Skip to main content
. 2023 Apr 17;13:6206. doi: 10.1038/s41598-023-33339-0

Table 3.

3-fold cross-validation, (a), and hold-out test set performance, (b), of classifiers trained with radiomic, deep and hybrid datasets.

(a)
Training data 3-fold cross-validation performance (95% CI)
F2 CohensKappa AUC Sensitivity Specificity
Rad

0.8830

(0.8129, 0.9570)

0.7350

(0.5300, 0.8562)

0.8679

(0.7654, 0.9281)

0.8920

(0.8164, 0.9762)

0.8439

(0.6697, 0.9163)

Deep

0.9577

(0.8267, 0.9675)

0.8609

(0.6684, 0.9235)

0.9311

(0.8338, 0.9615)

0.9753

(0.8135, 0.9762)

0.8870

(0.7701, 0.9639)

Hybrid

0.9392

(0.8236, 0.9892)

0.9164

(0.7175, 0.9444)

0.9583

(0.8585, 0.9722)

0.9306

(0.8056, 1)

0.9861

(0.8282, 0.9868)

(b)
Training data Hold-out test-set performance
F2 CohensKappa AUC Sensitivity Specificity
Rad 0.7767 0.5055 0.8192 0.8421 0.7179
Deep 0.3333 0.2648 0.8131 0.2941 0.9355
Hybrid 0.5063 0.4062 0.8710 0.4706 0.9032