group-level, WM tracts/streamlines (in pink), identified using probabilistic
tractography, thresholded at the 97th percentile of the average adjusted proportion values. The WM-connectivity mask represents the WM connections
between the fMRI working memory seed ROIs. The fMRI seed ROIs are displayed in the figure as yellow (frontal lobe) and green (parietal lobe) spheres.
Major WM tracts overlapping with the WM-connectivity mask are labeled. The WM-connectivity map and fMRI seed ROIs are overlaid on the 1 mm,
MNI152 template provided with FSL, displayed here as a rendered 3D volume.

ROIs in parts per billion by mm3; ppb/mm3. Namely, only positive
QSM values were extracted and QSM values higher than the
97th percentile of all positive QSM values within an ROI were
considered outliers and were excluded.

The volume of the frontal and parietal GM ROIs was also
calculated per participant using the AFNI function 3dBrickStat.
These volumes were then normalized for participant head size
using each participant’s FreeSurfer-derived estimated intracra-
nial volume (eICV), provided by Ironsmith. The normalized frontal
and parietal GM ROI volumes were used in subsequent voxel-wise
analyses to control for the potential impact of GM atrophy/neu-
rodegeneration on WM health.

Finally, an additional control ROI was created by summing
the bilateral caudate and putamen ROIs provided by Ironsmith
(using the AFNI 3dcalc function). QSM values extracted from this
basal ganglia ROI and corresponding normalized GM volume were
used in a subsequent control analysis to assess the anatomical
specificity of our findings. Specifically, we assessed whether QSM
values in brain regions distal to fMRI activation peaks would
also correlate with ND in the WM-connectivity mask. The basal
ganglia was chosen as a control region because it consists of
subcortical structures distant to the neocortical fronto-parietal
regions showing peak fMRI activation during the working memory
task. In addition, the basal ganglia is an appropriate control region
because it undergoes significant age-related brain iron accumula-
tion (Hallgren and Sourander 1958; Haacke et al. 2005; Daugherty
and Raz 2013).

Group-level, voxel-wise analyses
Group-level analyses were conducted with QSM values from
specific ROIs and N-Back task log D-Prime as the independent

variables (as mean centered vectors), and voxel-wise ND as the
dependent variable, using linear mixed-effects models (3dLME;
Chen et al. 2013). These voxel-wise analyses were constrained
within the group-level WM-connectivity mask defined previously.
The QSM ROIs were the frontal lobe, parietal lobe and basal
ganglia, tested in separate analyses. This was required to avoid
issues related to collinearity because QSM values extracted
from the frontal and parietal lobe ROIs correlated significantly
with each other (linear regression: r2 = 0.25, β = 0.526, P < 0.0001,
controlling for participant age and gender). Covariates were age
(as a mean centered vector), gender (as a categorical, between-
subjects variable) and normalized GM volume of corresponding
frontal/parietal/basal ganglia ROIs. The resulting statistical maps
were thresholded at qFDR < 0.05 using the false discovery rate
approach for multiple comparisons correction within the WM
connectivity mask (Genovese et al. 2002).

Results
fMRI N-back activation
Whole-brain activations associated with the 1-Back and 2-Back
conditions were contrasted with activations during the Compare
condition (1-Back/2 + 2-Back/2 > Compare) in order to localize the
overall network of brain regions supporting visual working mem-
ory. Activation maps were thresholded at qFDR < 2 x 10−13 and
all positively active regions (activity stronger for the N-Back than
the Compare condition) from this contrast are shown in Fig. 1
and listed in Table 2. The MNI coordinates listed in Table 2 were
used as inputs to the Neurosynth database (Yarkoni et al. 2012)
and these fMRI ROIs overlapped substantially with core working
memory network regions identified in previous studies from a

https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dBrickStat.html
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html
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Fig. 3. Voxel-wise results of the frontal lobe QSM vs ND analyses. The frontal lobe seed regions, from which QSM values were extracted for this analysis,
are shown in yellow. The WM connectivity mask, in which voxel-wise analyses were performed, is shown in white. Positive correlations are depicted
with warm (orange to yellow) colors and negative correlations are depicted with cool (blue to cyan) colors. (A) The correlation with ND results with
minimal labeling. (B) A mask of the significantly active voxels in (A) in blue with the frontal lobe seed ROIs depicted as yellow spheres and anatomical
labels added. (C) The voxel-wise relationships between age and ND (left) and between N-back task log D-prime and ND (right). Results are overlaid on
the 1 mm, MNI152 template provided with FSL, rendered as a 3D volume. Notes: aCC: anterior cingulate cortex; DLPFC: dorsolateral prefrontal cortex;
FPC: frontopolar cortex; pMFG: posterior middle frontal gyrus.

meta-analysis sample of 1,334 working memory related articles
included in the database.

WM-connectivity mask
To create the WM-connectivity mask, a group level, 1-sample t-
test (sample compared to zero) was conducted in AFNI, using

3dttest++ on the MNI152 warped, waytotal-adjusted propor-
tion images across participants. The resulting, group-average,
waytotal-adjusted, proportion map was then thresholded at the
97th percentile of the average adjusted proportion values. That
is, voxels needed to have at least 97% proportion of streamlines
passing through them to be included in subsequent analyses.
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Table 3. MNI152 coordinates and anatomical labels of voxels
showing peak correlation between frontal lobe ROI QSM and ND
within the frontoparietal WM-connectivity mask.

WM-tract Hemi-
sphere

MNI coordinates
(X, Y, Z)a

Anterior corpus callosum L 8, 6, 24
Anterior corpus callosum R −10, 19, 18
DLPFC WM L −32, 30, 28
pMFG/DLPFC WM L −21, 9, 46
DLPFC WM R 42, 29, 30
DLPFC WM R 29, 32, 29
pMFG WM L −27, –4, 44
pMFG WM R 29, –9, 44
Anterior cingulate gyrus WM L −15, 21, 44
Anterior cingulate gyrus WM L −15, 24, 38
Anterior corona radiata R 26, 21, 25

Notes: DLPFC: dorsolateral prefrontal cortex; pMFG: posterior middle frontal
gyrus; WM: white matter. Hemisphere (L: left; R: right). aMNI coordinates, in
LPI/SPM order.

Other threshold values (specifically 95% and 90%; Supplementary
Fig. S1) were also explored but yielded streamlines connecting to
brain regions (in temporal cortex) that were not significantly
activated in the fMRI N-Back task (i.e. 1 of the 12 seed ROIs). In
contrast, at the 97th percentile threshold, surviving streamlines
interconnected only the seed ROIs (Supplementary Fig. S1; 2).
After thresholding, the average waytotal-adjusted proportion
map was clusterized using AFNI’s 3dClustSim function and
a minimum cluster size of 100 voxels. Clusterizing was used
to remove spurious voxels that survived the 97th percentile
threshold but were disconnected from the bulk/main body of
the streamlines identified. Lastly, a binary mask (Fig. 2) was
created from the surviving voxels and acted as the group-
level, WM-connectivity mask in subsequent analyses. The WM-
connectivity mask included the splenium, body and genu of the
corpus callosum, bilateral portions of the superior longitudinal
fasciculus, and bilateral portions of the anterior and posterior
corona radiata.

Frontal lobe QSM vs ND
These analyses revealed significant, negative correlations
between frontal lobe QSM values and ND in frontal portions of
the frontoparietal WM-connectivity mask (Fig. 3A and B). More
specifically, the majority of significantly active voxels occurred
in WM regions adjacent to the working memory ROIs in frontal
cortex. In contrast, no correlations were observed between frontal
lobe QSM values and ND in parietal lobe regions of the WM-
connectivity mask. The MNI152 coordinates of peak correlation
voxels and their corresponding WM tracts are provided in Table 3.
Additionally, a positive relationship was observed between N-Back
task log D-prime and ND, and a negative relationship between
age and ND within the WM-connectivity mask (at qFDR < 0.05).
However, in contrast to the anatomically specific relationship
between frontal lobe QSM and frontal ND (Fig. 3A and B), N-
Back task log D-prime and age correlated with ND throughout
the frontoparietal WM-connectivity mask (Fig. 3C). No significant
relationships were identified between the normalized frontal lobe
ROI GM volumes and ND.

Parietal lobe QSM vs ND
These analyses revealed significant, negative correlations
between parietal lobe QSM values and ND in parietal portions of
the frontoparietal WM-connectivity mask (Fig. 4). Specifically, this
analysis identified 2 bilateral clusters of significant correlations

that were anatomically proximal to the working memory ROIs
in parietal cortex. No significant correlations were observed
between parietal lobe QSM values and ND in frontal lobe regions
of the WM-connectivity mask. The MNI152 coordinates of peak
correlation voxels and corresponding WM tracts are provided in
Table 4. Consistent with results from the frontal lobe analyses
described in the previous section, N-Back task log D-prime
correlated positively with ND and age correlated negatively
with ND throughout the frontoparietal WM-connectivity mask
(at qFDR < 0.05; Fig. 3C). Also consistent with the frontal lobe
analyses, no significant relationships were identified between the
normalized parietal lobe ROI GM volumes and ND.

Control analysis between basal ganglia QSM
values and ND
The basal ganglia ROI analysis did not reveal any significant
voxels up to an uncorrected P-value of 0.044 (qFDR = 0.998). Thus,
neither QSM values extracted from the basal ganglia nor the
normalized basal ganglia GM volume correlate significantly with
ND within the frontoparietal WM-connectivity mask.

Analyses between frontoparietal QSM values,
ODI, and Viso

Voxel-wise analyses between ODI and Viso as dependent variables
and fMRI seed ROI QSM values and N-Back task log D-prime
as independent variables were conducted for completeness and
transparency, with age, gender and normalized GM volume of cor-
responding frontal/parietal/basal ganglia ROIs used as covariates.
These analyses did not reveal significant correlations between
frontal/parietal lobe ROI QSM values, ODI, and Viso within the
frontoparietal WM-connectivity mask. Consequently, results con-
cerning ODI/Viso are not discussed further.

Mediation analyses
We further tested whether frontal and/or parietal lobe QSM val-
ues (in separate analyses) mediated the negative relationship
between age and ND we observed in the previous voxel-wise
analyses. Due to the anatomical specificity of the voxel-wise asso-
ciations between QSM and ND, as opposed to the uniform associ-
ations between age and ND throughout the frontoparietal WM-
connectivity mask, the mediation analyses focused on ND values
extracted from those voxels/regions in which significant QSM
vs ND associations were observed (the frontal/parietal regions
depicted in Figs. 3B and 4B). The mediation analyses were con-
ducted in SPSS using the Andrew F. Hayes PROCESS (version 3.5;
model 4) computational tool (Hayes 2019). The mediation results
were evaluated at 95% confidence intervals using the default
setting of 5,000 bootstrapped samples.

For the frontal lobe analysis, QSM mediated the relation-
ship between age and ND: Indirect effect of age on ND:
[Effect = −0.010; SE = 0.0006, bootstrapped confidence interval
(LLCI to ULCI) = −0.0023 to −0.0001]. That is, the indirect effect
of age on ND, through age-related increases in frontal QSM-based
iron concentration, is more likely than the direct effect of age
on ND.

For the parietal lobe analyses, QSM did not mediate the
relationship between age and ND: Indirect effect of age on ND:
[Effect = −0.0009; SE = 0.0006, bootstrapped confidence interval
(LLCI to ULCI) = −0.0022 to 0.0001]. That is, the indirect effect of
age on ND, through age related increases in parietal lobe QSM-
based iron concentration, was not more likely than the direct
effect of age on ND.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac382#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac382#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac382#supplementary-data
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dClustSim.html
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Fig. 4. Voxel-wise results of the parietal lobe QSM vs ND analyses. The parietal lobe QSM seed regions, from which QSM values were extracted for this
analysis, are shown in green. The WM-connectivity mask, in which voxel-wise analyses were performed, is shown in white. Positive correlations are
depicted with warm (orange to yellow) colors and negative correlations are depicted with cool (blue to cyan) colors. (A) The correlation results with
minimal labelling. (B) A mask of the significantly active voxels in (A) in blue with the parietal lobe seed ROIs depicted as green spheres. (C) The voxel-
wise relationships between age and ND (left) and between N-back task log D-prime and ND (right). Results are overlaid on the 1 mm, MNI152 template
provided with FSL, rendered as a 3D volume. Notes: Precun: precuneus; aIPL: anterior inferior parietal lobule; pIPL: posterior inferior parietal lobule.

Discussion
We investigated associations between cortical iron concentra-
tion, WM microstructural properties, age and cognitive perfor-
mance in healthy older adults. Our results indicated that high
ND within WM tracts of a task-relevant working memory brain
network supported more accurate working memory performance.

However, high iron load disrupted ND within the same task-
relevant WM network. In addition, relationships were anatom-
ically specific such that iron load within frontal and parietal
cortical regions were each selectively associated with lower ND
within their respective neighboring WM tracts. Our results sug-
gest that age-related increases in brain iron concentration may
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Table 4. MNI152 coordinates and anatomical labels of voxels
showing peak correlation between parietal lobe QSM and ND
within the frontoparietal WM-connectivity mask.

WM-tract Hemi-
spherea

MNI coordinates
(X, Y, Z)b

Posterior corona radiata L −28, –45, 25
Posterior corona radiata L −24, –46, 27
Posterior corona radiata R 28, –47, 23

Notes: WM: white matter. aHemisphere (L: left; R: right). bMNI coordinates,
in LPI/SPM order.

contribute to disruption of WM tracts supporting cognitive func-
tion in normal aging.

The impact of non-heme iron on cognitive brain
networks
Our results linking brain iron with WM microstructure build upon
recent findings reporting a negative association between brain
iron concentration and functional connectivity in older adults
(e.g. Salami et al. 2018; Rodrigue et al. 2020; Zachariou et al. 2020).
WM connectivity provides the anatomical structure supporting
functional connectivity (Sporns et al. 2000; Honey et al. 2009;
Betzel et al. 2014) and low ND was associated with poor working
memory performance in this study. Consequently, the sum of
our current findings and those of prior functional connectivity
studies suggest that excess brain iron may interfere with cognitive
function by disrupting WM connections between task-relevant
brain regions. This iron mediated disruption of WM would be
expected to hinder coordinated information processing within
task-relevant brain networks (i.e. the functional connectivity of
the network).

The impact of non-heme iron on WM
microstructure: potential mechanisms
We observed anatomically proximal relationships between cor-
tical iron and ND. Specifically, iron load within frontal cortex
was selectively associated with lower ND in neighboring frontal
tracts while iron load in parietal cortex was selectively associated
with lower ND in parietal lobe tracts. Further, QSM values in the
basal ganglia, a region distal to the fMRI activation peaks, was
not correlated with ND in the frontoparietal WM-connectivity
mask. The anatomical proximity of the QSM/ND relationships
we observed is consistent with a view that non-heme iron may
accumulate at similar rates in cortical GM and bordering WM.
This view is supported by previous histological studies which
have shown comparable fixed tissue iron concentrations (mg
of iron/Kg fixed tissue) between GM and WM regions (Hamet-
ner et al. 2018). As such, while it is not yet possible to directly
measure iron concentrations in WM using MRI, QSM-based iron
concentration in GM may be a proxy of iron concentration in
neighboring WM.

Consequently, it is possible that our results could in part reflect
direct effects of brain iron on both GM and neighboring WM, pos-
sibly through common underlying mechanisms. A likely common
mechanism contributing to deleterious effects of brain iron on
both WM and GM relates to iron’s propensity for generating free
radicals and related oxidative stress (Ward et al. 2014). Oxidative
stress results in mitochondrial dysfunction, which can lead to
apoptosis (Ward et al. 2014). Specifically, mitochondrial dysfunc-
tion related to iron-mediated free radical accumulation reduces
the synthesis of high-energy phosphates across brain regions,
including cortical regions, subcortical structures, and WM, which

promotes age-related tissue damage (Ward et al. 2014; Raz and
Daugherty 2018).

Direct effects of brain iron on WM are in-keeping with results
showing that antioxidant levels in myelin and oligodendrocytes
are relatively low compared to other brain cells, like astrocytes
and microglia, making them particularly vulnerable to iron-
mediated oxidative stress (Juurlink et al. 1998; Smith et al.
1999). Further, non-heme iron mediated increases in oxidative
stress in axons can promote macrophages to attack the myelin
sheath directly, leading to WM microstructure damage (Graham
et al. 1993). Lastly, iron-mediated mitochondrial dysfunction
may also lead to axonal degeneration through the course of
impulse conduction. In short, due to the iron mediated energy
deficiency, sodium ions (Na +) which enter axons during spiking
are not removed. Increased intra-axonal sodium ions can lead to
Ca++ accumulation via the inverse operation of the Na +/Ca ++
exchanger, leading to protease-induced axonal degeneration (Stys
2005; Friese et al. 2014; Lassmann and van Horssen 2016).

Finally, our results may also in part reflect indirect, secondary
effects of GM degeneration on WM or vice versa. For example, if
a soma is damaged as a result of brain-iron mediated oxidative
stress, this can result in degeneration of connected axons and
their myelin (Damoiseaux et al. 2009; Davis et al. 2009). We did
not find direct support for this possibility in the present cross-
section study as there was no relationship between normalized
GM volume of our ROIs and ND within the WM-connectivity
mask. Nevertheless, this possibility should be tested in future
longitudinal studies.

The impact of non-heme iron on the relationship
between age and WM microstructure
If age-related increases in brain iron contribute to disruption of
WM tracts then brain iron may be expected to mediate the rela-
tionship between age and WM microstructure. We found partial
evidence for this possibility. Consistent with previous results (Cox
et al. 2016; Chad et al. 2018; Beck et al. 2021), we found that age
was negatively associated with ND throughout the WM tracts
of the task-relevant working memory brain network. However,
within the frontal lobe, the relationship between age and ND
was mediated by brain iron concentration. That is, age-related
declines in WM health within task-relevant tracts were partly
explained by age-related increases in brain iron. As such, our
results provide preliminary evidence suggesting that age-related
increases in brain iron concentration, at least in the frontal lobe,
may contribute to disruption of WM tracts supporting cognitive
function in normal aging.

Strengths
Strengths of our study include the following: 1) robust delin-
eation of brain regions showing strong functional response
during a visual N-Back working memory task, consistent with
core working memory regions identified in previous studies,
(using Neurosynth-based meta-analyses; Yarkoni et al. 2012);
2) Probabilistic tractography-based delineation of WM tracts
interconnecting these regions, identifying a network of tracts
known to be associated with working memory and other executive
function tasks (Kennedy and Raz 2009; Madden, Bennett, & Song
2009; Madden, Spaniol, et al. 2009; Zahr et al. 2009; Gold et al.
2010); 3) Use of QSM for assessing brain iron concentration. QSM
overcomes several limitations of prior MRI-based methods for
evaluating brain iron load, including orientation dependence
and non-local effects (Shmueli et al. 2009; Liu, Liu, et al. 2012);
4) Evaluation of WM health using NODDI, which is a more
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sensitive method, and more closely linked to biology, than
more traditional DTI-based metrics such as FA, mean, axial,
and radial diffusivity (Jespersen et al. 2010; Sepehrband et al.
2015; By et al. 2017; Schneider et al. 2017; Wang et al. 2019); 5)
inclusion of normalized GM volume of the fMRI seed ROIs as a
covariate in all analyses models, in order to assess the impact of
neurodegeneration, (within the limits this can be measured using
GM volume) on the findings, which was negligible.

Limitations
It should be noted that brain iron may influence the measure-
ment of diffusion based metrics in GM regions (specifically deep
GM, such as within the basal ganglia), where diffusion weighted
imaging signal is low, water diffusion is isotropic and iron concen-
tration is high (e.g. Rulseh et al. 2013 ; Xu et al. 2015). Specifically,
GM iron has been reported to enhance DTI-based metrics such
as fractional anisotropy (FA) in deep GM structures (Rulseh et al.
2013; Xu et al. 2015). In the present study we focused exclusively
on diffusion measures within WM regions. Therefore, the artifact
associated with deep GM structures in question is likely not
directly relevant to our results. Nevertheless, it is important to
remain aware of this issue as the field of QSM-diffusion research
evolves. For example, in the current study, we found that higher
brain iron concentration in GM was associated with lower ND,
a metric that depends on the same underlying diffusion infor-
mation as FA (the directionality of water diffusion). Thus, if we
assume that brain iron may artifactually increase not just FA/ND
in deep GM, but also increase these metrics in WM regions, then
QSM-diffusion studies may under-estimate the negative influence
of brain iron on WM microstructure.

Further, it should be noted that QSM is not a direct measure
of iron concentration and can be affected to a lesser extent by
the presence of other metals (Wang et al. 2017). In addition, this
is a cross-sectional study and causal inferences cannot be made
between QSM-based iron concentration and WM microstructure
health. As such, we are unable to rule out the possibility that
brain iron accumulation results from demyelination rather than
being caused by it (Bjartmar and Trapp 2001). For example, axonal
demyelination can trigger neurodegenerative processes and lead
to intracellular non-heme iron accumulation in corresponding
neuronal bodies (Williams et al. 2012). Future longitudinal studies
will be required to determine if brain iron predicts demyelination
or vice versa.

Conclusion
Our results suggest that non-heme brain iron may contribute
to the disruption of WM connectivity in healthy older adults.
Specifically, our results indicate that cortical non-heme brain
iron concentration load is associated with low ND within a WM
network supporting working memory in cognitively normal older
adults. Future research should investigate interventions that may
slow brain iron accumulation in aging.
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