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BACKGROUND: Cardiometabolic diseases are highly comorbid, but their relationship with female-specific or overwhelmingly 
female-predominant health conditions (breast cancer, endometriosis, pregnancy complications) is understudied. This study 
aimed to estimate the cross-trait genetic overlap and influence of genetic burden of cardiometabolic traits on health conditions 
unique to women.

METHODS AND RESULTS: Using electronic health record data from 71 008 ancestrally diverse women, we examined relation-
ships between 23 obstetrical/gynecological conditions and 4 cardiometabolic phenotypes (body mass index, coronary artery 
disease, type 2 diabetes, and hypertension) by performing 4 analyses: (1) cross-trait genetic correlation analyses to compare 
genetic architecture, (2) polygenic risk score–based association tests to characterize shared genetic effects on disease risk, 
(3) Mendelian randomization for significant associations to assess cross-trait causal relationships, and (4) chronology analyses 
to visualize the timeline of events unique to groups of women with high and low genetic burden for cardiometabolic traits and 
highlight the disease prevalence in risk groups by age. We observed 27 significant associations between cardiometabolic 
polygenic scores and obstetrical/gynecological conditions (body mass index and endometrial cancer, body mass index and 
polycystic ovarian syndrome, type 2 diabetes and gestational diabetes, type 2 diabetes and polycystic ovarian syndrome). 
Mendelian randomization analysis provided additional evidence of independent causal effects. We also identified an inverse 
association between coronary artery disease and breast cancer. High cardiometabolic polygenic scores were associated with 
early development of polycystic ovarian syndrome and gestational hypertension.

CONCLUSIONS: We conclude that polygenic susceptibility to cardiometabolic traits is associated with elevated risk of certain 
female-specific health conditions.
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Cardiometabolic diseases, such as coronary artery 
disease (CAD), obesity, hypertension, and type 2 di-
abetes (T2D) are among the leading causes of death 

in the world and are highly comorbid.1–3 Many studies 
have shown that the pathophysiology of cardiometabolic 
diseases affects men and women differently.4 Although 
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cardiometabolic diseases have many sequelae that af-
fect both sexes, including depression, anxiety, chronic 
obstructive pulmonary disease, and cancer,5,6 they dis-
proportionately affect women because of their links to 
female-specific health conditions such as preeclampsia, 
gestational diabetes, stillbirth, and pregnancy loss.7,8 
Multiple lines of evidence link female health conditions 
to cardiometabolic diseases, where the incidence of car-
diometabolic conditions, such as obesity and T2D, leads 
to associated morbidities. Individuals who develop pre-
eclampsia during pregnancy are more likely to develop 
cardiovascular diseases and hypertension after preg-
nancy.9,10 Obesity is closely linked to polycystic ovarian 
syndrome (PCOS), and individuals with PCOS are at high 
risk of developing T2D.11–13 Individuals with endometri-
osis are at high risk of developing various cancers and 

cardiovascular diseases such as myocardial infarction 
and ischemic heart disease.14,15 Despite this evidence, 
the relationship between female-specific health condi-
tions and cardiometabolic phenotypes, and particularly 
the potential for shared genetic risk, is understudied. 
Investigation of shared genetic risks between cardiomet-
abolic diseases and female-specific health conditions 
has the potential to reveal genetic cluster-based risk fac-
tors that can be used to improve screening practices for 
many diseases in high-risk patients.

Genome-wide association studies (GWASs) have ex-
posed common genetic causes among diseases such 
as T2D, obesity, sleep apnea, hypertension, Alzheimer 
disease, and many types of cancer.16–19 There is evi-
dence of impacts on cardiometabolic phenotypes for 
>1000 different loci, but the effect size of any single 
variant is generally minimal. To estimate an individual’s 
overall risk of disease, researchers have used GWAS 
results to calculate polygenic scores (PGSs), which 
sum the effects of common single-nucleotide poly-
morphisms (SNPs) on a given phenotype20 and can be 
included in models predicting the risks of many car-
diometabolic phenotypes and comorbidities.21,22

To investigate the effects of genetic risk of car-
diometabolic phenotypes on female health conditions, 
we measured PGSs for cardiometabolic phenotypes 
and then determined their correlations with female-
specific health conditions documented in electronic 
health records (EHRs). Prior studies successfully used 
PGSs as genetic risk factors linking multiple adverse 
phenotypes.23,24 PGS-based association tests have 
the advantage that they are based on unvarying risk 
factors (ie, inherited genetic burden), and they make 
fewer assumptions than association tests based on 
individual genetic factors. We hypothesized that car-
diometabolic phenotypes and female-specific health 
conditions share common genetic factors so that ge-
netic risks for adverse cardiometabolic phenotypes 
should associate with female-specific health condi-
tions. To test this hypothesis, we obtained genotypic 
and phenotypic data on a wide range of female-specific 
health conditions from the PMBB (Penn Medicine 
BioBank) and the eMERGE (Electronic Medical 
Records and Genomics) network. We first measured 
pairwise genetic correlations between cardiometabolic 
phenotypes and female-specific health conditions to 
determine whether there was a common genetic basis. 
We then estimated the associations between the ge-
netic risks of adverse cardiometabolic phenotypes 
and female-specific health conditions. In addition, we 
evaluated potential causal relationships between car-
diometabolic phenotypes and female-specific health 
conditions using Mendelian randomization (MR) ap-
proaches. Furthermore, because EHR data provide 
an opportunity to map disease prevalence by age, 
we generated a chronological map of female-specific 

CLINICAL PERSPECTIVE

What Is New?
•	 In this study of >70 000 women from multiple 

electronic health record–linked biobanks, we 
evaluated polygenic scores’ ability to measure 
genetic predispositions for a variety of clinically 
important traits and disorders unique to women.

•	 Using multifactorial approaches for evaluating 
shared genetic burden and causal relation-
ships, we demonstrate the potential for an in-
verse causal relationship between coronary 
artery disease and breast cancer.

•	 We have produced a chronological map of fe-
male health including disease prevalence based 
on shared genetic burden of cardiometabolic 
traits from adolescence to old age.

What Are the Clinical Implications?
•	 Women with high genetic burden of cardiomet-

abolic conditions may be predisposed to cer-
tain diseases such as gestational hypertension, 
gestational diabetes, and polycystic ovarian 
syndrome.

Nonstandard Abbreviations and Acronyms

eMERGE	 Electronic Medical Records and 
Genomics

FDR	 false discovery rate
IVW	 inverse variance weighted
LD	 linkage disequilibrium
MR	 Mendelian randomization
PC	 principal component
PMBB	 Penn Medicine BioBank
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health conditions in individuals with high and low ge-
netic scores to understand age-specific prevalence in 
high-risk and low-risk individuals.

METHODS
The authors declare that all supporting data for these 
analyses will be available within the article through 
its online supplementary files. The authors have 
individual-level access to genotype data and medical 
records from the PMBB and eMERGE network data 
sets. The eMERGE data set is available for download 
on dbGAP (phs001584.v2. p2). The PMBB can be ac-
cessed upon reasonable request to the corresponding 
author. The PMBB study was approved by University 
of Pennsylvania’s institutional review board, and the 
subjects gave informed consent.

Study Populations
Penn Medicine BioBank

The PMBB is a University of Pennsylvania academic 
biobank that recruits patient participants from the 
University of Pennsylvania Health System surround-
ing the greater Philadelphia area in the United States. 
The PMBB is approved under institutional review 
board protocol number 813913 and is supported by 
the Perelman School of Medicine at the University of 
Pennsylvania. All subjects in the PMBB gave informed 
consent. The PMBB links patient genotype data with 
detailed EHR information. Currently, the PMBB con-
tains imputed genotype data for ≈45 000 samples. 
The PMBB cohort is diverse, with >25% of its partici-
pants being of African ancestry. PMBB genotype data 
were imputed to the The TransOmics for Precesion 
Medicine (TOPMed) Reference panel using the Michigan 
Imputation server. We included 21 837 participants 
from PMBB in this study who self-reported their sex as 
women (Table 1). The stratified analyses in this study 
included only participants of European or African an-
cestry, whereas those of Asian or Hispanic ancestry 
were excluded because of sample size limitations. We 
defined the genetically informed ancestry for PMBB 
participants by using the kernel density estimation on 
the principal components.

Electronic Medical Records and Genomics

The eMERGE network is a nationwide consortium that 
combines genome-wide sequence data with EHRs 
from several health systems across the United States, 
with most participants coming from the Geisinger 
Health System and Vanderbilt University. All partici-
pants included in eMERGE gave informed consent, 
and the study was approved by each institute’s re-
spective institutional review board. eMERGE data 

were imputed to the Haplotype Reference Consortium 
panel using the Michigan Imputation server. Like the 
PMBB cohort, the eMERGE cohort is diverse across 
ancestries (≈20% samples of non-European ancestry) 
and ages. This study included data from 49 171 self-
reported female patients in the eMERGE network born 
after 2001 (Table 1). Low sample sizes of participants 
of Asian and Hispanic ancestry also limited ancestry-
stratified analyses to include only those of European 
and African ancestry. The ancestry of eMERGE par-
ticipants was determined based on the intersection of 
self-reported race and principal component-based k-
means clustering.25

Statistical Analysis
GWASs of Cardiometabolic Phenotypes

To determine genetic correlations and calculate PGSs, 
we collected quantitative data on the effects of genetic 
variants on cardiometabolic phenotypes from several 
large GWASs. Given the diverse nature of our study pop-
ulation, we obtained the largest publicly available multian-
cestry GWAS summary statistics for 4 cardiometabolic 
phenotypes: obesity (measured as body mass index 
[BMI]), CAD, hypertension (measured as diastolic blood 
pressure [DBP], systolic blood pressure [SBP], and pulse 
pressure [PP]), and T2D. Summary statistics and source 
studies for each phenotype are shown in Table 2.

Genome-Wide Associations of Female-Specific 
Health Conditions

We included 23 female-specific health conditions to 
evaluate in this study, including breast cancer, which 
can affect both sexes but is far more prevalent in 
women than men. Large multiancestry GWASs are 
not available for most of these conditions. Therefore, 
we used PLINK (version 1.90) to conduct GWASs of 
female-specific health conditions documented in the 
PMBB and eMERGE data sets.30 We filtered the ge-
netic variants in the PMBB and eMERGE imputed 
data sets to include only variants with imputation qual-
ity R2>0.3 and minor allele frequency >0.01. We then 
conducted separate GWASs for European and African 
ancestry individuals in the 2 cohorts and combined re-
sults from the 2 cohorts using the meta-analysis com-
mand in PLINK.

Genetic Correlation Calculation

We used the GWASs obtained and generated above to 
calculate pairwise genetic correlations between cardio-
metabolic phenotypes and female-specific health con-
ditions using linkage disequilibrium score regression.31 
Linkage disequilibrium score accounts for linkage dise-
quilibrium (LD) among SNPs by using an external refer-
ence panel that should match the ancestry distribution 
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of the corresponding GWASs. We generated European 
and African ancestry LD reference panels using the 
HapMap3 SNPs (≈1 M common variants) from all mem-
bers included in the respective 1000 Genomes popu-
lation.32 We then used these LD reference panels to 
calculate the genetic correlation separately in European 
and African ancestry participants. We then combined 
correlation results across ancestries through a meta-
analysis using the metafor R package under the re-
stricted maximum likelihood model.

Polygenic Scores

PGSs calculated using a GWAS of 1 particular ancestry 
group tend to perform poorly when applied to individu-
als from a different ancestry group.20,33,34 To accurately 
calculate PGSs for our diverse cohorts, we calculated 
PGSs for the cardiometabolic phenotypes using the 
same publicly available GWAS used in the genetic cor-
relation analyses. Weights for each SNP were calcu-
lated using PRS-CS (version from April 24, 2020), a 
method that performs Polygenic Prediction via Bayseian 

Table 1.  Sample Sizes in the PMBB and eMERGE Data Sets Overall and Stratified by Ancestry

Phenotype

PMBB sample size (N cases) eMERGE sample size (N cases)

All European African All European African

Cardiometabolic phenotypes

BMI 20 209 12 344 6744 39 403 32 880 5555

CAD 21 837 (3002) 13 515 (1956) 7039 (955) 49 171 (9597) 38 918 (7953) 9067 (1515)

DBP 21 612 13 343 6994 NA NA NA

Hypertension 21 837 (10278) 13 515 (5640) 7039 (4286) 49 171 (27685) 38 918 (21883) 9067 (5265)

T2D 21 837 (4388) 13 515 (1969) 7039 (2221) 49 171 (12403) 38 918 (8999) 9067 (3090)

Female health phenotypes

Breast cancer 21 837 (1621) 13 515 (1146) 7039 (415) 49 171 (4148) 38 918 (3639) 9067 (443)

Cervical cancer 21 837 (105 13 515 (53) 7039 (50) 49 171 (332) 38 918 (263) 9067 (60)

Ectopic pregnancy 2808 (1779) 1201 (827) 1319 (757) 3078 (823) 1975 (570) 641 (172)

Endometrial cancer 21 837 (286) 13 515 (183) 7039 (90) 49 171 (771) 38 918 (680) 9067 (83)

Endometriosis 21 837 (701) 13 515 (320) 7039 (340) 49 171 (2314) 38 918 (1891) 9067 (354)

Excessive fetal  
growth

693 (85) 293 (37) 329 (42) 2433 (627) 1618 (422) 437 (162)

Gestational diabetes 2655 (523) 1111 (193) 1262 (248) 3174 (762) 2005 (445) 719 (251)

Gestational 
hypertension

2666 (631) 1118 (256) 1275 (324) 3135 (703) 1980 (411) 711 (253)

Intrauterine death 685 (57) 289 (23) 324 (27) 2156 (64) 1438 (44) 358 (19)

Miscarriage 2934 (389) 1273 (199) 1360 (151) 3568 (823) 2323 (577) 740 (200)

Ovarian cancer 21 837 (305) 13 515 (191) 7039 (89) 49 171 (1589) 38 918 (1359) 9067 (197)

Placenta abruption/
previa

1192 (396) 482 (157) 586 (195) 2674 (997) 1697 (672) 583 (262)

Polycystic ovarian 
syndrome

21 837 (736) 13 515 (387) 7039 (272) 49 171 (1006) 38 918 (750) 9067 (209)

Poor fetal growth 792 (202) 325 (78) 388 (107) 2209 (167) 1478 (115) 360 (27)

Postpartum 
depression

924 (384) 374 (136) 466 (226) 2417 (555) 1579 (349) 457 (177)

Postpartum 
hemorrhage

846 (283) 350 (108) 408 (146) 2320 (401) 1544 (261) 408 (109)

Preeclampsia 2631 (452) 1100 (149) 1264 (272) 3132 (702) 1974 (406) 713 (249)

Preterm birth 687 (66) 284 (21) 332 (40) 2144 (57) 1433 (35) 350 (16)

Stillbirth 649 (17) 270 (3) 311 (12) 2123 (8) 1417 (7) 347 (0)

Uterine cancer 21 837 (113) 13 515 (66) 7039 (43) 49 171 (418) 38 918 (348) 9067 (64)

Uterine fibroid 21 837 (1570) 13 515 (516) 7039 (984) 49 171 (5711) 38 918 (4103) 9067 (1455)

Vaginal cancer 21 837 (23) 13 515 (13) 7039 (9) 49 171 (109) 38 918 (89) 9067 (18)

Vulvar cancer 21 837 (41) 13 515 (25) 7039 (14) 49 171 (120) 38 918 (97) 9067 (21)

BMI indicates body mass index; CAD, coronary artery disease; DBP, diastolic blood pressure; eMERGE, Electronic Medical Records and Genomics; PMBB, 
Penn Medicine BioBank; and T2D, type 2 diabetes.
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Regression and Continous Shrinkage Priors.35 PRS-CS 
requires a reference panel that matches the ancestry 
distribution of the target data set. We generated multiple 
reference panels for analyses: European-only reference 
panel from 1000 Genomes European ancestry popula-
tion, African-only reference panel from 1000 Genomes 
African ancestry population, and a multiancestry LD 
reference panel using the HapMap SNPs from the en-
tire 1000 Genomes populations (2504 individuals). We 
identified LD patterns within the 1000 Genomes popu-
lation by using PLINK (version 1.90) to determine LD 
blocks and calculate the LD between the SNPs in each 
block. For PRS-CS, the global shrinkage parameter φ 
was fixed to 0.01, and default values were selected for 
all other parameters. PGSs were then calculated using 
the weights with PLINK. Only the SNPs in the target 
data set, summary statistics, and LD reference panel 
were included in the PGSs. The numbers of SNPs 
used for each PGS calculation are listed in Table 2. The 
scores were then normalized (mean of 0 and standard 
deviation of 1) for each analysis separately (stratified by 
ancestry and overall).

To evaluate the power of the PGSs, we tested their 
performance on association of the corresponding pri-
mary phenotypes in the summary statistics. We could 
not obtain quantitative measurements of blood pres-
sure for all participants in the eMERGE cohort, and PP 
and SBP measurements were not curated in the PMBB 
cohort. Therefore, we evaluated the performance of the 
PGSs for blood pressure traits (SBP, DBP, PP) in the 
eMERGE cohort based on hypertension case–control 
phenotypes, and we evaluated the performance of 
the PGS blood pressure traits in the PMBB cohort 
based on DBP or hypertension (for SBP and PP) as 
outcomes. We constructed logistic regression models 
for binary phenotypes (CAD, T2D, and hypertension) 
and evaluated PGS performance by the area under 
the receiver operating curves using the pROC pack-
age in R. Similarly, we constructed linear regression 

models for continuous phenotypes (BMI and DBP) and 
evaluated them by the R2 using the glm function in R. 
We also evaluated the value of including PGS in our 
models by using the likelihood ratio test to compare 
the null (covariate only) model with the full (PGS and 
covariates) model using the lmtest package in R. The 
regression models used birth year and the first 5 prin-
cipal components (PCs) as covariates. PCs for PMBB 
and eMERGE were determined from projection onto 
the 1000 Genomes population. We tested PGS perfor-
mance overall as well as for subgroups of European or 
African ancestry. In addition, we constructed European 
and African LD reference panels using individuals from 
the respective ancestry groups from 1000 Genomes 
and computed PGSs using these ancestry-specific 
LD panels. We then compared the performance of the 
PGSs with the PGSs generated using the multiances-
try LD reference panel in the PMBB cohort.

Phenotype Data

Cases and controls for each phenotype were defined 
using International Classification of Diseases (ICD-9 
and ICD-10) diagnosis codes. Participants were coded 
as cases of a given phenotype if their records contained 
at least 1 of the corresponding ICD-9 or ICD-10 codes. 
For pregnancy-related phenotypes, participants were 
only considered controls if their records had at least 1 
pregnancy-related ICD-9 or ICD-10 code and no ICD-9 
or ICD-10 codes for relevant complications (such as 
miscarriage) during pregnancy. Participants were 
counted as controls for cardiometabolic phenotypes 
and all non–pregnancy-related health conditions if their 
records did not contain any relevant ICD-9 or ICD-10 
code. The complete list of ICD-9 and ICD-10 codes 
used to include or exclude participants as cases and 
controls can be found in Table S1. Using these defini-
tions, we determined the sample size for each pheno-
type in the eMERGE and PMBB cohorts (Table 1).

Table 2.  GWAS Data Sets Used to Calculate Genetic Correlations and Polygenic Scores and the Number of SNPs Used 
From Each GWAS to Calculate the Corresponding PGS

Phenotype Ancestries included Source Sample size (N cases) PMID No. SNPs included in PGS

Type 2 diabetes EUR, AFR, EAS, SAS, HIS Ref. [26] 1 407 282 (228 499) 32 541 925 PMBB: 1 023 697
eMERGE: 716 330

Body mass index EUR, AFR, EAS, SAS, HIS Ref. [27] 241 258 28 443 625 PMBB: 885 143
eMERGE: 614 668

Hypertension (DBP, SBP, 
PP)

EUR, AFR, EAS, SAS, HIS Ref. [28] 318 891 30 578 418 PMBB: 1 024567
eMERGE: 715 471

Coronary artery disease EUR, AFR, EAS, SAS, HIS Ref. [29] 547 261 (122 733) 29 212 778 PMBB: 981 480
eMERGE: 681 029

AFR indicates African ancestry; CARDIoGRAMplusC4D, Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) pus The 
Coronary Artery Disease )C4D) Genetics Consortium; DBP, diastolic blood pressure; EAS, East Asian ancestry; eMERGE, Electronic Medical Records and 
Genomics; EUR, European ancestry; GIANT, Genetic Investigation of Anthropometric Traits; GWAS, genome-wide association study; HIS, Hispanic ancestry; 
MVP, Million Veterans Program; PGS, polygenic score; PMBB, Penn Medicine BioBank; PP, pulse pressure; SAS, South Asian ancestry; SBP, systolic blood 
pressure; SNPs, single-nucleotide polymorphisms; and UKBB, UK BioBank.
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PGS Association Analysis
We tested the association between each cardiometa-
bolic PGS and female-specific health condition by fit-
ting separate logistic regression models adjusted by 
birth year and the first 5 PCs. We conducted this anal-
ysis for all participants and for subsets of participants 
of European or African ancestry. To account for biases 
from multiple hypothesis testing, we determined if as-
sociations passed a Benjamini-Hochberg false discov-
ery rate (FDR) significance threshold of 0.05, adjusting 
the P values with the number of hypotheses tested (6 
cardiometabolic PGSs×23 female-specific health con-
ditions=138 hypotheses). The logistic regressions were 
performed using the glm function in R. The results from 
the PMBB and eMERGE cohorts were meta-analyzed 
using the rma function from the metafor R package 
under the restricted maximum-likelihood estimator 
model.36 We used PheWAS-View to visualize the re-
sults.37 We then created prevalence plots for each sig-
nificant association. The participants were divided into 
quintiles based on the PGS for each condition, and the 
percentage of cases was calculated for each quintile.

Mendelian Randomization
To identify evidence of causality between cardiometa-
bolic phenotypes and female-specific health conditions, 
we performed 1-sample MR for 27 significant associa-
tions from the PGS analyses using the ivreg function in 
the ivpack R package and tested which relationships 
were significant after Benjamini-Hochberg FDR cor-
rection (adjusting for 27 hypotheses). Cardiometabolic 
PGSs we calculated before were used as genetic in-
struments, because effect sizes for each SNP were ad-
justed according to the significance of the association 
through PRS-CS. We also included birth year and the 
first 5 PCs as covariates. The results were then com-
bined in a meta-analysis using the metafor R package 
under the restricted maximum-likelihood estimator 
model. Because the small sample size for some of the 
conditions could limit the power of the analysis, we also 
performed 2-sample MR for the same associations 
using the inverse variance weighted (IVW) method in 
the twoSampleMR package in R.38 MR sensitivity anal-
yses were conducted using the weighted median and 
MR Egger methods in the same package, and tests for 
horizontal pleiotropy were also performed using MR 
Egger. The genetic instruments for the cardiometabolic 
phenotypes in the 2-sample MR were the genome-
wide significant SNPs (P<5×10−8) in the respective car-
diometabolic GWAS used to calculate the PGSs. The 
SNPs were pruned according to LD patterns among 
the 1000 Genomes HapMap SNPs (r2=0.1, kb=250), 
and the remaining representative SNPs were included 
in the analysis. Matching genetic instruments for the 
female-specific health conditions were obtained from 
publicly available GWASs through the twoSampleMR 

package (Table  S2). Bidirectional MR was also per-
formed for female-specific health conditions that had 
at least 1 genome-wide significant SNP in the GWAS 
after pruning (r2=0.1, kb=250). Because these GWASs 
for female-specific health conditions were conducted 
in only European ancestry populations, we performed 
2-sample MR for only associations that were significant 
in all participants or participants of European ancestry. 
Two-sample MR results were then tested for signifi-
cance after multiple hypothesis correction using an FDR 
threshold of 0.05 (adjusting for 13 unique significantly 
associated female-specific health conditions). Genetic 
instrument strength for each analysis was calculated 
using the mean F statistic (β2/σ2) across all SNPs from 
the cardiometabolic GWASs included in the MR.

Chronology Analyses
We divided the participants into high-risk and low-risk 
groups according to each cardiometabolic PGS. High 
PGS was defined as the top quintile (>80th percentile), 
and low PGS was defined as the bottom quintile (<20th 
percentile). We considered age at the first occurrence 
of each female-specific health condition from the ICD-9 
or ICD-10 records. For pregnancy-related conditions, 
the participants were split into 3 age groups: <25, 25 
to 39, and 40 to 55 years. We excluded participants 
who were >55 years of age at the first occurrence of 
a pregnancy-related condition because of low sample 
sizes and potential errors in diagnosis coding. For all 
nonpregnancy related conditions, the participants were 
split into 5 age groups: <25, 25 to 39, 40 to 54, 55 to 69, 
and ≥70 years. We then examined the combined case 
prevalence of each health condition within the high and 
low PGS groups in each cohort across all age groups.

RESULTS
Genetic Correlations Among 
Cardiometabolic Phenotypes and Female-
Specific Health Conditions

We calculated heritability estimates for 13 female-
specific health conditions and proceeded with the ge-
netic correlation analysis for these conditions. We found 
10 correlations between the cardiometabolic pheno-
types and 6 unique female-specific health conditions 
that were at least nominally significant (P<0.05) after 
meta-analysis of ancestry-specific results. (Figure 1A). 
Two correlations were FDR significant: SBP positively 
with gestational hypertension (Rg=0.292, P=0.0013 
[all P values reported in the text are raw P values]) and 
T2D with PCOS (Rg=0.158, P=5.1×10−6). BMI was nom-
inally positively correlated with postpartum depres-
sion (Rg=0.102, P=0.049), CAD with PCOS (Rg=0.148, 
P=0.0047), PP with gestational hypertension (Rg=0.244, 
P=0.0058) and preeclampsia (Rg=0.165, P=0.043), SBP 



J Am Heart Assoc. 2023;12:e026561. DOI: 10.1161/JAHA.121.026561� 7

Xiao et al� Cardiometabolic Risk and Female Health: Shared Genetics

with preeclampsia (Rg=0.202, P=0.0089), and T2D with 
excessive fetal growth (Rg=0.0331, P=0.03) and gesta-
tional hypertension (Rg=0.0711, P=0.014). T2D was also 
negatively correlated with breast cancer (Rg=−0.126, 
P=0.048). Some other correlations were significant in 
only 1 ancestry group (Figure S1). For example, CAD was 
significantly negatively correlated with breast cancer 
(Rg=−0.241, P=0.0013) and T2D was significantly pos-
itively correlated with gestational diabetes (Rg=0.256, 
P=4.5×10−9) in the European ancestry-specific GWASs, 
and T2D was nominally positively correlated with post-
partum depression (Rg=0.0773, P=0.035) and post-
partum hemorrhage (Rg=0.13, P=0.0067) in the African 
ancestry-specific GWASs.

PGS Performance for Predicting Primary 
Phenotypes
We calculated a PGS for each cardiometabolic phe-
notype and confirmed the distributions of the raw and 
normalized scores (Figures  S2 through S7). The full 
model for all PGSs generally performed well in pre-
dicting the corresponding primary phenotypes across 

ancestry groups (Table  3). The covariate-only (null) 
model performed better for participants of African 
ancestry than for participants of European ancestry, 
whereas the PGS-only model performed better for 
participants of European ancestry than for participants 
of African ancestry. We calculated the difference be-
tween the full and null models for all PGSs in European 
and African ancestry individuals and compared these 
differences between these 2 groups. The PGSs signifi-
cantly improved the predictive performance more for 
participants of European ancestry than for participants 
of African ancestry (P=0.000488, Wilcoxon signed 
rank test). Thus, the cardiometabolic PGSs were more 
accurate in individuals with European ancestry than in 
individuals with African ancestry, but they improved 
models in both groups. PGS performance when using 
different ancestry LD reference panels was similar 
across phenotypes and ancestry groups (Table  S3). 
Because of relatively more consistent performance 
and the multiancestry nature of our GWASs and target 
data sets, we chose to use the PGSs calculated using 
the multiancestry reference panel for further analyses.

Figure 1.  Genetic correlation and the influence of shared genetic burden of cardiometabolic traits and health conditions 
unique to women.
A, Heatmap of genetic correlations between cardiometabolic phenotypes and female-specific health conditions using multiancestry 
cardiometabolic genome-wide association studies (GWASs) and European and African ancestry meta-analyzed GWASs for female-
specific health conditions. Blue represents negative correlation and red represents positive correlation. Triple asterisks in a box indicate 
false discovery rate significance, and a single asterisk in a box indicates nominal significance (P<0.05). Genetic correlation was unable to 
be calculated for grayed-out boxes. B through D, Results of polygenic score (PGS)-based meta-analyses between cardiometabolic PGSs 
and case–control status of female-specific health conditions overall (B) and in participants of European (C) and African (D) ancestry. 
The first panel in these plots corresponds to raw, unadjusted P values, and the second panel shows β estimates. The color of each point 
refers to the PGS for cardiometabolic traits. The red line corresponds to the P=0.01 threshold. BMI indicates body mass index, CAD, 
coronary artery disease; DBP, diastolic blood pressure; PP; pulse pressure; SBP, systolic blood pressure; and T2D, type 2 diabetes.
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Associations Between Cardiometabolic 
Risks and Female-Specific Health 
Conditions

We detected numerous associations between cardio-
metabolic PGSs and female health conditions in the 
meta-analysis of both cohorts (Figure 1B through 1D). 
Twenty-seven associations were statistically significant 
after correction for multiple hypothesis testing (Table 4). 
In the meta-analysis, for all participants and partici-
pants of European ancestry, PGSBMI was significantly 
positively associated with endometrial cancer (βall=0.24, 
SEall=0.046, Pall=9.4×10−8; βeur=0.21, SEeur=0.047, 
Peur=1.01×10−5) and gestational diabetes (βall=0.23, 
SEall=0.051, Pall=6×10−6; βeur=0.23, SEeur=0.046, 
Peur=4.4×10−7). PGSBMI was also inversely associ-
ated with breast cancer in all participants (βall=−0.071, 
SEall=0.022, Pall=0.0016) and positively associated with 

PCOS (βall=0.27, SEall=0.039, Pall=2.4×10−12). These re-
sults suggest that an increased genetic risk of obesity 
heightens the risks of endometrial cancer, gestational 
diabetes, and PCOS but decreases the risk of breast 
cancer. PGSCAD was negatively associated with breast 
cancer for all participants and participants of European 
ancestry (βall=−0.072, SEall=0.015, Pall=1×10−6; 
βeur=−0.071, SEall=0.016, Peur=6.5×10−6). This finding 
suggests that individuals, particularly those of European 
ancestry, with high PGSCAD, are relatively less likely to 
have breast cancer compared with individuals with low 
PGSCAD. PGST2D was significantly positively associated 
with gestational diabetes in all participants and par-
ticipants of European ancestry (βall=0.59, SEall=0.063, 
Pall=1.2×10−20; βeur=0.46, SEeur=0.071, Peur=9.4×10−11) 
and with PCOS in all participants (βall=0.22, SEall=0.043, 
Pall=1.9×10−7). These results support a potential genetic 
basis for the well-known associations between T2D and 

Table 4.  Significant (False Discovery Rate P<0.05) Associations Between Cardiometabolic PGS and Female Health 
Conditions Identified in the PMBB and eMERGE Meta-Analysis

PGS Association Ancestry β SE OR 95% CI P value

BMI Breast cancer All −0.071 0.0225 0.93 0.891–0.973 0.00159

Endometrial cancer All 0.244 0.0458 1.28 1.17–1.4 9.4×10−8

EUR 0.206 0.0465 1.23 1.12–1.35 1.01×10−5

Gestational diabetes All 0.23 0.0508 1.26 1.14–1.39 6×10−6

EUR 0.232 0.0458 1.26 1.15–1.38 4.36×10−7

PCOS All 0.272 0.0387 1.31 1.22–1.42 2.37×10−12

EUR 0.214 0.032 1.24 1.16–1.32 2.13×10−11

CAD Breast cancer All −0.0718 0.0147 0.931 0.904–0.958 9.96×10−7

EUR −0.0707 0.0157 0.932 0.904–0.961 6.52×10−6

DBP Excessive fetal growth AFR −0.313 0.0976 0.731 0.604–0.886 0.00135

Gestational hypertension AFR 0.204 0.0545 1.23 1.1–1.36 0.000179

PP Gestational hypertension All 0.218 0.0443 1.24 1.14–1.36 8.51×10−7

EUR 0.204 0.0452 1.23 1.12–1.34 6.62×10−6

Preeclampsia All 0.196 0.0581 1.22 1.09–1.36 0.000762

EUR 0.165 0.0486 1.18 1.07–1.3 0.000661

SBP Gestational hypertension All 0.332 0.0825 1.39 1.19–1.64 5.61×10−5

EUR 0.233 0.0482 1.26 1.15–1.39 1.32×10−6

AFR 0.261 0.0605 1.3 1.15–1.46 1.63×10−5

Preeclampsia All 0.275 0.0799 1.32 1.13–1.54 0.000567

EUR 0.165 0.0486 1.18 1.07–1.3 0.000661

AFR 0.225 0.0631 1.25 1.11–1.42 0.000357

T2D Breast cancer All −0.0726 0.0213 0.93 0.892–0.97 0.000657

EUR −0.0556 0.017 0.946 0.915–0.978 0.00109

Gestational diabetes All 0.587 0.063 1.8 1.59–2.03 1.19×10−20

EUR 0.46 0.0711 1.58 1.38–1.82 9.37×10−11

Gestational hypertension All 0.184 0.0642 1.2 1.06–1.36 0.00414

PCOS All 0.223 0.0428 1.25 1.15–1.36 1.93×10−7

P values reported are the raw P values for all associations that are false discovery rate significant. Results were adjusted for birth year and the first 5 principal 
components. The β coefficients are per SD PGS. BMI indicates body mass index; CAD, coronary artery disease; DBP, diastolic blood pressure; eMERGE, 
Electronic Medical Records and Genomics; EUR, European ancestry; OR, odds ratio; PGS, polygenic score; PCOS, polycystic ovarian syndrome; PMBB, Penn 
Medicine BioBank; SBP, systolic blood pressure; and T2D, type 2 diabetes.
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both gestational diabetes and PCOS.12,13 In addition, 
PGST2D was positively associated in with gestational 
hypertension in all participants (βall=0.18, SEall=0.064, 
Pall=0.0041) and negatively associated with breast 
cancer in all participants and participants of European 
ancestry (βall=−0.073, SEall=0.021, Pall=0.00066; 
βeur=−0.056, SEeur=0.017, Peur=0.0011).

The 3 PGSs for blood pressure traits (PGSDBP, PGSSBP, 
and PGSPP) showed varying associations with gestational 
hypertension and preeclampsia. In the meta-analysis of 
both cohorts, PGSDBP was significantly positively associ-
ated with gestational hypertension in participants of African 
ancestry (gestational hypertension: βafr=0.2, SEafr=0.055, 
Pafr=0.00018). PGSDBP was also negatively associated 
with excessive fetal growth in participants of African 
ancestry (βafr=−0.31, SEafr=0.098, Pafr=0.0014). PGSPP 
was positively associated with gestational hypertension 

and preeclampsia in all participants and participants of  
European ancestry (gestational hypertension: βall=0.22, 
SEall=0.044, Pall=8.5 × 10−7; βeur=0.2, SEeur=0.045, Peur=6.6×10−6;  
preeclampsia: βall=0.2, SEall=0.058, Pall=0.00076; βeur=0.17,  
SEeur=0.049, Peur=0.00066). PGSSBP  was positively as-  
sociated with gestational hypertension and pre-
eclampsia in all participants, participants of European 
ancestry, and participants of African ancestry (gesta-
tional hypertension: βall=0.33, SEall=0.083, Pall=5.6×10−5; 
βeur=0.23, SEeur=0.048, Peur=1.3×10−6; βafr=0.26, SEafr=0.061, 
Pafr=1.6×10−5; preeclampsia: βall=0.28, SEall=0.08, Pall=0.00057;  
βeur=0.17, SEeur=0.049, Peur=0.00066; βafr=0.23, SEafr=0.063, 
Pafr=0.00036).

For each significant association, we explored the case 
prevalence of female-specific health condition per the 
associated PGS quintile in each cohort (Figure 2A and 
Figures S8 through S14). The trends matched the results 

Figure 2.  Inverse relationship between coronary artery disease (CAD) and breast cancer.
A, Distribution of breast cancer per each polygenic score (PGS)CAD quintile. The x axis represents each PGS quintile, and the y axis 
represents the disease prevalence. The color of each point refers to the ancestry group (All, European [EUR], and African [AFR]), and 
the shape indicates the target data set (eMERGE [●] or PMBB [▲]). B, Heatmap of negative genetic correlations between CAD and 
breast cancer from the UK BioBank Genetic Correlation Browser data set. The gradient of color shows positive (red) to negative (blue) 
correlations, and the text in each box gives the genetic correlation coefficient. C, Effect estimates of the genome-wide significant 
genome-wide association studies (GWAS) single nucleotide polymorphisms (SNPs) in the CAD GWASs and the corresponding effect 
estimates of the same SNPs in the breast cancer GWASs. The blue line is the line of best fit from linear regression, and the shaded area 
around the line is the 95% CI. D, Venn diagram representing the overlap of CAD and breast cancer cases in the PMBB and eMERGE 
data sets. eMERGE indicates Electronic Medical Records and Genomics; and PMBB, Penn Medicine BioBank.
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of the association analyses across ancestry groups and 
in both cohorts. For the positive associations, such as 
that between PCOS and PGSBMI, the number of cases 
increased as the PGS percentile increased, whereas the 
opposite was true for negative associations such as that 
between breast cancer and PGSCAD (Figure 2A).

Association Between PGSCAD and Breast 
Cancer
To validate the inverse association between PGSCAD 
and breast cancer, we examined the genetic cor-
relation between CAD and breast cancer using the 
UK BioBank Genetic Correlation browser (Figure 2B). 
The genetic correlation between I9_CHD (Major coro-
nary heart disease event) and C50 (Diagnoses-main 
ICD-10: C50 Malignant neoplasm of breast) was sig-
nificantly negatively correlated (Rg=−0.24, P=0.0325). 
We also compared the effects of SNPs in the CAD 
GWASs and a large publicly available breast cancer 
GWAS (Table S2). Among the 220 genome-wide sig-
nificant SNPs in the CAD GWASs after pruning, 125 
had an opposite effect on breast cancer, and the β 

estimates of the SNPs were negatively correlated be-
tween the 2 GWASs (Rg=−0.151, Spearman’s correla-
tion) (Figure 2C).

Additionally, to evaluate the risk of ascertainment 
biases and reporting of comorbidities in the EHR, 
we assessed the association between PGSCAD and 
breast cancer in women who were not diagnosed 
with CAD (n=61 201). We observed a weaker but still 
negative association between breast cancer and CAD 
(βall=−0.0481, Pall=0.0047; βeur=−0.045, Peur=0.0113) 
than in the full data set, and this association also re-
mained significant. The overlap between the partici-
pants diagnosed with CAD and those diagnosed with 
breast cancer in our cohorts suggests that women 
with a diagnosis of CAD were less likely to be diag-
nosed with breast cancer (Figure 2D).

Mendelian Randomization
We performed 1-sample MR in the PMBB and 
eMERGE cohorts for the 27 significant associations 
and combined them in a meta-analysis (Figure 3A). The 
majority of associations were nominally significant (raw 

Figure 3.  Mendelian randomization (MR) results for 30 significant polygenic score (PGS)-based associations.
Forest plots show associations between female health conditions as outcomes and cardiometabolic phenotypes as exposures in a 
1-sample (A) and 2-sample (B) MR analyses. Genetic instruments are the cardiometabolic PGSs in the 1-sample MR and genome-
wide significant single nucleotide polymorphisms from genome-wide association studies in the 2-sample MR. A, Each point refers to β 
outcome per SD exposure for the body mass index (BMI) PGS (PGSBMI) and log odds ratio (OR) outcome for all other exposures for each 
test performed as separated by ancestry. B, Each point refers to β outcome/SD exposure for BMI and β outcome/SD log OR exposure 
for all other variables across all methods used in sensitivity analyses for 2-sample MR. P values are reported in the last column in both 
panels. AFR indicates African ancestry; CAD, coronary artery disease; DBP, diastolic blood pressure; EUR, European ancestry; HT, 
Hypertension; IVW, inverse variance weighted; PP; pulse pressure; SBP, systolic blood pressure; and T2D, type 2 diabetes.
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P<0.05), and many also remained FDR significant. In 
all relationships, the direction of the estimated causal 
effect aligned with the direction of effect in the PGS as-
sociation analysis. The MR results suggested potential 
causal relationships between many of the cardiometa-
bolic phenotypes and female health conditions, with the 
most significant associations being between T2D and 
gestational diabetes (all: P=1.5×10−11, β=1.52, SE=0.23; 
EUR: P=4.2×10−11, β=1.7, SE=0.26) and between BMI 
and PCOS (all: P=1.1×10−8, β=0.0021, SE=0.00037; 
EUR: P=6.9×10−8, β=0.0021, SE=0.00037).

We also performed 2-sample MR to leverage the 
power of larger GWAS of female-specific health condi-
tions (Figure 3B). A few relationships passed FDR sig-
nificance when using all 3 methods (Table S4), such as 
T2D and gestational diabetes (IVW: β=0.58, SE=0.034, 
P=2.74×10−65; MR Egger: β=0.53, SE=0.079, 
P=4.03×10−11; weighted median: β=0.5, SE=0.042, 
P=9.62×10−32). Some associations were FDR signif-
icant when using the IVW method but became less 
significant when using the MR Egger and weighted 
median methods, likely because of the limitations of 
power of these methods. Other associations were still 
at least nominally significant (P<0.05) by all 3 methods, 
such as that between CAD and breast cancer (IVW: 
β=−0.059, SE=0.021, P=0.0046; MR Egger: β=−0.1, 
SE=0.049, P=0.04; weighted median: β=−0.064, 
SE=0.028, P=0.021). Horizontal pleiotropy was only 
significantly present in our results for BMI and breast 
cancer (intercept=0.015, SE=0.0056, P=0.0089), BMI 
and gestational diabetes (intercept=0.35, SE=0.011, 
P=0.0016), and T2D and gestational hypertension (in-
tercept=0.011, SE=0.0027, P=9.61×10−5). Many rela-
tionships with significant pleiotropy still showed at least 
nominally significant causal effects when accounting 
for pleiotropy through the MR Egger approach, such 
as BMI with breast cancer (MR Egger: β=−0.92, 
SE=0.18, P=4.23×10−6). When performing MR in the 
opposite direction, we found no relationships that were 
significant using all 3 methods (Table S5). Some as-
sociations were significant when using the IVW and 
weighted median methods but became insignificant 
when using MR Egger, such as preeclampsia and SBP 
(IVW: β=3.46, SE=0.65, P=1.12×10−7; MR Egger: β=7.5, 
SE=14.9, P=0.7; weighted median: β=3.41, SE=0.41, 
P=6.06×10−17) and gestational diabetes and T2D (IVW: 
β=0.2, SE=0.049, P=2.98×10−5; MR Egger: β=0.13, 
SE=0.11, P=0.26; weighted median: β=0.12, SE=0.011, 
P=3×10−31). Weak instrument strength could also bias 
the causal estimate of the exposure on the outcome 
and its level of significance. The mean F statistics of the 
SNPs used in each MR analysis were all at least above 
57, values that suggest the SNPs included in our anal-
yses were unlikely to be weak and thus do not bias our 
results (Table S6). Notably, significance and direction 

of effect remained relatively consistent for most rela-
tionships across 1- and 2-sample MR methods.

Role of Population Stratification
Population stratification can confound the results of 
PGS association and MR analyses. Therefore, we 
tested the PGS associations with PCs (Table S7). The 
high R2 values for most cardiometabolic PGSs in-
dicated that much of the variance in the PGSs could 
be explained by the PCs, although the R2 values were 
smaller when European and African ancestry groups 
were considered separately. The PCs explained more 
of the PGS variance for participants of African ancestry 
than for participants of European ancestry, which sug-
gests that there was more population stratification in the 
former subpopulation than in the latter, and that there 
may be confounding factors influencing some results. 
To overcome these biases, in our prior analyses we ac-
counted for PCs in both the PGS association analyses, 
used likelihood ratio test to compare the null model with 
the PGS model, and adjusted with PCs in the 1-sample 
MR analyses. Additionally, we performed 1-sample MR 
without adjusting for covariates (PCs and birth year) 
and compared the results with those of the adjusted 
MR analysis (Table  S8). Relationships were generally 
more significant when using the PGS without including 
covariates, evidence that further suggests the presence 
of population stratification in our data sets and the need 
to adjust for covariates in our models.

Chronology Analyses
We next asked whether genetic risk of cardiometabolic 

phenotypes affected the time at which female-specific 
health conditions developed. We found that participants 
in the younger age groups with high-risk cardiometa-
bolic PGSs tended to have more health conditions than 
those with low-risk cardiometabolic PGSs (Figure 4 and 
Figures S15 through S19). In particular, pregnancy-related 
conditions were relatively more prevalent in participants 
<25 years of age with high PGSs than low PGSs for all 
cardiometabolic PGSs. In addition, participants with low 
blood pressure PGSs tended to have lower prevalence 
of gestational hypertension and preeclampsia than other 
PGSs in the younger age groups (<25 and 25–39 years 
of age). We observed similar trends for PGST2D and ges-
tational diabetes and for PGSBMI and PCOS. We also 
observed high prevalence of endometriosis and uterine 
fibrosis in participants with high-risk PGSs, particularly 
those between 25 and 39 years of age.

DISCUSSION
We observed genetic correlations between cardiomet-
abolic traits and a variety of obstetric and gynecological 
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disorders, and these correlations suggest some sig-
nificant degree of shared genetic cause among all the 
phenotypes tested in this study. We investigated the ef-
fects of this shared genetic cause by generating PGSs 
for cardiometabolic phenotypes and testing their asso-
ciations with various female-specific health conditions. 
The PGSs were generally predictive of their corre-
sponding cardiometabolic phenotypes as well as sev-
eral female-specific health conditions. Prior research 
based mainly on nongenetic factors provided evidence 
for some of these associations, such those between 
BMI and PCOS and between T2D and gestational dia-
betes.11,12 Epidemiological studies have also provided 
evidence of a positive correlation between obesity and 
endometrial cancer.39 Our results suggest that certain 
relationships between cardiometabolic phenotypes 
and female-specific health conditions share a genetic 
basis. Furthermore, our MR results support that car-
diometabolic phenotypes have potential causal effects 
on some female-specific health conditions.

PGSCAD was inversely associated with breast can-
cer in individuals of European ancestry. CAD and 
breast cancer share many common risk factors, such 
as smoking and poor diet40; however, our results indi-
cated that a high genetic risk of CAD was protective 
against breast cancer, because participants with high 
PGSCAD had lower incidence of breast cancer than 
participants with low PGSCAD. When we considered 
only participants with high PGSCAD but no CAD diag-
nosis, we still saw a moderately reduced risk of breast 

cancer. Several factors might contribute to these re-
sults. First, the patterns might reflect ascertainment bi-
ases and competing risks. Individuals with high risk of 
CAD likely live shorter lives than individuals with low risk 
of CAD and are therefore less likely to be diagnosed 
with breast cancer during their lifetime. Second, treat-
ments for CAD might protect against breast cancer. 
Third, genetic mechanisms that predispose individuals 
to CAD might have protective effects against breast 
cancer. Our results, together with those of another re-
cent study that showed a protective effect of PGSCAD 
on breast cancer, suggest that more research should 
be undertaken to uncover the mechanisms behind this 
association.41 Our MR results also suggest a weak but 
significant negative causal relationship between CAD 
and breast cancer, and the effect of horizontal pleiot-
ropy for this relationship was also insignificant. In our 
analyses, we also did not consider breast cancer sub-
type, which displays differences in key characteristics 
such as gene expression, disease progression, and 
treatment response.42 Breast cancer in our target data 
sets was defined using only ICD-9 and ICD-10 codes 
and did not consider subtypes, and the breast can-
cer GWASs we used in this study also included cases 
of various subtypes. Further research incorporating 
breast cancer subtype could lead to interesting dis-
coveries about the potential shared genetic factors for 
CAD and breast cancer.

The 3 blood pressure–related PGSs showed vary-
ing degrees of association with hypertensive diseases 

Figure 4.  Chronology analyses of events from the electronic health records.
A circular plot shows disease prevalence among participants with high PGSBMI (in yellow) and low PGSBMI (in blue). General female 
health conditions are shown in (A), and pregnancy and childbirth-related phenotypes are shown in (B). The circular plots are divided 
into 5 age categories (<25, 25–39, 40–54, 55–69, and ≥70 years) for general female health conditions and 3 age categories (<25, 
25–39, and 40–54 years) for pregnancy-related phenotypes. BMI indicates body mass index; PGS, polygenic scores; and PRS, 
polygenic risk score.
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during pregnancy across ancestry groups. PGSDBP 
was significantly associated with gestational hyperten-
sion and preeclampsia in only participants of African 
ancestry, whereas only PGSSBP was significantly asso-
ciated with gestational hypertension and preeclamp-
sia in all participants and participants of European and 
African ancestry. Prior studies also identified variability 
in predictive performance when different blood pres-
sure measurements were used to predict hyperten-
sion and other diseases. Biases in collecting data from 
EHRs may have confounded the significance of these 
associations, and further studies are needed to reach 
a more definite conclusion on the role blood pressure 
measurements play in predicting hypertensive dis-
eases during pregnancy.43,44

High genetic risks of most of the cardiometabolic 
phenotypes tended to associate with higher prevalence 
of certain health conditions at a young age, even in the 
absence of an overall association. For example, PGSBMI 
was not associated with gestational hypertension and 
ectopic pregnancy overall; however, in the youngest 
age group (<25 years), these complications were more 
prevalent in participants with high PGSBMI than in par-
ticipants with low PGSBMI. Similarly, there was no overall 
association between PGSSBP and PCOS or endome-
triosis, but participants who developed PCOS before 
25 years of age or endometriosis at 25 to 40 years of age 
were more likely to have high PGSSBP than low PGSSBP. 
Patients with high genetic risk of cardiometabolic phe-
notypes may therefore also have an elevated risk of 
early development of female-specific health conditions.

Our study establishes a link between the genetic 
risks of cardiometabolic phenotypes and several dis-
eases that are unique to women; however, we esti-
mated the genetic risk using PGSs alone, which are 
based on common variants and do not include the ef-
fects of rare variants and copy-number variations. In 
addition, we did not consider clinical or environmental 
factors, such as education level and socioeconomic 
status. Several studies have shown the effect of non-
genetic risk factors on disease risk.45,46 We found that 
population stratification was potentially present in 
our cohorts, so we accounted for PCs in our analy-
ses accordingly. However, our focus on PGSs reflects 
the limitations of incorporating multiple modalities into 
analyses. Current interest in building integrative risk 
models suggests that this gap can be closed in the 
near future.20,47 Furthermore, the weaker performance 
of PGSs in individuals of African ancestry contributed 
to a lack of power to identify associations specific to 
those individuals and suggests a need for future stud-
ies to include more racially and ethnically diverse co-
horts. We calculated PGS using PRS-CS with a fixed 
global shrinkage parameter to reduce computational 
time, and we chose to set this parameter to 0.01 as 
recommended by the authors of PRS-CS for GWASs 

of smaller sample sizes for highly polygenic traits. 
Testing different values for the shrinkage parameter 
may improve the association strength of our PGS and 
may more accurately identify associations to female-
specific health conditions. The PGSs were also found 
to have bimodal distributions. In most cases, bimodal 
distributions are not expected in a population sample, 
and the bimodal shape could indicate biased sampling 
in our 2 cohorts for phenotypes associated with the 
PGSs such as cardiometabolic conditions.

The small sample size for some conditions may 
have limited the power of our 1-sample MR analysis. 
Furthermore, the causal effects identified in our MR 
analyses might be biased because of horizontal plei-
otropy, in which genetic variants associated with car-
diometabolic phenotypes affect other traits that in turn 
influence female-specific health conditions. We tested 
for pleiotropy and included methods such as MR Egger 
that account for pleiotropy and other confounding fac-
tors but may not have captured all their effects. Lastly, 
we also assessed whether our MR analyses was ro-
bust to weak instrument bias. Large F statistics (>57) 
in our analyses reflected the strength of our instrument 
variable and suggest that the results of our analyses 
do not suffer from the weak instrument bias.

EHRs are particularly advantageous for investigat-
ing disease trajectories and progression. Our analysis 
provided a visualization of the burden of early diagno-
sis of female-specific health conditions in individuals 
with high genetic risk of cardiometabolic phenotypes. 
However, these results might have been affected by 
ascertainment biases of EHRs and inclusion of con-
founding factors. In addition, because we generated 
only cardiometabolic PGSs in this study, PGSs specif-
ically calculated for female-specific health conditions 
would provide a better understanding on an individu-
al’s genetic risk for female-specific health conditions 
and the risk for early development of these conditions.

This study illustrates the influence of genetic risk of 
cardiometabolic phenotypes on female-specific health 
conditions and highlight differences in the genetic pre-
disposition among individuals of European and African 
ancestries. Future studies should incorporate PGSs 
with other genetic and nongenetic risk factors and 
study their effects on larger and more diverse multian-
cestry populations.
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SUPPLEMENTAL MATERIAL 
 

  



Table S1. ICD codes used to determine cases and controls for cardiometabolic and female health phenotypes 
 

Phenotype Cases Controls 

Cardiometabolic Phenotypes 

Coronary Artery Disease 414.0*, I25.1* Females without codes from cases 

Hypertension 401*, I10* Females without codes from cases 

Type 2 Diabetes 250*, E11* Females without codes from cases 

Women's Health Phenotypes 

Placenta abruption, previa 
O44.*, O45.*, 641.0, 641.1, 641.2, 667, 
762.0, 762.1, 762.2 

Z32.01, O80.*, 650, V72.42 (ICD-9)but no code 
632.* or O02.* and no codes from cases  

Gestational Hypertension O13.*, 642.4, 642.5, 642.6, 642.7 
Z32.01, O80.*, 650, V72.42 (ICD-9), O09.*, V23. 
*(ICD-9), Z33.1, V22.2 (ICD-9)but no code 632.* 
or O02.* and no codes from cases  

PreEclampsia  O14.*, O11.*, 642.4, 642.5, 642.6, 642.7 
Z32.01, O80.*, 650, V72.42 (ICD-9), O09.*, V23. 
*(ICD-9), Z33.1, V22.2 (ICD-9)but no code 632.* 
or O02.* and no codes from cases  

Poor fetal growth O36.5* 
Females with codes O80.*, 650.* but not the code in 
cases 

Excessive fetal growth 036.6*, 656.6, 656.60, 656.63, 656.61 
Females with codes O80.*, 650.* but not the code in 

cases 

Intrauterine Death 

656.4, 656.41, 656.43, O31.2, O36.4. 
O36.4XX0,O36.4XX1, O36.4XX2, 

O36.4XX3, O36.4XX4, O36.4XX5, 
O36.4XX9, 656.4,656.41.656.43 but not 
with any of codes O35.9XX0, Q95.0, Q95.1, 
Q95.8,Q95.9 

Females with codes O80.*, 650.* but not the code in 
cases 

Stillbirth 

 P95, Z37.1, V27.1 (ICD-10), V27.4 (ICD-
10),  Z37.4, V27.7(ICD-10), V35 (ICD-9)  
Z37.7 but not with any of codes O35.9XX0, 

Q95.0, Q95.1, Q95.8,Q95.9 

Females with codes O80.*, 650.* but not the code in 
cases also no code Z35.208 



Gestational Diabetes O24.*, 648.8* 
Z32.01, O80.*, 650, V72.42 (ICD-9), O09.*, V23. 
*(ICD-9), Z33.1, V22.2 (ICD-9) but no code 632.* 
or O02.* and no codes from cases  

Ectopic Pregnancy 

633.*, O00.*, V32.42(ICD-9), 761.4, 
O08.105,O08.806, O08.006, O008.104, 
O009, P01.4, CPT-codes: 59130, 59140, 

59135, 59136, 59120, 59121 

Z32.01, O80.*, 650, V72.42 (ICD-9), O09.*, V23. 
*(ICD-9), Z33.1, V22.2 (ICD-9)but no code 632.* 
or O02.* and no codes from cases and no codes 

O09.1, O09.11, O09.12, O09.13, O09.10 

Miscarriage 
632,O02.1,O31.10X0 but not with any of 
codes O35.9XX0, Q95.0, Q95.1, 

Q95.8,Q95.9 

Z32.01, O80.*, 650, V72.42 (ICD-9), O09.*, V23. 
*(ICD-9), Z33.1, V22.2 (ICD-9)but  no codes from 

cases  

Uterine fibroid D25.9, 218.9 Females without codes from cases 

Endometriosis N80.*, 617.* Females without codes from cases 

Polycystic Ovarian Syndrome E28.2, 256.4 Females without codes from cases 

Breast Cancer C50.*, 174,175,233.0 Females without codes from cases 

Vulvar Cancer C51.*, 184.4 Females without codes from cases 

Vaginal Cancer C52.*, 184.0 Females without codes from cases 

Cervical Cancer C53.*, 180.* Females without codes from cases 

Endometrial cancer C54.*, 182.* Females without codes from cases 

Uterine cancer C55.*, 179 Females without codes from cases 

Ovarian Cancer C56.*, 183,186,220,220.0 Females without codes from cases 

Postpartum depression F53.*, O90.6, 648.4* 
Females with codes O80.*, 650.* but not the code in 
cases 

Preterm birth O60.1*, 644.765 
Females with codes O80.*, 650.* but not the code in 
cases 

Postpartum hemorrhage O72.*, 666.0,666.1,666.2 
Females with codes O80.*, 650.* but not the code in 
cases 

 

  



Table S2. Publicly available female health condition GWAS used in two-sample MR 
 

Phenotype Ancestry Source Sample Size (N cases) Reference or PMID 

Breast Cancer EUR BCAC 33832 (15748) 25751625 

Endometrial Cancer EUR ECAC, E2C2, UKBB 121885 (12906) 30093612 

Gestational Diabetes EUR FinnGen 116363 (6033) https://r5.finngen.fi/ 

Gestational Hypertension EUR FinnGen 118990 (4255) https://r5.finngen.fi/ 

Preeclampsia EUR FinnGen 123579 (8844) https://r5.finngen.fi/ 

Polycystic Ovarian Syndrome EUR FinnGen 118870 (642) https://r5.finngen.fi/ 

Postpartum Depression EUR FinnGen 67205 (7604) https://r5.finngen.fi/ 

 
  



Table S3. PGS performance on cardiometabolic phenotypes in PMBB using LD panels of different ancestries 
 

PRS LD Panel R2/AUC in PMBB All R2/AUC in PMBB EUR R2/AUC in PMBB AFR 

BMI Multi 0.1542 0.07977 0.03556 

  EUR 0.1528 0.7888 0.3381 

  AFR 0.1538 0.07575 0.03663 

CAD Multi 0.8235 0.8303 0.799 

  EUR 0.8237 0.8303 0.7992 

  AFR 0.8238 0.8303 0.7994 

DBP Multi 0.0425 0.01555 0.04545 

  EUR 0.0412 0.01425 0.04429 

  AFR 0.0427 0.01564 0.04597 

PP Multi 0.8125 0.7797 0.839 

  EUR 0.8123 0.7796 0.8387 

  AFR 0.8124 0.7795 0.839 

SBP Multi 0.8144 0.7817 0.8416 

  EUR 0.8143 0.7818 0.8413 

  AFR 0.8144 0.7815 0.8415 

T2D Multi 0.754 0.7133 0.7366 

  EUR 0.7544 0.7148 0.7364 

  AFR 0.7529 0.7089 0.7369 

 
  



Table S4. Direct tests for pleiotropy using MR Egger for two-sample Mendelian randomization 
 

Exposure Outcome Intercept SE P value 

BMI 

Breast Cancer 0.015 0.0056 0.0089 

Endometrial Cancer 0.0033 0.0064 0.6 

Gestational Diabetes 0.035 0.011 0.0016 

Polycystic Ovarian Syndrome -0.0048 0.03 0.88 

CAD Breast Cancer 0.0025 0.0026 0.34 

PP 
Gestational Hypertension 0.009 0.0094 0.338 

Preeclampsia 0.0034 0.0075 0.66 

SBP 
Gestational Hypertension -7.86E-05 0.013 0.99 

Preeclampsia -0.002 0.0093 0.83 

T2D 

Breast Cancer 0.00035 0.0016 0.83 

Gestational Diabetes 0.0021 0.0033 0.53 

Gestational Hypertension 0.011 0.0027 9.61E-05 

Polycystic Ovarian Syndrome 0.01 0.007 0.14 

Postpartum Depression 0.0037 0.0021 0.082 

 
  



Table S5. Two-sample Mendelian randomization using female-specific health conditions as exposures and cardiometabolic 
phenotypes as outcomes 
 

Exposure Outcome Method Beta SE P value 

Breast Cancer 

BMI 

IVW -0.024 0.023 0.3 

Weighted median -0.01 0.012 0.39 

MR Egger 0.028 0.06 0.64 

CAD 

IVW 0.0095 0.01 0.34 

Weighted median 0.014 0.013 0.27 

MR Egger 0.0084 0.023 0.72 

T2D 

IVW 0.0023 0.17 0.89 

Weighted median 0.0011 0.009 0.91 

MR Egger 0.026 0.039 0.51 

Endometrial Cancer BMI 

IVW 0.034 0.022 0.13 

Weighted median 0.03 0.018 0.1 

MR Egger 0.021 0.12 0.87 

Gestational Diabetes 

BMI 

IVW -0.021 0.022 0.37 

Weighted median 0.0096 0.01 0.35 

MR Egger 0.0037 0.0099 0.71 

T2D 

IVW 0.2 0.049 3.00E-05 

Weighted median 0.12 0.011 3.00E-31 

MR Egger 0.13 0.11 0.26 

Polycystic Ovarian Syndrome T2D Wald ratio -0.01 0.016 0.51 

Preeclampsia PP 

IVW 0.91 0.27 0.00065 

Weighted median 0.84 0.25 0.00093 

MR Egger 5.75 4 0.39 



SBP 

IVW 3.46 0.65 1.12E-07 

Weighted median 3.41 0.41 6.06E-17 

MR Egger 7.5 14.9 0.7 

*No SNPs were left after filtering for genome-wide significance and pruning for the postpartum depression GWAS. PCOS had no 
overlapping SNPs with the BMI GWAS. SNPs could not be extracted for the gestational hypertension GWAS.  
**Wald ratio was used for the PCOS and T2D MR since there was only one genome-wide significant SNP in the PCOS GWAS. 
  



Table S6. Mean F-statistic of SNPs used in each two-sample MR analysis 
 

Exposure Outcome Mean F-statistic 

BMI 

Breast Cancer 64.968 

Endometrial Cancer 64.968 

Gestational Diabetes 64.775 

Polycystic Ovarian Syndrome 64.775 

CAD Breast Cancer 67.841 

PP 
Gestational Hypertension 57.511 

Preeclampsia 57.511 

SBP 
Gestational Hypertension 57.848 

Preeclampsia 57.848 

T2D 

Breast Cancer 84.601 

Gestational Diabetes 83.931 

Gestational Hypertension 83.931 

Polycystic Ovarian Syndrome 83.931 

 
  



Table S7. PRS PC associations in PMBB and eMERGE 
 

PRS Group R2 

eMERGE 

BMI All 0.503 

  EUR 0.0727 

  AFR 0.27 

CAD All 0.11 

  EUR 0.0156 

  AFR 0.0361 

DBP All 0.352 

  EUR 0.135 

  AFR 0.182 

PP All 0.346 

  EUR 0.0469 

  AFR 0.176 

SBP All 0.572 

  EUR 0.271 

  AFR 0.395 

T2D All 0.598 

  EUR 0.174 

  AFR 0.374 

PMBB 

BMI All 0.602 

  EUR 0.00334 

  AFR 0.227 



CAD All 0.163 

  EUR 0.0106 

  AFR 0.0158 

DBP All 0.451 

  EUR 0.0423 

  AFR 0.102 

PP All 0.517 

  EUR 0.0117 

  AFR 0.16 

SBP All 0.58 

  EUR 0.0284 

  AFR 0.198 

T2D All 0.647 

  EUR 0.0428 

  AFR 0.292 

 
  



Table S8. One-sample Mendelian randomization using only PRS with no other covariates 
 

Exposure Outcome Group Beta SE P value 

BMI 

Breast Cancer All -0.00737 0.0027 0.00629 

Endometrial Cancer 
All 6.94E-07 0.000402 0.999 

EUR 0.0014 0.000362 0.000112 

Gestational Diabetes 
All 0.0097 0.00731 0.185 

EUR 0.0144 0.00373 0.000108 

Polycystic Ovarian Syndrome 
All 0.00264 0.000678 9.79E-05 

EUR 0.00275 0.000387 1.18E-12 

CAD 
Breast Cancer 

All -0.427 0.0451 3.24E-21 

EUR -0.2 0.0356 1.75E-08 

Postpartum Depression EUR 2.62 1.61 0.104 

HT (PP) 
Gestational Hypertension 

All 0.911 0.564 0.106 

EUR 1.73 0.671 0.00976 

Preeclampsia All 0.915 0.369 0.0132 

SBP 

Gestational Hypertension 

All 0.743 0.287 0.00978 

EUR 0.987 0.432 0.0223 

AFR 0.722 0.296 0.0149 

Preeclampsia 

All 0.779 0.0176 9.35E-06 

EUR 0.637 0.165 0.000119 

AFR 0.853 0.314 0.00658 

T2D 

Breast Cancer 
All -0.182 0.0506 0.000315 

EUR -0.114 0.0223 3.06E-07 

Gestational Diabetes 
All 1.05 0.165 2.11E-10 

EUR 1.59 0.252 2.59E-10 



Gestational Hypertension 
All 0.976 0.251 0.000102 

EUR 0.865 0.272 0.00146 

Polycystic Ovarian Syndrome 

All 0.058 0.00717 5.67E-16 

EUR 0.0625 0.0108 5.95E-09 

AFR 0.0246 0.0244 0.312 

Postpartum Depression All 1.33 0.77 0.0839 

 

  



Figure S1. Genetic correlations between multi-ancestry cardiometabolic phenotypes and female-specific health conditions using 
European (left) and African (right) ancestry-derived GWASs 
 

 
  



Figure S2. PRSBMI distribution (eMERGE on left and PMBB on right) 
 

 
  



Figure S3. PRSCAD distribution (eMERGE on left and PMBB on right) 
 

 
  



Figure S4. PRSDBP distribution (eMERGE on left and PMBB on right) 
 

 
  



Figure S5. PRSPP distribution (eMERGE on left and PMBB on right) 
 

 
  



Figure S6. PRSSBP distribution (eMERGE on left and PMBB on right) 
 

 
  



Figure S7. PRST2D distribution (eMERGE on left and PMBB on right) 
 

 
  



Figure S8. Prevalence by PRS quintile plot (PRSBMI and breast cancer and PRSBMI and endometrial cancer) 
 

 
  



Figure S9. Prevalence by PRS quintile plot (PRSBMI and gestational diabetes and PRSBMI and PCOS) 
 

 
  



Figure S10. Prevalence by PRS quintile plot (PRSDBP and excessive fetal growth and PRSDBP and gestational hypertension) 
 

 
  



Figure S11. Prevalence by PRS quintile plot (PRSPP and gestational hypertension and PRSPP and preeclampsia) 
 

 
  



Figure S12. Prevalence by PRS quintile plot (PRSSBP and gestational hypertension and PRSSBP and preeclampsia) 
 

 
  



Figure S13. Prevalence by PRS quintile plot (PRST2D and breast cancer and PRST2D and gestational diabetes) 
 

 
  



Figure S14. Prevalence by PRS quintile plot (PRST2D and gestational hypertension and PRST2D and PCOS) 
 

 
  



Figure S15. Chronological map for patients with high and low PRSCAD 

 

 
  



Figure S16. Chronological map for patients with high and low PRSDBP 

 

 
  



Figure S17. Chronological map for patients with high and low PRSPP 

 

 
  



Figure S18. Chronological map for patients with high and low PRSSBP 

 

 
  



Figure S19. Chronological map for patients with high and low PRST2D 
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