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dynamics in rod-like bacteria
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ABSTRACT Proliferating bacterial cells exhibit stochastic growth and size dynamics, but the regulation of noise in bacterial
growth and morphogenesis remains poorly understood. A quantitative understanding of morphogenetic noise control, and
how it changes under different growth conditions, would provide better insights into cell-to-cell variability and intergenerational
fluctuations in cell physiology. Using multigenerational growth and width data of single Escherichia coli and Caulobacter cres-
centus cells, we deduce the equations governing growth and size dynamics of rod-like bacterial cells. Interestingly, we find that
both E. coli and C. crescentus cells deviate from exponential growth within the cell cycle. In particular, the exponential growth
rate increases during the cell cycle irrespective of nutrient or temperature conditions. We propose a mechanistic model that ex-
plains the emergence of super-exponential growth from autocatalytic production of ribosomes coupled to the rate of cell elon-
gation and surface area synthesis. Using this new model and statistical inference on large datasets, we construct the Langevin
equations governing cell growth and size dynamics of E. coli cells in different nutrient conditions. The single-cell level model
predicts how noise in intragenerational and intergenerational processes regulate variability in cell morphology and generation
times, revealing quantitative strategies for cellular resource allocation and morphogenetic noise control in different growth
conditions.
SIGNIFICANCE Growth of bacterial cell size is typically assumed to be exponential during the cell cycle. By analyzing
high-precision datasets on bacterial growth and morphologies, we find that the growth of many rod-shaped bacterial
species such as Escherichia coli and Caulobacter crescentus deviate from pure exponential growth, with the exponential
growth rate increasing throughout each cell cycle. Here, we present a quantitative theory for the observed super-
exponential growth in bacterial cells, linking cell physiology to the underlying proteome dynamics and elucidating the
molecular mechanisms that gives rise to super-exponential growth. Our model also leads to a molecular understanding of
cell shape regulation and noise in bacterial growth, providing explanations for observed data and making predictions to
motivate future experiments.
INTRODUCTION

Uncovering the quantitative principles of single-cell physi-
ology demands high-quality experimental data at the sin-
gle-cell level with extensive statistics (1). This
information needs to be integrated with quantitative theory
to interpret single-cell behaviors, inform the underlying
mechanistic models, and direct new experimental research.
Recent advances in single-cell imaging and microfluidics
have resulted in large amounts of high-quality datasets on
the size and shapes of single bacterial cells as they grow
and divide (2–7). These data have revealed many funda-
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mental models and principles underlying single-cell physi-
ology, including the mechanisms of cell size homeostasis
and division control (4,8–13), cell size control and growth
physiology (12,14–16), cell shape control (11,17–19), and
adaptation to environmental changes (20–23). While exten-
sive work has been done to characterize cell size regulation
and division control at the intergenerational level (12), much
less is understood about the dynamics of cell growth within
an individual cell cycle. The bacterial cell cycle is composed
of complex coupled processes, including DNA replication
and cell wall synthesis and constriction, that have to be
faithfully coordinated for cells to successfully divide. These
processes require dynamic remodeling of the cell envelope
and shape, raising questions on how cell growth and size
changes are dynamically coupled and how noise in these
processes is regulated to ensure morphological stability
through cycles of growth and division.
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Super-exponential growth in bacteria
In this article, we develop quantitative theory for the sto-
chastic growth and size dynamics of rod-shaped bacterial
cells using multigenerational growth and morphology
data of Escherichia coli and Caulobacter crescentus cells
(4,11). While there are existing studies using stochastic
and deterministic models to describe bacterial growth
and division processes (24–29), a common assumption in
these models is that bacteria grow exponentially in cell
size. Few current models deviate from exponential growth,
among both bacterial and eukaryotic cells (30). Our
analysis reveals that single E. coli and C. crescentus cells
elongate faster than an exponential during the cell
cycle, challenging existing models of purely exponential
growth (2,4,5,8,9,17,24,31). We show that super-exponen-
tial growth naturally emerges in a model of autocatalytic
production of ribosomes, which determine the speed of
cell elongation and surface area synthesis. This model al-
lows us to derive the equations governing the dynamics
of cell length and width, showing that super-exponential
elongation in cell length occurs nonuniformly along the
cell, while cell width fluctuates around a mean value that
is dependent on the growth rate. Analysis of noise in
growth and size parameters of E. coli cells (4) reveals
strong intergenerational coupling of fluctuations in cell
length and growth rate, whereas the fluctuations in cell
width are independent of length. We then extend our dy-
namics into stochastic processes that accurately reflect
the noise seen in experimental data as well as the correla-
tions in model parameters across different growth condi-
tions. In particular, we find that the dominant noise
contributions come from model parameters that determine
the rate of ribosomal synthesis, division protein synthesis,
and cell surface area production. The resultant Langevin
equations for cell length and width are capable of making
predictions about the role of both intragenerational and
intergenerational noise on the distribution of cell size and
generation times in different nutrient conditions. Further-
more, using the single-cell level model, we predict cellular
strategies for ribosomal resource allocation and morphoge-
netic noise control in different growth conditions.
RESULTS AND DISCUSSION

Dynamics of cell growth

Single-cell data analysis

A common assumption in existing models of bacterial
growth is that bacterial cells grow exponentially in size dur-
ing the course of the cell cycle (2,4,5,8,9,17,24,31). We first
reexamined this model by analyzing multigenerational
growth and width data of single E. coli cells grown in the
mother machine at steady state under different nutrient con-
ditions (4). Parametrizing the geometry of rod-shaped
E. coli cells by the pole-to-pole length L and width w
(Fig. 1 A, inset), we define the instantaneous growth rate
as kðtÞ ¼ L� 1dL=dt. To determine the overall trend in
growth rate during the cell cycle, we averaged growth rate
data across individual generations to obtain the average
growth rate CkD versus t=t, where t is the time since birth
and t is the interdivision time. We found that the growth
rate of the cell increases by �30% during the cell cycle in
fast growth conditions (Fig. 1 A), consistent with recent re-
ports of increase in E. coli growth rate during the cell cycle
(6,33). This trend in super-exponential growth, where the
instantaneous growth rate k increases over time, is preserved
across different nutrient conditions (Fig. 1 B), thereby inva-
lidating existing models of purely exponential growth. As a
test of whether this behavior is specific to E. coli, we applied
the same analysis to rod-shaped C. crescentus cells grown
in nutrient-rich media (PYE) at different temperatures
(5,11). Our analysis confirms that the growth rate of
C. crescentus cells increases during the cell cycle (Fig. 1
C), suggesting that super-exponential growth is likely prev-
alent across different bacterial species.

Testing data against existing models of cell growth

As discussed above, exponential elongation in cell length at
a constant rate k,

dL

dt
¼ kL; (1)

does not quantitatively capture cell-cycle variations in
growth rate despite its common use (2,24). Simplicity is

the major upside of this model since microscopy data
measure 1D and 2D geometrical quantities rather than cell
volume. To understand the mechanistic origin of super-
exponential growth, we first inquired if the increase in the
rate of elongation in cell length is a geometric consequence
of exponential growth in cell volume V (17,34), dV=dt ¼
kVV, where kV is the constant rate of volume growth.
Assuming a spherocylinderical cell geometry (V ¼
pw3=6þ ðL � wÞpw2=4), we derive the length equation

dL

dt
¼ kVðL � w = 3Þ; (2)

which can be interpreted as exponential growth of a portion
L � w=3 of the cell’s total length. As seen in Fig. 1 A, this

model leads to a �3% increase in k over time, which is an
order of magnitude less than what is observed in the data.
Thus, purely exponential growth in cell length or volume,
defined by a one-parameter model, is not sufficient to cap-
ture the intragenerational dynamics presented in Fig. 1.
Such simple models, however, are sufficient to describe
phenomena on the intergenerational level such as cell size
homeostasis and growth control (4,9,11).

It has recently been suggested that an increase in expo-
nential growth rate could arise from the dynamics of cell
constriction during septal growth (33). We examined such
a model by including the effects of constriction dynamics
on the exponential growth of cell volume (see Fig. S1 and
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FIGURE 1 Super-exponential growth in E. coli

and C. crescentus cells in different conditions. (A)

Ensemble-averaged instantaneous growth rate of

E. coli cells grown in tryptic soy broth (TSB) media

at 37�C versus normalized time t=t, where t is cell-
cycle duration. Data are taken from (4). Error bars in

all parts show 5 1 standard error of the mean. The

solid green line shows a fit of exponential length

growth Eq. 1, dot-dashed red line represents a pre-

diction from exponential volume growth Eq. 2,

dashed blue curve shows a fit to the super-exponen-

tial growth model Eq. 3, and the dotted orange curve

shows fit to exponential volume growth model with

constriction dynamics. Fitting parameters: model 1:

L0 ¼ 3:87 mm, k ¼ 0:041 min� 1; model 2: L ¼
3:89 mm, kV ¼ 0:044 min� 1; model 2 with

constriction: L0 ¼ 3:87 mm, kV ¼ 0:04 min� 1;

model 3: L0 ¼ 3:99 mm, k ¼ 0:057 min� 1, l ¼
1:59 mm. Cell width (w ¼ 0:98 mm) value is taken

directly from experimental data. Inset: a simplified

cell shape schematic for E. coli, defining the size pa-

rameters. (B) Fits of super-exponential growth model

Eq. 3 to average growth rate data for seven different

growth conditions grown at 37�C, taken from (4). Er-

ror bars are negligible on the plotted scale. The

values of k and l for each condition are provided

in Fig. 2 B. (C) Fits of the super-exponential growth

model Eq. 3 to average instantaneous growth rate

versus t=t of C. crescentus cells grown in PYE at

three different temperatures. Data are taken from

(11). (D) Time-dependent growth rate in filamentous

E. coli cells grown in LB at different temperatures,

presented in absolute time. Data are taken from

(6). Dashed lines in (A)–(D) represent fits of the

model in Eq. 3. To see this figure in color, go online.
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supporting material for details). We found that constriction
alone cannot explain the increase in growth rate of the cell
throughout the cell cycle (Fig. 1 A). In particular, the
constriction model has two qualitative discrepancies with
data. First, it does not explain super-exponential growth
that occurs prior to constriction initiation. Second, it ex-
hibits a growth rate maximum prior to division, followed
by a decrease in growth rate to the initial value as cell shape
approaches that of two daughter cells. Furthermore, as we
show later that super-exponential growth also occurs in fila-
mentous cells that do not form a division septum.

Phenomenological model

Recent experiments have shown that the E. coli and
C. crescentus cells do not grow uniformly along their length
(11,35), motivating a physical model where a portion l of
the total cell length does not grow:

dL

dt
¼ kðL � lÞ; (3)

where k is the rate of cell elongation and the parameter l can
be determined by fitting the model to experimental data.

This phenomenological model makes no assumptions about
the spatial distribution of l but assumes that l is time inde-
1256 Biophysical Journal 122, 1254–1267, April 4, 2023
pendent. Attempts to model time-dependent l results in in-
consistencies with experimental data for E. coli or
C. crescentus; increasing l over time leads to subexponen-
tial growth, whereas a decrease in l results in unbounded in-
crease in growth rate that is inconsistent with data for
filamentous cells (see below). Solving Eq. 3 for 0% t% t
gives

LðtÞ ¼ lþ ðL0 � lÞekt; (4)

where L0 is the cell length at birth. Since E. coli behaves
as an adder (4,8,9), cell division occurs when the cell length

increments by a constant amount D: LðtÞ ¼ L0 þ D. Thus,
the interdivision time is given by t ¼ k� 1 lnð1þD =ðL0 �
lÞÞ. Upon division, each daughter cell is assigned a value of
l uncorrelated to that of the mother cell (Table 1).

Comparison between the models given by Eqs. 2 and 3
are provided in the data for cell length versus time (Figs.
S2, A and B) and growth rate versus time (Fig. 1, A and
B). For the length data, goodness-of-fit tests reveal that the
model in Eq. 3 most accurately captures the data (Fig. S2
C). With the model parameters determined from fitting the
cell length data, the model in Eq. 3 is capable of fully
capturing the increasing growth rate trend (Fig. 1 A) across
all nutrient conditions (Fig. 1 B). Interestingly, we find that



TABLE 1 Correlations between successive generations

Condition rn;nþ1ðkÞ rn;nþ1ðlÞ rn;nþ1ðL0Þ rn;nþ1ðw0Þ
Glycerol 0.03 0.05 0.54 0.77

Sorbitol 0.00 �0.01 0.56 0.59

Glucose 0.01 0.04 0.55 0.75

Glucose 6AA 0.00 0.03 0.51 0.81

Glucose 12AA 0.00 0.05 0.52 0.78

Rich MOPS 0.00 0.01 0.48 0.72

TSB 0.00 0.07 0.50 0.82

Super-exponential growth in bacteria
the average value of l is larger than the average cell diam-
eter in all growth conditions (Fig. 2 B), suggesting that there
are regions within the cylindrical portion that are
nongrowing in addition to the poles.

A key prediction of our model is that the growth rate of
the cell saturates to a constant at longer times such that
cell growth becomes purely exponential. This is evident
from the growth rate equation

dk

dt
¼ � kðk � kÞ; (5)

which predicts that kzk for t[ k� 1. To test this predic-
tion, we analyzed the morphologies of filamentous E. coli

cells (6) that have longer cell cycles due to impaired divi-
sion. In agreement with our model, data show that the
growth rate of filamentous cells increases initially and
then saturates to a constant value over longer times (�
100 min at 25+ C and 27+ C), as shown in Fig. 1 D. The
timescale to reach the exponential growth phase decreases
with temperature, and thereby decreases with increasing
growth rate, which is in agreement with our theory.

Mechanistic model of super-exponential growth

Our phenomenological model of super-exponential growth
can be derived from an underlying molecular model that as-
sumes that cell length increases at a rate proportional to the
abundance R of actively translating ribosomes

dL

dt
¼ aR; (6)

where a is the speed of cell elongation per ribosome, related
to the translational capacity of the cell. This model is moti-

vated by data that the bacterial growth rate is linearly pro-
portional to the mass fraction of actively translating
ribosomes (36). One could alternatively formulate Eq. 6 as
the rate of volume growth proportional to ribosomes, result-
ing in rescaling of the parameter a by geometric parameters
of the cell. However, we choose to work with cell length, as
length data are directly measured in experiments, whereas
volume must be calculated using data for cell length, width,
and geometric assumptions.

Since ribosomes are autocatalytic structures, the abun-
dance of active ribosomes grows at a rate proportional to R

dR

dt
¼ kR; (7)
where k defines the rate of synthesis of ribosomal proteins.
Solving for LðtÞ, we arrive at the same equation as Eq. 3 with

l ¼ L0 � aR0=k; (8)

where R0 is the abundance of active ribosomes at cell birth
and k is identified as the cell elongation rate (Eq. 7), predict-

ing that l increases with k. In this form, l is more clearly
interpreted as the difference between the cell’s actual length
(L0) and the length of material synthesized by ribosomes
(aR0=k) at birth. Thus, super-exponential (l> 0) growth oc-
curs when there is a mismatch between cell geometry and
the initial protein synthesis capacity of the cell.

Deriving Eq. 3 from an underlying model of ribosome
synthesis is important to its validity. Rather than introducing
the two-parameter model in Eq. 3 as an experimentally
motivated ansatz, we use a preexisting understanding of
ribosome synthesis to describe cell growth using two phys-
iological parameters: translation speed a and ribosome syn-
thesis rate k. These parameters in turn define the rate of cell
growth and the portion of the nongrowing region of the cell,
l (Eq. 8).
Intergenerational fluctuations in cellular growth
parameters

While the deterministic growth model described by Eqs. 6
and 7 accurately describes the average growth dynamics
of the cell, there are significant fluctuations in model param-
eters across different generations and growth conditions.
Understanding these parameter variations is essential for
predictive modeling of stochastic growth dynamics. To
obtain a quantitative understanding of the noise in the
cellular growth parameters between individual generations,
we move from fitting ensemble-averaged data to individual
generations within each growth condition for E. coli (Fig. S2
A) (4). Fitting our effective growth model in Eq. 3 to cell
length data for each generation provides a pair of values
for the elongation rate, k, and the effective length of the
nongrowing region, l. From these fits, we find a positive
correlation between k and l within each growth condition,
as shown by the scatterplot in Fig. 2 A. The mean trend in
the correlation between l and k is accurately captured by
Eq. 8, which predicts that l increases with k.

Furthermore, we observe a strong positive correlation be-
tween the population means ClD and CkD across nutrient con-
ditions (Fig. 2 B). To understand the origin of this
correlation, we compute the relationship between ClD and
CkD using Eq. 8 under a small-fluctuation approxima-
tion sk=k � 1,

ClDz CL0D � CaR0D
�
CkD

� 1 þ s2
kCkD

� 3�
; (9)

where sk is the standard deviation in k. In the above equa-
tion, both CL0D and CaR0D are functions of CkD. Since

the average cell size increases exponentially with the
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FIGURE 2 Intergenerational fluctuations and correlations in E. coli cell growth parameters. (A) Scatterplot showing the correlation between k and l ob-

tained by fitting super-exponential growth model to E. coli cell length versus time data in TSB. The solid black curve represents a fit of Eq. 8 to the data. We

remove outliers and the small number of generations in fast growth conditions with l< 0 from further analysis (see materials and methods). (B) Ensemble-

averaged ClD versus CkD across different growth conditions. The black curve is a model prediction for ClD as a function of CkD according to Eq. 9, with CL0D ¼
ð1:50 mmÞ expðð16:19 minÞCkDÞ, CaR0D ¼ ð0:84 mmÞCkD expðð16:19 minÞCkDÞ, and s2k ¼ ð11:14 min2ÞCkD4 þ ð2:67 $10� 5Þ min� 2. (C) Marginal probability

distributions of dl ¼ l � ClD across different growth conditions. (D) Marginal probability distributions of dk ¼ k � CkD for each growth condition shown

as solid color curves. Dashed curves of the same color depict fits of log-normal distributions. Experimental data presented in (A)–(D) are taken from (4). (E)

Representative contour plots of the model predictions for the joint distribution Pðk; lÞ, corresponding to mean growth rates in glucose, MOPS, and TSB

media. Darker blue indicates higher probability. To see this figure in color, go online.
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Super-exponential growth in bacteria
nutrient-specific growth rate (14,37), we assume an expo-
nential form for the dependence of CL0D on CkD that we deter-
mine by fitting experimental data (4) (Fig. S3 A).
Furthermore, since the ribosome mass fraction increases lin-
early with the growth rate (36), we fit CaR0D=CL0D to a linear
function of CkD, which captures the data very well (Fig. S3
B). With these fitted functions, we can model ClD as a contin-
uous function of CkD (Fig. 2 B).

Next, we turn to modeling the distributions of l and k
such that the intergenerational correlations are accurately
captured. Marginalizing the joint distribution of k and l ob-
tained from experimental data, we find that the probability
distributions of dk ¼ k � CkD and dl ¼ l � ClD are
skewed right and left, respectively, with increasing variance
as CkD increases (Fig. 2, C and D). We observe that the
variations in k are reasonably well approximated by a log-
normal distribution, as shown in Fig. 2 D. This is not
unexpected as the cellular elongation rate k is an accumula-
tion of growth at many individual sites on the surface of the
cell. However, the distribution of l is slightly more difficult
to model analytically (Fig. 2 C). The unusual shape for l
distribution arises from the noise in L0, k, a, and R through
the relation defined in Eq. 8. Even under Gaussian noise ap-
proximations, an exact analytical distribution for l does not
exist. However, assuming small fluctuations about the mean
values, we find that

slz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
L0
þ CaR0D

2
s2
k þ CkD

2
s2
aR0

CkD
4

s
; (10)
where si is the standard deviation in parameter i. Interest-

ingly, larger values of CaR0D lead to a greater contribution
of the noise in k, whereas larger CkD increases the contribu-
tion of the noise in aR0. An approximate analytical form the
joint distribution Pðk; lÞ can be constructed by transforming
the variables k and l to remove the skew in the distribution:

K ¼ ln k and L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 � l

p
, where l0 is a chosen refer-

ence value. The transformed variables K andL are normally
distributed, allowing us to construct a correlated multivar-
A B
iate normal distribution, PðK;LÞ (see materials and
methods), whose parameters can be fitted with appropriate

mathematical functions of the average elongation rate CkD
(Fig. S4). Representative contour plots of the joint distribu-
tion P are shown in Fig. 2 E for three different growth
conditions.
Cell width maintenance during growth

While cell length increases during the cell cycle, the width
of rod-shaped E. coli fluctuates about a mean value w0 (4).
We consider two levels to these fluctuations: fluctuations of
cell mean width w0 about the population mean Cw0D and tem-
poral fluctuations in cell width w about its mean w0 during
any given generation. Fig. 3 characterizes the statistical
properties of w0 as a function of the elongation rate k. Not
surprisingly, Cw0D increases exponentially with CkD at the
same rate as cell length (Fig. 3 A). This is a consequence
of E. coli cells maintaining a constant aspect ratio (on
average) in different nutrient conditions (19). The distribu-
tion of w0 can be reasonably well approximated by a
Gaussian, with the standard deviation of w0 increasing
with CkD (Fig. S5 A). In addition, the coefficient of variation
in w0 is roughly constant with changing growth conditions
(Fig. S5 B). As a result, the probability distribution of
dw0=Cw0D, where dw0 ¼ w0 � Cw0D, can be collapsed
onto a single Gaussian distribution (Fig. 3 B).

To arrive at a general equation that describes the mainte-
nance of cell width and its fluctuations around a mean value,
we begin with the model where the surface area S of the cell
is synthesized at a rate proportional to ribosomal abun-
dance R,

dS

dt
¼ gR; (11)

where g is the rate of synthesis of surface material. This
model stands in contrast to a recently proposed model of

surface area synthesis in proportion to cell volume (17)
but is conceptually similar since the surface material is
FIGURE 3 Intergenerational variations in E. coli

cell width across growth conditions. (A) Average

width Cw0D versus CkD across growth conditions.

The solid black line shows that Cw0D increases expo-
nentially with CkD, keeping a fixed length-width

aspect ratio (Cw0D ¼ 0:25CL0D ¼ ð0:38 mmÞ
expðð16:19 minÞCkDÞ). (B) Probability distributions

of the intergenerational fluctuations dw0 ¼
w0 � Cw0D across growth conditions scaled by their

respective standard deviations (sw0
¼ 0:06Cw0D ¼

ð0:02 mmÞ expðð16:19 minÞCkDÞ). The dashed curve

shows a universal Gaussian fit to the scaled data.

Data are taken from (4). To see this figure in color,

go online.
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assumed to be produced in the cytoplasm. Using a spherocy-
lindrical geometry of the cell with pole-to-pole length L and
width w, we have S ¼ pwL. Using dL=dt ¼ aR together
with Eq. 11, we arrive at the width equation

dw

dt
¼ aR

L
ðw0 � wÞ; (12)

with w0 ¼ g=pa. Thus, w relaxes to the value w0 at
steady state, with R=L approaching the value k= a. Since

the coefficient of variation in w0 is roughly constant
across growth conditions (Fig. 3 B), it is reasonable to as-
sume that the coefficients of variation in parameters a and
g are also maintained constant across different growth
conditions.

Expressing R in terms of L and l yields an alternative
form for the width equation

dw

dt
¼ k

�
1 � l

L

�
ðw0 � wÞ; (13)

which showcases the asymptotic approach to dw= dtz
kðw0 � wÞ, without considering the dynamics of R directly.

This approach occurs on the timescale of the generation
time t, taking around 3t to stabilize (Fig. S5 C).
Intergenerational dynamics and correlations in
model parameters

The dynamics of a bacterial cell in each generation are
defined by Eqs. 3 and 13, characterized by only three param-
eters, k, l, and w0. These parameters vary across generations
and growth conditions. To define the intergenerational dy-
namics, we expand our model to account for the rule of
cell division. Cell growth is coupled to division such that
the production rate of division proteins X (e.g., FtsZ) is pro-
portional to the amount of active ribosomes (38,39),

dX

dt
¼ bR; (14)

where X is the division protein abundance and b is the rate of
synthesis of division proteins per ribosome. Cells divide

once a threshold amount of division proteins, X0, are synthe-
sized during the cell cycle (13,22,38,39). This leads to an
adder model for cell size control, as relevant for E. coli cells
(12), such that the added cell length (D) during each division
cycle is constant and given by

D ¼ X0k
2
�ðabÞ: (15)

Next, we turn to computing the intergenerational correla-
tions in model parameters in order to construct a stochastic
model for cell width dynamics as it evolves through cycles
of birth, growth, and replication. There are two levels at
which we must address the correlations in our model param-
eters: correlation between mother and daughter cells and
population-wide correlation. In Table 2, we list the intergen-
erational correlations in model parameters for each growth
1260 Biophysical Journal 122, 1254–1267, April 4, 2023
condition. As shown earlier in Fig. 2 A, there is a strong pos-
itive correlation between l and k. However, we do not
observe a correlation between either k or l with w0. This
simplifies our model immensely since the length and width
equations can now be simulated independently. It is inter-
esting to note that there is a slight positive correlation be-
tween l and the initial cell length L0, which decreases
with increasing CkD. This makes intuitive sense since l is a
portion of L0, and as L0 increases with the growth rate, the
possible values of l are less constrained. In other words,
the contribution of aR0 in Eq. 8 is more pronounced for
faster-growing cells. We do not observe any substantial cor-
relations between the added size D and the growth parame-
ters k and l.

In Table 1, we examine the correlations in model param-
eters between successive generations. As expected from the
adder model (12), there is a positive correlation in subse-
quent values of L0, with a correlation coefficient z0:5.
Despite the slight positive correlation between L0 and l at
the population level (Table 2), we see no correlation in l
values between successive generations. Furthermore, there
is no correlation between subsequent generation values
of k, so both k and l can be drawn independently for each
generation from the joint distribution Pðk; lÞ (Eq. 26). How-
ever, cell mean width is highly correlated between the
mother and the daughter cell such that the mean width in
successive generations are related as

w0nþ1
¼ sw0

�
r
w0n � Cw0D

sw0

þN

�
þ Cw0D; (16)

where r is the correlation between w0nþ1
and w0n and N is a

Gaussian with mean 0 and variance 1 � r2. Further details

about intergenerational mechanics are left to the supporting
methods. With all the intergenerational correlations and di-
vision mechanics accounted for, we now turn to developing
the Langevin equations for cell length and width that can
accurately capture intragenerational correlations and fluctu-
ations in cell morphology and growth rates.
Stochastic length and width dynamics

To simulate the stochastic growth and size dynamics of sin-
gle cells, we account for the noise in model parameters
within each generation. We derive the Langevin equations
governing the dynamics of cell length and width by consid-
ering noise in the parameters defining the deterministic Eqs.
6, 7, and 11. To this end, we write each parameter q (a; k;
org) as qðtÞ ¼ qþ nqðtÞ, where q represents the average
value of the parameter within a generation and nqðtÞ repre-
sents the time-dependent intragenerational fluctuations in
q, assumed to be Gaussian white noises with zero mean.
The assumption of white noise is motivated by the observa-
tion that the temporal fluctuations in cell length and width
are uncorrelated in experimental data.
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Width dynamics

Considering stochastic variations in the parameters a and g,
we write the equation for cell width Eq. 12 as

dw

dt
¼ a

R

L
ðw0 � wÞ þ R

L

�ng
p

� wna

	
; (17)

where w0 ¼ g=pa. Considering the deviations from the
cell mean width dw ¼ w � w , we find
0

ddw

dt
¼ � a

R

L
dwþR

L

�ng
p

� w0na

	
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

hw

þ R

L
nadw; (18)

where hw is a time-uncorrelated Gaussian additive noise
with amplitude s2 , Ch ðtÞh ðt0ÞD ¼ s2 dðt � t0Þ. In addi-
hw w w hw
tion, fluctuations in a, characterized by the noise na,
contribute to multiplicative noise in the width equation.
The interplay between additive and multiplicative noise
with a restorative drift has been studied recently in the
context of bacterial shape control (27). Although our equa-
tion differs from (27), some of the conceptual results in (27)
hold here as well. Crucially, the effect of increased multipli-
cative noise on the distribution of dw is to not only increase
the spread but also to add a positive skew to the distribution.
In other words, neglecting the multiplicative noise (na ¼
0) to write

ddw

dt
¼ � a

R

L
dwþ R

L
hw (19)

is a good approximation when dw is Gaussian. As a result,
dw follows an Ornstein-Uhlenbeck process (40). From the

experimental data, we do not observe a skew to dw distribu-
tion, and hence this approximation is justified. Neglecting
the multiplicative noise is equivalent to neglecting intrage-
nerational variations in a compared with k and g.

Integrating Eq. 18 would require keeping track of the
values of R as it fluctuates during growth. While this math-
ematically poses no difficulty, we do not currently have
experimental data for the dynamics of RðtÞ, so their values
cannot be benchmarked in simulations. To circumvent this
issue, we eliminate R to recast the width equation in terms
of L:

ddw

dt
¼ � k

�
1 � l

L

�
dwþ

�
1 � l

L

�
hw; (20)

which can be integrated forward using information available
from data. In the case of purely exponential growth in length

(l ¼ 0), Eq. 20 takes the simple form

ddw

dt
¼ � kdwþ hw; (21)

showing that width fluctuations decay over a timescale k
� 1

that is set by the elongation rate. Since ð1 � l =LÞ scales

both the restoring force and the noise in the width equation,
despite ð1 � l =LÞ increasing throughout the cell cycle, we
see no qualitative or quantitative differences between width
trajectories generated by models in Eqs. 20 or 21 (Fig. S6).
In other words, super-exponential elongation in length does
not strongly affect stochastic width fluctuations within a
generation.

Length dynamics

The Langevin equation for cell length can be derived using
Eq. 6,

dL

dt
¼ aRþ Rna : (22)

By eliminating R and neglecting the intragenerational
noise in a (as justified earlier), we can recast the above
equation in terms of l ¼ L � l:

dl
dt

¼ kl þ l nk; (23)

with multiplicative Gaussian white noise nk , where CnkD ¼ 0,
CnkðtÞnkðt0ÞD ¼ s2 dðt � t0Þ, and s2 is the noise amplitude.
nk nk

The above equation may be recognized as the Black-Scholes
model in stochastic form (40). As for stochastic variations in
l within a generation, it follows from Eq. 8 that

l ¼ L0 � aR0

k
z L0 � aR0

k þ nk
z L0 � aR0

k

�
1 � nk

k

	
;

(24)

which is approximately constant in the small fluctuation
limit nk � k. This is implicit in the assumption of writing

the noise term nk in Eq. 23. Rather than modeling k sto-
chastically and updating L deterministically from k, we
consider the fluctuations in k to be Gaussian around a
mean k, with no memory at each timestep during the cell
cycle.

Ribosome dynamics

While we do not directly model R to predict cell length and
width dynamics, the stochastic dynamics of R during the cell
cycle can be derived by considering noise in k,

dR

dt
¼ kRþ Rnk : (25)

In other words, we predict a multiplicative noise in Rwith
an amplitude s2nk that can be determined from the measure-
ments of length fluctuations. To model intergenerational dy-
namics, we note that an adder mechanism for cell length
control implies an adder model for ribosome homeostasis
such that Rnðt ¼ tnÞ ¼ Rnðt ¼ 0Þ þ kDn=a, where n is
the generation index, Rn is the abundance of actively trans-
lating ribosomes, Dn is the added length, and tn is interdivi-
sion time in generation n. By fitting cell length data, we can
determine the parameters a, k, andD to predict ribosome dy-
namics during the cell cycle (Fig. S7 A). The predicted dy-
namics show that following division, a certain amount of
ribosomes is removed from the actively translating pool R
Biophysical Journal 122, 1254–1267, April 4, 2023 1261
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for the daughter cell such that Rnþ1ð0Þ ¼ rRnðtÞ � RU
nþ1,

where r is the division ratio and RU
nþ1 is the amount of ribo-

somes removed from the active ribosome pool in generation
nþ 1. This is a model prediction rather than an assumption,
as RU is determined from fitting data. We note that a nonzero
RU is necessary for super-exponential growth in consecutive
generations, as observed in data (Fig. S2 D), otherwise a cell
would grow exponentially at a constant rate following divi-
sion. There are several possible underlying explanations for
nonzero RU, including fluctuations in free ribosome abun-
dance and degradation, as described in the supporting mate-
rial (Fig. S7 B).

Langevin simulations

With all the model parameters and their intragenerational
and intergenerational fluctuations determined from experi-
mental data, we can simulate the Langevin Eqs. (20) and
(23) in different growth conditions (see materials and
methods). Fig. 4 shows representative trajectories of cell
length and width resulting from such a simulation in fast
and slow growth conditions. For both length and width,
the simulations reproduce short timescale fluctuations
within a given generation (Fig. 4, A and C), as seen in exper-
imental data (4). Longer timescale intragenerational length
fluctuations about a smooth fit of Eq. 3 are also present,
often spending�10%–20% of the cell cycle above or below
1262 Biophysical Journal 122, 1254–1267, April 4, 2023
the average dynamics. The fluctuations about the intrage-
nerational width mean are more pronounced than what we
see for length dynamics, often spending more than � 50%
of a cell cycle without crossing the mean, consistent with
experimental data (4). At the intergenerational level, length
fluctuations are regulated by the adder model (Fig. 4 B), but
the fluctuations in width dynamics (Fig. 4 D) are worth
noting. Based on our observed mother-daughter correlations
in w0 (Table 1), there is typically a large change in w during
the division process compared with the intragenerational
fluctuations.

The Langevin model can be used to generate predictions
about the distribution of cell size and interdivision time. In
Fig. 5, we simulate how the noise in cell cycle time (Fig. 5
A) and initial cell size (Fig. 5 B) changes as a function of the
noise in growth at the intra- and intergenerational levels.
Noise in added length D is propagated through from k ac-
cording to Eq. 15. We observe that while both intergenera-
tional noise (sk; sl) and intragenerational (snk) noise have
an impact on the fluctuations in generation time, the effects
of the intergenerational noise are more pronounced.
Assuming symmetric division, cell size distribution at birth
is controlled entirely by D, and, while D does fluctuate in
time with nk , the time-uncorrelated fluctuations in k are
too small to have an effect comparable to the cell-to-cell
variation in D.
FIGURE 4 Langevin simulations for stochastic

cell size dynamics in fast and slow growth

conditions. For (A)–(D), blue trajectories correspond

to a relatively fast-growing condition with

CkD ¼ 0:06 min� 1 and red to a relatively slow-

growing condition with CkD ¼ 0:03 min� 1. (A)

Length versus normalized time t=t for a single gen-

eration, where t is cell-cycle duration. The dashed

black curve is a fit of deterministic super-exponential

growth Eq. 3. The transparent bands surrounding

each deterministic curve represent the standard devi-

ation in length fluctuations (sdL ¼ 0:066 mm). (B)

Length versus absolute time for several generations.

(C) Width versus t=t for a single generation in

normalized time. The solid black shows individual

cell mean width. The transparent band around each

cell mean width line represents the standard devia-

tion in width fluctuations (sdw ¼ 0:017 mm). (D)

Width versus absolute time for several generations.

Cell mean width is represented with solid black

lines, while population mean width is represented

by dashed black. The transparent band around each

population mean width line represents the standard

deviation in intergenerational fluctuations (sw0
¼

ð0:02 mmÞ expðð16:19 minÞCkDÞ). To see this figure

in color, go online.



A B FIGURE 5 Noise in cell-cycle time and cell size

propagates from noise in growth parameters. (A) A

colormap showing standard deviation in cell-cycle

time t (st) predicted by our stochastic simulations,

as a function of intergenerational noise (sK ; sL)

and intragenerational noise (snk). Each axis is

normalized by dividing the varied parameter(s) by

the standard value(s) fitted to the data, and the scale

of st is likewise normalized by the unperturbed

value. Each parameter is varied 550% along each

axis. Bins sample 5000 generations for a single

cell. (B) A colormap showing normalized standard

deviation in initial cell size (sL0=s
fitted
L0

), predicted

by our simulations, as a function of intergenerational

and intragenerational noise. To see this figure in co-

lor, go online.
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Single-cell-level resource allocation and noise
control strategies

The kinetic model we developed for stochastic cell growth
and size control can be used to derive single-cell-level stra-
tegies for ribosomal resource allocation and morphogenetic
noise control in different nutrient conditions. Previous
studies on bacterial growth physiology at the population
level have revealed how bacteria allocate resources between
ribosomal and metabolic protein synthesis in different
nutrient conditions and under antibiotic treatments (36). In
particular, it was shown that there is a trade-off between
the mass fractions of ribosomal and metabolic proteins as
nutrient conditions are varied (36). Here, we ask how such
nutrient-dependent trade-offs arise at the single-cell level
between the allocation of cellular resources for growth, di-
vision, and cell-shape maintenance. Furthermore, we
inquire how cells regulate noise in different physiological
parameters as nutrient conditions are varied. Fig. 6 A sum-
marizes the main components of our model as defined by
Eqs. 6, 7, 14, and 11. Specifically, ribosomal proteins are
involved in four major tasks: 1) production of ribosomes
at a rate k, 2) cell elongation at a rate a, 3) division protein
synthesis at a rate b, and 4) surface area synthesis at a rate g.
All these rates are controlled by the nutrient-specific growth
rate. While we can determine k by directly fitting cell length
data, we cannot directly extract the absolute values of the
rates a, b, and g from data. We therefore define normalized
synthesis rates (same physical units as k) as a0 ¼ aR0= L0,
g0 ¼ gR0=S0, and b0 ¼ b=ðR0X0Þ, which can be deter-
mined from fitting E. coli cell length and width data (4)
considered in prior sections.

From fits of our model to experimental data, we find that
both Ca0D and Cb0D increase with CkD, while Cg0D remains
approximately constant (Fig. 6 B). At the resolution of the
data and our fitting, we see no change in the amplitude of
noise in g0 and b0, while the noise in a0 and k increases
with CkD. The increase in the rate of production of length ma-
terial (Ca0D) and the rate of division protein synthesis (Cb0D)
with CkD is consistent with data that both cell size and the
rate of cell division increase with growth rates (13,14,38).
Since the rate of production of surface material remains
approximately constant with increasing growth rate and
cell size, it implies that the surface-to-volume ratio de-
creases with growth rate, as seen in experimental data
(14,17,19).

Given thatmost of the synthesis rates increasewith CkD, it is
more insightful to interpret these results in the context of allo-
cation of ribosomal resources to each these physiological
tasks. We therefore introduce the rate allocation fractions,
4q (q˛ fk;a0;b0;g0g), defined as the mean value of the rates
CqD, normalized by the sum of all mean rates (

P
CqD ¼

Ckþa0 þb0 þg0D). As shown in Fig. 6 C, both 4k and 4a0 in-
crease as CkD increases, while 4b0 and 4g0 decrease with CkD.
It thus becomes clear that as nutrient-specific growth rates in-
crease, cells allocate more ribosomal resources to producing
more ribosomes and increasing cell size (length), while, pro-
portionally, less resources are allocated to the production of
cell division proteins and surface area synthesis. This trend
can also be seen in noise allocation fractions determined
from experimental data (Fig. 6 D), where we find that the
relative noise in k and a0 increases while those of g0 and b0

decrease with increasing CkD. In other words, more of the
noise is present in the rate constants with greater allocation
fraction. Taken together, these data show that there is a
nutrient-dependent trade-off between cellular resource-allo-
cated ribosome synthesis and cell size and those that are allo-
cated to synthesizing cell surface area and division proteins.
These trade-offs underlie the control of bacterial cell growth
and morphology and the regulation of noise in cellular
growth and morphogenetic parameters.
Conclusions

The predominant assumption for most of the history of
bacterial growth modeling has been that exponential growth
occurs at both the population and individual scales (12).
Our observations contradict this standard; we find super-
exponential growth in cell size across a variety of nutrient
Biophysical Journal 122, 1254–1267, April 4, 2023 1263
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FIGURE 6 Cellular resource allocation and noise

control strategies across nutrient conditions. (A) A

network diagram for the underlying protein synthesis

model. Ribosomes (R) responsible for synthesizing

new proteins do so in an autocatalytic process (rate

k) while also producing proteins necessary for

growth and division (rates a, b, and g). (B) Normal-

ized synthesis rates (a0 ¼ aR0=L0, g
0 ¼ gR0=S0,

b0 ¼ b=ðR0X0Þ) as a function of the mean elonga-

tion rate CkD. Solid lines depict the mean values of

the normalized rates, determined from fitting our

model to experimental data (solid circles, showing

mean values), and the transparent bands show one

standard deviation of the corresponding distributions

(see materials and methods). (C) Mean rates (as de-

picted in B) normalized by the sum of all rates for a

given CkD. (D) The noise (standard deviation) in each
rate corresponding to the transparent bands in (B)

normalized by the sum of all rates at a given CkD.
To see this figure in color, go online.
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and temperature conditions. We propose mechanistic models
that account for the increasing exponential growth rate during
the cell cycle—first in terms a phenomenological model of
nonuniform cell envelope growth and second in terms of a
mechanistic model of autocatalytic ribosome synthesis. In
the phenomenological model of nonuniform growth, the
nongrowing portion l of the bacterial cell length can be
interpreted using the mechanistic model as the mismatch be-
tween the cell’s geometry and initial capacity to synthesize
proteins necessary for growth. Live-cell imaging of cell enve-
lope growth pattern in E. coli during cell-cycle progression
would be necessary to test our interpretation of the nonuni-
form growth model. While super-exponential elongation
could also be captured by modeling the effects of constriction
on exponentially growing the volume of the cell, we find that
the qualitative features of the constriction model are inconsis-
tent with experimental data. Experiments quantifying septal
growth dynamics in constricting E. coli cells is needed to
directly test our model for constriction dynamics and study
the effects division septum geometry on cell elongation.

Our model for cell growth dynamics comes with several
parameters that have been calibrated based on experimental
data. All of the parameter distributions that make up the dy-
namic models for cell growth, division, and width mainte-
nance have been parametrized as functions of cellular
elongation rate alone, allowing us to make quantitative pre-
dictions for how the average values and the noise in cellular
parameters evolve in arbitrary growth conditions. By
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combining intergenerational noise factors with intragenera-
tional stochastic differential equations, we uncover the de-
grees to which various underlying noise sources in growth
and division processes contribute to overall noise in bacte-
rial growth and morphogenesis.

While our stochastic growth model is developed primarily
using single-cell data forE. coli, themodeling approach could
be extended to other bacterial species with different morpho-
logical features and growth laws. In this context, it is pertinent
to ask whether super-exponential growth is prevalent in other
bacterial organisms and not just limited to Gram-negative
E. coli and C. crescentus cells. Analysis of single-cell growth
data of gram-positiveBacillus subtilis cells (41) reveals a non-
monotonic trend in growth rate during the course of the cell cy-
cle (Fig. S8, A and B), as recently reported (34). In particular,
B. subtilis cells show a period of decelerated growth followed
by a period of accelerated growth irrespective of growth con-
ditions. Our model is capable of capturing these behaviors
with a time-dependentl in Eq. 3, arising from time-dependent
ribosome allocation, where l increases during the first phase
of decelerated growth and decreases during the second phase
of accelerated growth (Fig. S8 C). These observations raise
questions on how time-dependent changes in growth parame-
ters are connected to cell-cycle-dependent changes in cell en-
velope growth pattern and protein synthesis, for which
experimental data are currently lacking. This timedependence
has the potential to better capture the slight nonmonotonicity
observed in Fig. 1. A better understanding of how cellular
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growth parameters fluctuate during the course of the cell cycle
would allow us to further refine our model assumptions and
test theoretical predictions.

The mechanistic model based on ribosome synthesis and
resource allocation could be directly tested in experiments
measuring time-dependent bacterial proteome and ribosome
synthesis during the cell cycle. While the production of ribo-
somes, cell divisionproteins, and cell envelope proteins are ac-
counted for in our simplified model, we neglect many
metabolic proteins and transporters and those that fall into
the housekeeping/maintenance sector of the proteome. Future
work taking into account these details could provide insights
into the biochemical processes that are difficult to measure
directly in experiments. The amount of ribosomes unused
for growth, RU, which is required for super-exponential
growth, is an interesting prediction of our model that can be
tested in future experiments. Nonzero RU could potentially
result from ribosome degradation (42) or a temporary increase
in free ribosome abundance following division, although the
exact dynamics of these processes are not verifiable with cur-
rent experimental data. Future experimental work measuring
translation kinetics through single-cell ribosomal profiling
and RNA sequencing as a function of cell-cycle time would
directly challenge or support this prediction. These experi-
ments would help test our predictions that, in nutrient-rich
growth environments, cells allocate proportionally more of
their ribosomes to cell elongation and ribosome production
rather than the synthesis of surface area material and division
proteins (Fig. 6 C). While these predictions are derived at
steady-state growth conditions, future work predicting intra-
generational dynamics of cellular resource allocation, particu-
larly in changing nutrient conditions, would be of particular
interest to the growing field of single-cell physiology.
Methods

Growth rate calculation

The E. coli strain for the data considered from (1) is K12
NCM3722 (not-motile derivative SJ202). The K-12
MC4100 strain is used for the filamentous E. coli cells (6).
All growth rate data analyzed in this paper are calculated
from cited timeseries length data. We perform this calculation
using a midpoint derivative approximation. While this calcu-
lation loses the first and last data points, it is less noisy than
a left/right approximation. We have considered a running
exponential fit (�3 points) to extract k, but this method is
alsomore noisy than themidpoint approximation. For popula-
tion average data, as shown Fig. 1, we average in normalized
PðK;LÞ ¼ 1

2psKsL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

q exp

""
� 1

2ð1 � r2Þ

"�
K � C

sK
time. The growth rate is approximated at the individual cell
level, and then each data point is placed into population bins
according to where the data point falls in t=t (the cell-cycle
time t is specific to each cell cycle considered). We choose
the number of bins in each case to be less than the average
number of data points collected per cell cycle to avoidmisrep-
resentation. Averages and error bars presented are then calcu-
lated for each bin with data from all cells. When considering
individual generations rather than averages (section onward),
fits of (4) are performed directly on the length data rather than
considering the processed growth rates.

When obtaining values of k and l through fitting Eq. 6 to
individual cell cycles, in addition to removing outliers with
nonphysical parameters, we neglect the fits that result in
l< 0. These results only occur in fast growth conditions
such as tryptic soy broth and MOPS, accounting for less
that 5% of the total cell generations. While the interpretation
of l< 0 is nonphysical in the model where l is interpreted as
the length of the nongrowing region of the cell envelope
(Eq. 5), l< 0 is physically permissible in the context of
the ribosome model (Eq. 9), implying subexponential
growth. Since subexponential growth is not observed in
experimental data, the negative values of l result from
fitting errors for data with high intragenerational noise.
Distribution of model parameters

Constructing an analytical form for the joint probability distri-
bution of growth parameters l and k is challenging due to the
skew in the distribution. To circumvent this difficulty, a
commonly used approach is to transform the data to first re-
move the skew in the distribution. Given the log-normal
nature of k distribution, ln k removes most of the skew from
k, while reflecting l (around a chosen reference value l0) fol-
lowed by a square root is sufficient to remove the skew. Most
functions commonly used to reduce skewness are defined only
on a positive domain and are alsomore effective if used on dis-
tributions that start without a large offset from 0, whichmeans
we must be careful about the point around which we reflect l.
For a single dataset, an easy choice is to perform a reflection
such that the maximum value becomes the minimum, and
vice versa. However, since we aim to fit this distribution as a
function of k; choosing to reflect in this manner introduces a
new parameter l0 that can be fit from the data. It is worth
noting that l0 only affects the efficacy with which the data
are normalized rather than a modification to the data them-
selves. We thus define the transformed variables K ¼ ln k

andL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 � l

p
, which are normally distributed, allowing

us to construct the joint distribution
KD
�2

þ
�
L � CLD

sL

�2
� 2r

ðK � CKDÞðL � CLDÞ
sKsL

##
; (26)
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where the distribution parameters varywith growth conditions

parameterized by CkD. As shown in Fig. S4, fitting appropriate
mathematical functions for CKD, CLD, sk , sL, l0, and the corre-
lation function rðK;LÞ permits us to construct a correlated
multivariate normal distribution for a given growth condition,

determined by the parameter CkD. Representative contour plots
of the joint distribution P are shown in Fig. 2 E for three
different growth conditions.

It is possible to expand this framework to include the
slight positive correlation between l and L0, as given in
Table 2. Considering a joint distribution including L0 in
addition to K and L, we have

PðK;L; L0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p det S

p

" XK;L;L0
#

exp �
x;y

ðx � CxDÞSxyðy � CyDÞ
2

; (27)

where S denotes the covariance matrix. In the context of
determining K and L for a new cell, Eq. 27 takes the fixed

argument of the cell’s L0 determined by the division
mechanism.

For parameters defining the ribosome synthesis model,
their dependencies on mean elongation rates are given
by s2k ¼ ð11:14 min2ÞCkD4 þ ð2:67 � 10� 5Þ min� 2,
Ca0D ¼ 0:537CkD � 0:001 min� 1, sa0 ¼ 0:120CkD �
0:001 min� 1, Cg0D ¼ 0:027 min� 1, sg0 ¼ 0:008 min� 1,
Cb0D ¼ 0:222CkDþ 0:023 min� 1, and sb0 ¼ 0:022 min� 1.

Langevin model simulations

We briefly summarize the components that make up the Lan-
gevin model simulations. As an input, a function for mean
elongation rate CkðtÞD is necessary. This fixes all distributions,
as seen in Figs. 2, 3, and S1–S4. For each generation, growth
parameters k and l are chosen according to our correlated joint
distribution Eq. 26 in addition to a value of w0. We then inte-
grate the stochastic differential Eqs. 22 and 25 until division
occurs, as prescribed by the adder model and a chosen D
fromfitted distribution to experimental data.Weuse a straight-
forward Euler-Maruyama method for the integration (32) us-
ing Itô calculus, neglecting the integration discretization
intricacies that arise in the derivations of equations with
nonconstant diffusion. In each equation, the noise terms
can be written as hðtÞ ¼ sxðtÞ, where OðxÞ ¼ 1=

ffiffiffiffi
dt

p
. To
TABLE 2 Intergenerational correlations of model parameters

Condition rðk;lÞ rðl;w0Þ rðk;w0Þ rðl;L0Þ
Glycerol 0.86 �0.07 �0.05 0.26

Sorbitol 0.84 �0.09 0.04 0.20

Glucose 0.88 �0.07 0.01 0.21

Glucose 6AA 0.89 0.02 0.12 0.21

Glucose 12AA 0.92 �0.02 0.09 0.14

Rich MOPS 0.87 �0.07 0.05 0.07

TSB 0.89 �0.16 �0.03 0.10
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perform the integration, we take xðtÞ ¼ dWðtÞ=dt, where
dW is a zero-mean Gaussian with variance dt at each timestep
(Weiner process). The noise amplitudes are determined
by minimizing the difference between experimental
and simulated width and length fluctuations, sdw
(z0:017 mm) and sL, respectively (z0:066 mm). We find
that shw zð0:0478 min1=2ÞÞCkDþ ð0:0018 min� 1=2Þ and
snkzð� 0:104 min1=2ÞCkDþ ð0:026 min� 1=2Þ. During cell
division, length is split according to a Gaussian division ratio
r, and a neww0 for the daughter cell is chosen correlated to the
oldw0 according to (16). New values of k and l are chosen un-
correlated to the previous generation, and the cell cycle re-
peats. A sample output of the simulation is shown in Fig. 4,
depicting results for slow- and fast-growing media.
Data and code availability

Custom simulation code and analyzed data are available at
https://github.com/BanerjeeLab/bacterial_growth_model.
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Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2023.02.015.
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