Skip to main content
. 2023 Apr 18;23:70. doi: 10.1186/s12911-023-02168-6

Table 2.

Hyperparameters used for each learning method

Method Hyperparameters
Logistic Regression C: 0.1, penalty: L2, solver: liblinear
Decision Tree criterion: entropy, max_depth: 5, min_samples_split: 10
Random Forest criterion: entropy, max_depth: 10, min_samples_split: 2, n_estimators: 100, min_samples_leaf = 1, bootstrap = True, class_weight = None, ccp_alpha = 0.0
Gradient Boosting learning_rate: 0.01, max_depth: 5, n_estimators: 300
SVM C: 0.1, coef0: 0, degree: 2, gamma: scale, kernel: rbf, tol: 0.0001
k-NN Number of neighbours: 7, Metric: minkowski, Weight:Uniform, leaf_size = 30, weights = ‘uniform’
MLP activation: relu, alpha: 0.001, hidden_layer_sizes: (100,), solver: adam
Adaboost n_estimators: 10, base_estimator = None, learning_rate = 1.0, algorithm = SAMME.R, random_state = None
Stochastic Gradient Descent alpha: 0.001, penalty: elasticnet, epsilon = 0.1 l1_ratio = 0.15, learning_rate = ‘optimal’, loss = ‘hinge’, max_iter = 1000, n_iter_no_change = 5, penalty = ‘l2’, power_t = 0.5, tol = 0.001