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Transfer RNAs (tRNAs) are small adaptor RNAs essential for mRNA translation. Alterations in the cellular tRNA
population can directly affect mRNA decoding rates and translational efficiency during cancer development and
progression. To evaluate changes in the composition of the tRNA pool, multiple sequencing approaches have been
developed to overcome reverse transcription blocks caused by the stable structures of these molecules and their
numerous basemodifications. However, it remains unclear whether current sequencing protocols faithfully capture
tRNAs existing in cells or tissues. This is specifically challenging for clinical tissue samples that often present
variable RNA qualities. For this reason, we developed ALL-tRNAseq, which combines the highly processive
MarathonRT and RNA demethylation for the robust assessment of tRNA expression, together with a randomized
adapter ligation strategy prior to reverse transcription to assess tRNA fragmentation levels in both cell lines and
tissues. Incorporation of tRNA fragments not only informed on sample integrity but also significantly improved
tRNA profiling of tissue samples. Our data showed that our profiling strategy effectively improves classification of
oncogenic signatures in glioblastoma and diffuse large B-cell lymphoma tissues, particularly for samples presenting
higher levels of RNA fragmentation, further highlighting the utility of ALL-tRNAseq for translational research.
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Transfer RNAs (tRNAs) are the most abundant class of
RNAs in the cell and play a crucial function in protein
synthesis by bridging the genetic code to the amino acid

sequence of proteins (Rak et al. 2018). Their central role
in translation demands a high level of processing as part
of a strict quality control mechanism that ensures their
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stability and functionality (Pan 2018). This involves re-
moval of leader and trailer (as well as intronic) sequences,
addition of the trinucleotide CCA to the 3′ mature end of
each tRNA, and the addition of an average of 13 nucleo-
base modifications per molecule (Pan 2018). The dynamic
regulation of tRNA abundance and their aminoacylation
further increases the complexity of their regulatory con-
trol on translation rates, mRNA stability, and protein
folding and has been shown to facilitate oncogene transla-
tion (Pavon-Eternod et al. 2009; Evans et al. 2017; Hernan-
dez-Alias et al. 2020; Yang et al. 2020; Rak et al. 2021).
Multiple studies have now established that tRNA expres-
sion levels are differentially modulated in tissues and cell
types and are selectively altered in tumor tissues (Dittmar
et al. 2006; Gingold et al. 2014; Schmitt et al. 2014; Sagi
et al. 2016; Hernandez-Alias et al. 2020; Pinkard et al.
2020). Additionally, tRNAs can also be processed into
tRNA-derived small RNAs (tsRNAs) in response to differ-
ent cellular and environmental cues (Kumar et al. 2016;
Shen et al. 2018; Drino et al. 2020; Shi et al. 2021). These
tRNA fragments have been described to play additional
regulatory roles in RNA silencing and epigenetic regula-
tion but also in cancer development and progression
(Haussecker et al. 2010; Maute et al. 2013; Kumar et al.
2014; Goodarzi et al. 2015; Schorn et al. 2017; Martinez
2018; Boskovic et al. 2020). However, tissue collection
and processing procedures were shown to impact RNA in-
tegrity and modification analysis (’t Hoen et al. 2013;
Richter et al. 2022), which could be particularly challeng-
ing for robust tRNA profiling in patient-derived tumor
samples.

tRNA expression levels assessed by conventional se-
quencing-based methods suffer from various technical bi-
ases and cannot always be replicated by hybridization-
based detection approaches (Motorin et al. 2007; Drino
et al. 2020). During RNA-seq library preparation, the rigid
tertiary structure and presence of highly modified nucleo-
tides in the Watson–Crick face of tRNA bases lead to RT
arrest or result in nucleotide misincorporations (Wittig
and Wittig 1978; Motorin et al. 2007). Although tRNAs
are themost abundantmolecules in the cell (Westermann
et al. 2012; Palazzo andLee 2015), the combination of their
specific biological properties and the usage of inadequate
sequencing approaches often results in strong underesti-
mation of tRNA expression in cells and tissue samples.
Specifically, a large number of otherwise full-length
tRNAsmayappear as truncated species or fragments in se-
quencing data because of prematurely terminated cDNAs
that complicate reliable quantitative assessment of
tRNAs via high-throughput sequencing. Monitoring the
dynamic changes in the composition of cellular tRNA rep-
ertoires and/or assessing the potential use of tRNAexpres-
sion signatures as cancer-specific biomarkers requiremore
robust approaches to determine the relative abundance of
tRNAs.

Multiple high-resolution approaches have been devel-
oped with the aim to advance tRNA detection and analy-
sis. The first major improvement was the removal of the
base modifications 1-methyladenosine (m1A), 3-methyl-
cytosine (m3C), and 1-methylguanosine (m1G) with the

demethylating enzymeAlkB from Escherichia coli, which
has been used in library preparation workflows for the
quantification of mature tRNA transcripts (Zheng et al.
2015; Hu et al. 2021; Warren et al. 2021) or tsRNA prod-
ucts (Cozen et al. 2015; Shi et al. 2021). In addition to re-
moving known RT-blocking modifications, the
detection of mature full-length tRNAs has been further
improved by incorporating thermostable group II intron
reverse transcriptase (TGIRT) into the library construc-
tion workflow of both DM-tRNA-seq (Zheng et al. 2015)
andmim-tRNAseq (Behrens et al. 2021). In contrast to ret-
roviral RTs, which suffer from lowprocessivity and higher
misincorporation rates (Wittig and Wittig 1978; Zhao
et al. 2018; Minshall and Git 2020; Werner et al. 2020),
TGIRTwas shown to efficiently reverse-transcribe highly
structured tRNAs into complementary DNA (cDNA)
(Mohr et al. 2013). Alternatively, both RNA fragmenta-
tion strategies (Gogakos et al. 2017) and improved adapter
ligation steps (Pang et al. 2014; Shigematsu et al. 2017;
Erber et al. 2020; Pinkard et al. 2020; Hu et al. 2021)
were implemented into different library preparation pro-
tocols aimed at obtaining mature full-length tRNA librar-
ies. All of these recently developed methodologies,
however, may potentially also inherently introduce com-
position bias due to their size fractionation steps, adapter
ligation strategies, or single-strand cDNA circularization
(Zheng et al. 2015; Erber et al. 2020; Pinkard et al. 2020;
Behrens et al. 2021; Hu et al. 2021).

In this study, we describe the development of
adapter-ligated libraries of tRNA-derived sequences
(ALL-tRNAseq), a protocol complementary to the existing
arsenal of tRNA profiling approaches that is specifically
designed for the detection of full-length tRNA molecules
and tRNA-derived products in clinical tissue samples.
Whereas DM-tRNA-seq and mim-tRNAseq improved
tRNA sequencing using TGIRT, we incorporated the
highly processive group II intron maturase MarathonRT
that was shown to outperform TGIRT (and retroviral
RTs) for the sequencing of long and structured RNAs
(Zhao et al. 2018; Guo et al. 2020, 2022). To further im-
prove tRNA profiling, we removed the most interfering
methyl marks with the RNA demethylating enzyme
AlkB, together with a randomized adapter ligation strat-
egy facilitated by molecular crowding (Kim et al. 2019),
to capture both full-length species and RNA fragments al-
ready present in the assessed samples (or potentially gen-
erated prior reverse transcription). To the best of our
knowledge, ALL-tRNAseq the first tRNA profiling ap-
proach that can capture the entire repertoire of full-length
tRNA molecules and provide compensation for possible
variability in RNA integrity by inclusion of all tRNA
mapping reads. This approach provided a more precise
and reliable quantification of the total tRNA repertoire,
which is required for a detailed assessment of steady-state
and dynamic changes in tRNA levels in both cultured
cells and clinical tissue samples. Our data revealed that
the cell type-specific regulation of tRNA repertoires was
not as pronounced as previously thought across different
cell lines or during chemically induced differentiation. Fi-
nally, we showed that ALL-tRNAseq can effectively
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improve classification of tumor-associated tRNA signa-
tures in clinical tissue samples.

Results

The ultraprocessive group II intron maturase
MarathonRT combined with RNA demethylation
overcomes tRNA length bias

Studies that rely on tissue sample collection often face dif-
ferences in sample handling, storage time, and transport
conditions that could ultimately influence RNA stability
and its subsequent RNA analyses (Micke et al. 2006; Gal-
lego Romero et al. 2014). For this reason, we initiated the
development of ALL-tRNAseq to enable robust assess-
ment of tRNAexpression signatures in human tissue sam-
ples that may suffer from a higher degree of variability in
RNA quality. Hence, in contrast to most recent tRNA se-
quencingmethods that apply reverse transcription prior to
adapter ligation (Pinkard et al. 2020; Behrens et al. 2021;
Hu et al. 2021; Watkins et al. 2022), our approach relies
on performing the reverse transcription step with the
ultraprocessive group II intron maturase MarathonRT af-
ter adapter ligation to allow analysis of both full-length
tRNA molecules and their derived fragments (Fig. 1A).
ALL-tRNAseq included a demethylation step (Zheng
et al. 2015; Hrabeta-Robinson et al. 2017; Zhou et al.
2019) for removal of potentially hindering modifications
at the Watson–Crick face prior to reverse transcription.
Additionally, a sequential adapter ligation strategy was
performed using two adapters, ending with four fully de-
generated positions to reduce ligation bias. The presence
of a high concentration of polyethylene glycol (PEG) in-
creased the effective concentration of target RNAs and
adapters via macromolecular crowding (Kim et al. 2019).
Last, a size selection step (via polyacrylamide gel electro-
phoresis) betweenboth adapter ligation stepswas included
to further purify small RNAs and simultaneously exclude
free adapter contaminants.
To assess the performance of our approach, we first pro-

filed tRNA expression in a glioblastoma (GBM)model cell
line (sample with RNA integrity number [RIN] 8.7) (Sup-
plemental Fig. S1A) to evaluate whether incorporation
of MarathonRT in place of the commonly used retroviral
reverse transcriptase (RT) SuperScript III could improve
detection of tRNA molecules. MarathonRT was shown
to reverse-transcribe highly structured RNAs at low tem-
peratures with higher efficiency and processivity than
both SuperScript and the thermostable group II intron
maturase TGIRT (Zhao et al. 2018; Guo et al. 2020,
2022). Indeed, an analysis of all sequencing reads corre-
sponding to small RNAs up to 120 nt showed that inclu-
sion of MarathonRT enabled a dramatic increase in
detection of tRNA reads from 15% to 62% of total reads
when compared with SuperScript III (Fig. 1B). Moreover,
read length analysis of the complete RNA repertoire fur-
ther emphasized tRNA enrichment by a pronounced and
specific increase of 75-, 76-, and 85-nt-long RNA sequenc-
es that almost entirely consisted of mature full-length (in-
cluding the terminal CCA addition) type I and type II

tRNAs (Fig. 1C). Although the processivity of Mara-
thonRT has already been extensively validated by primer
extension assays using long RNA molecules (Zhao et al.
2018; Guo et al. 2020, 2022), the ability of MarathonRT
to produce full-length cDNAs for stably folded and heavi-
lymodified tRNAs has not been demonstrated yet. There-
fore, we assessed MarathonRT performance in a primer
extension assay for tRNA-PheGAA using total RNA of
HEK293T cells. This tRNA contains a structurally com-
plex modification, wybutosine (yW), at position 37
(Perche-Letuvée et al. 2014) that can block Watson–Crick
base pairing (Werner et al. 2020) and was one of the first
modifications known to lead to premature termination
in reverse transcription reactions (Wittig and Wittig
1978). Only full-length cDNA products could be detected
in this assay (Fig. 1D), suggesting that MarathonRT is not
hindered by this bulky RNAmodification. Similar results
were observed for tRNA-GlyGCCand a lysine tRNA (Sup-
plemental Fig. S1B), indicating that truncated cDNAprod-
ucts are not generated by this enzyme at detectable rates
for the three types of tRNA tested. Last, overall reproduc-
ibility of ALL-tRNAseq library preparation was evaluated
by comparing expression of all tRNA anticodon families
between two technical replicates from a matching RNA
source, which revealed high correlation between the two
samples (Pearson correlation r:0.98) (Supplemental Fig.
S1C).
To benchmark our method to established tRNA se-

quencing methods, we retrieved publicly available data
sets using another group II intron-encoded RT, TGIRT,
in combination with circularization-based ligation ap-
proaches. Both methods used HEK293T cell line-derived
RNA for tRNA analysis. Complete preprocessing, data
normalization, and analysis of all raw sequencing data
were performed with our recently updated computational
pipeline, sRNAbench (Aparicio-Puerta et al. 2019, 2022).
DM-tRNA-seq (Zheng et al. 2015) displayed a wide read
length distribution of tRNA reads in the absence of a
type II tRNA peak (Fig. 1E, left). On the other hand,
mim-tRNAseq (Behrens et al. 2021) and ALL-tRNAseq
showed a nearly identical read length distribution, with
a notable exception for type II tRNAs (Fig. 1E, middle
and right). Next, we extended read length comparisons
to mitochondrial tRNAs (mt-tRNAs), which revealed
highly similar profile lengths with a distinct peak at 72
nt for ALL-tRNAseq, DM-tRNA-seq, and mim-tRNAseq,
with additional peaks at 36 nt for the latter two methods
(Supplemental Fig. S1D). In contrast to ALL-tRNAseq,
and for both cytoplasmic and mitochondrial tRNAs,
DM-tRNA-seq and mim-tRNAseq showed a higher rela-
tive abundance of truncated tRNA reads (Fig. 1E, left
and middle; Supplemental Fig. S1D, left and middle) as a
result of single-adapter or circularization protocols that
cannot differentiate between 5′ degradation of full-length
tRNA and truncated reads generated during reverse tran-
scription. This is particularly surprising in the case of
the mim-tRNAseq procedure, which relies on multiple
size fractionation steps of full-length species. This implies
that combining RNA demethylation and the use of Mara-
thonRT with a two-adapter ligation strategy prior to RT
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may be useful in eliminating some of the technical hur-
dles present in currently available sequencingmethodolo-
gies. To further evaluate whether the ALL-tRNAseq
approach reduced bias caused by premature cDNA termi-
nation at modified bases, an additional analysis on the re-
lationship between full-length tRNA reads and total
tRNA reads per tRNA isodecoder was performed. This
analysis revealed higher correlation for ALL-tRNAseq
(Pearson correlation r: 0.99) (Supplemental Fig. S1E) com-
pared with mim-tRNAseq (Pearson correlation r: 0.7)
(Supplemental Fig. S1F) and DM-tRNA-seq (Pearson cor-
relation r: 0.85) (Supplemental Fig. S1G). The near absence
of full-length tRNA-LysTTT and tRNA-tRNA-TyrGTA
mainly contributed to the relatively low correlation be-

tween full-length tRNA and all tRNA reads for mim-
tRNAseq despite the high fraction of full-length tRNA
reads for most tRNA anticodon families (Supplemental
Fig. S1F). In contrast, the full-length tRNA anticodons
that got relatively more read counts compared with other
tRNA anticodons in DM-tRNA-seq appeared proportion-
ate to the number of all tRNA reads (Supplemental Fig.
S1G). We extended this analysis by directly comparing
the total fraction of full-length tRNA molecules contain-
ing CCA ending for each method by determining the per-
centage of full-length tRNA reads out of the total
reads assigned to tRNAs for each amino acid. This analy-
sis showed a median of 80% full-length tRNA in
ALL-tRNAseq compared with a median of 73% and 9%

A

B

E

F G

C D

Figure 1. The ultraprocessive group II in-
tron maturase MarathonRT combined with
RNA demethylation overcomes tRNA
length bias. (A) Workflow of ALL-tRNAseq
depicting steps for obtaining the full tRNA
repertoire (including type I and type II
tRNAs), consisting of tRNA deacylation
and demethylation, sequential adapter liga-
tion (adapters indicated in purple) with a gel
size selection step, reverse transcription
with incorporation of the highly processive
MarathonRT, and PCR amplification. (B)
RNA class distribution in percentage of total
normalized reads for the ALL-tRNAseq li-
brary preparation protocol using SuperScript
III and MarathonRT in SNB-75 cells. (C )
Full RNA read length analysis in percentage
after adapter trimming in SuperScript III
and MarathonRT prepared libraries from
SNB-75 cell line RNA. The increased propor-
tion of reads mapping to tRNA sequences at
the most dominant peaks of 75 and 85 nt are
indicated. (D) Primer extension analysis of
yW37 in tRNA-PheGAA using 2 μg of de-
methylated total RNA from HEK293T cells.
(Left panel) SYBR Gold staining of small
RNA ladder (L; 50, 80, and 150 nt) and
cDNA yield (1) separated on a 10% denatur-
ing polyacrylamide gel. (Right panel) Chemi-
luminescent detection of biotin-labeled
cDNA products of tRNA-PheGAA. (E)
tRNA read length distribution comparison
between DM-tRNA-seq, mim-tRNAseq,
and ALL-tRNAseq, shown as percentage of
all reads mapping to cytoplasmic tRNA
from HEK293T cells. (F ) Violin plot of the
full-length tRNA read fraction with the 3′-
terminal CCA triplet detected in DM-
tRNA-seq (n=2), mim-tRNAseq (n=2), and
ALL-tRNAseq (n=2) in HEK293T cells. Sta-
tistics were performed using Wilcoxon rank
sum test. (∗∗∗∗) P<0.001. (G) Radar plot of
tRNA anticodon reads per million mapping
to cytoplasmic tRNA showing the distribu-
tion of reads per tRNA anticodon for DM-
tRNA-seq (purple line), mim-tRNAseq
(blue line), and ALL-tRNAseq (red line).
Data are represented as log10 values on the
radius.
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full-length tRNA reads formim-tRNAseq andDM-tRNA-
seq (Wilcoxon rank-sum P-value < 0.001) (Fig. 1F), respec-
tively. Last, we assessed global tRNA expression in the
HEK293T cell line using all three methods. In general,
our analysis showed divergent tRNA expression profiles
between the three protocols (Fig. 1G). Whereas the major-
ity of reads for DM-tRNA-seq were represented by tRNA-
Val (19% of tRNA reads), as similarly observed by Behrens
et al. (2021), tRNA coverage appeared to be more evenly
distributed for mim-tRNAseq in comparison with ALL-
tRNAseq, which showed distinct tRNA expression pat-
terns including higher abundance of type II tRNAs
(tRNA-Leu and tRNA-Ser) (Fig. 1G).
Altogether, these data indicate that the combination

of AlkB treatment with the high modification read-
through efficiency of MarathonRT in ALL-tRNAseq can
overcome potential roadblocks generating biases in
tRNA length, particularly for the recovery of type II
tRNA molecules.

Inclusion of all tRNA reads detected by ALL-tRNAseq
improves robustness of tRNA profiling

To evaluate whether ALL-tRNAseq can accurately moni-
tor differences as well as dynamic change in cellular
tRNA repertoires, we next examined tRNA read length
distribution in different cell lines (SU-DHL-5, SNB-75,
andHEK293T) and during hESC proliferation and differen-
tiation by retinoic acid (Gingold et al. 2014). The differen-
tiation process of the latter was monitored by bright-field
microscopy at different time points (Supplemental Fig.
S2A) and confirmed by RT-qPCR of relevant differentia-
tion markers (Supplemental Fig. S2B). The tRNA read
length profiles of all cell lines displayed a high degree of
similarity with comparable levels of type I tRNA, albeit
differences were observed in the levels of type II tRNA be-
tween all cell lines (Fig. 2A). Next, we examined differenc-
es in full-length tRNA expression between cell lines using
principal component analysis (PCA). Here, we observed
high resemblance across the different cell lines, including
an unexpected clustering of the hESC-derived samples
frombothproliferative anddifferentiatedcells. In contrast,
PCA showed wider variability among samples within the
same cell line, particularly between SU-DHL-5 samples
(Fig. 2B). Thus, we decided to explore the origin of the
full-length tRNA variability among SU-DHL-5 replicates
in more detail. First, we confirmed that RNA integrity in
the three SU-DHL-5 replicateswas comparable by investi-
gating their bioanalyzer profiles and RNA integrity num-
ber (RIN) values (Supplemental Fig. S3A) as well as the
percentage of full-length tRNAs within the total pool of
a given tRNA isodecoder. These analyses revealed that al-
though bioanalyzer profiles and RIN values were nearly
identical for the three replicates, a striking decrease in
the fraction of full-length tRNAs could be observed in rep-
licate 1 comparedwith replicate 2 and 3 (Fig. 2C). This sug-
gested that tRNAs in SU-DHL-5 cells of replicate 1 were
subjected to a higher degree of small RNA processing or
degradation into fragments, consistent with the PCA
(Fig. 2B). We next decided to confirm this analysis by eval-

uating the fragmentation pattern of a specific tRNA
by Northern blot. For this purpose, we focused on the
well-characterized tRNA-GlyGCC-derived fragments
(Goodarzi et al. 2015; Drino et al. 2020) and probed for 5′-
tsRNA GlyCCC/GCC. Similar to the sequencing data,
both tRNA-GlyCCC/GCCtsRNAsand full-length tRNAs
were detected in SU-DHL-5 replicate 1 (Supplemental Fig.
S3B), while full-length tRNAs were predominantly ob-
served in an additional SU-DHL-5 sample (Supplemental
Fig. S3C). To ensure that the designed probe could detect
fragments of different sizes reliably, we included a serial
dilution of a DNA oligonucleotides pool of 35 and 74 nt
corresponding to tRNA GlyCCC/GCC full-length (74 nt)
and fragments (35 nt) into our analysis. Northern blotting
confirmed the possible detection of both length variants
reliably up to 40 fmol (Supplemental Fig. S3C). Since
Northern blottingwas performed directly after RNA isola-
tion, these results further confirmed that tRNA fragments
detected in sequencing of SU-DHL-5 sample replicate 1
were not generated during library preparation.
To further exclude possible variation originating from

our RNA isolation procedures, we next re-evaluated
RNAtreatments included in our study. First,we examined
our tRNAdeacylation treatment for either 30min at 37°C,
1 h at 37°C, or 2 h at 50°C. Next, RNA integrity was as-
sessed using urea–polyacrylamide gel (Supplemental Fig.
S4A, left panel). Northern blotting analysis of tRNA-
GlyGCC/CCC showed signal for the control oligos at 18,
35, and 74 nt (Supplemental Fig. S4A, middle panel), and
all treated RNA samples revealed full-length tRNA-
GlyGCC/CCC exclusively (Supplemental Fig. S4A, right
panel).We then re-evaluated the performance of the deme-
thylation step (Zhou et al. 2019) as a possible source of
RNA decay. Whereas total RNA incubations with the
AlkB enzyme mix (AlkB WT and AlkB mutant D135S) re-
sulted in a high fraction of full-length tRNA reads (Fig. 2A;
Supplemental Fig. S4B), a replicateRNAsample incubated
with the reaction buffer only (buffer-treated sample)
showed a high degree of small RNA fragmentation with
<2% mature type I tRNA and a nearly complete absence
of full-length type II tRNA molecules (Supplemental Fig.
S4C, gray profile). In striking contrast, sequencing libraries
prepared with untreated RNA provided a majority of ma-
ture full-length tRNA (Supplemental Fig. S4C, yellow pro-
file), albeit with a reduced level of type II tRNA compared
with AlkB-treated samples, additionally illustrating the
importance of the demethylation treatment to fully tran-
scribe type II tRNAs. This is also consistent with the dif-
ferences we previously observed between ALL-tRNAseq
and mim-tRNAseq (Fig. 1E), which does not include a
demethylation step. These results suggested the possibili-
ty of a buffer-induced RNA fragmentation rather than en-
zyme-induced RNA fragmentation (Shi et al. 2021). The
absence of RNA degradation in our untreated and en-
zyme-treated samples suggested that this phenomenon
may be caused by increased Fe(II) availability in the ab-
sence of the dioxygenase AlkB, leading to nucleic acid
cleavage via a Fenton-type chemical reaction (Dallas
et al. 2004). To confirm our hypothesis, RNA integrity
was further assessed using urea–polyacrylamide gels.
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Whereas RNA integrity profiles for untreated and DM-
treated total RNA are similar, the buffer-treated sample
(no enzymes but iron-containing buffer) showed increased
RNA degradation (Supplemental Fig. S4D). To validate
these results, RNA samples were incubated with different
components of the AlkB reaction, further confirming that
RNA degradation occurs only in the presence of iron (Sup-
plemental Fig. S4E). In agreement with this observation,
the Pandora-seq method also reported the issue of AlkB
treatment-induced RNA fragmentation that was circum-
vented rather than resolvedbyapplying size selectionprior
to demethylation (Shi et al. 2021). Thus, based on these re-
sults, Fe(II) availability in the reaction buffer should be
treated with caution during the demethylation step. Fur-
thermore, despite the enrichment of type I mature tRNA
in the untreated condition, we also observed higher levels
of specific tRNA fragments around 32 and 54 nt (Supple-
mental Fig. S4C).Althoughour ligation strategyprior to re-

verse transcription prevented detection of incomplete
cDNA synthesis, the increased presence of these tRNA
fragments in the untreated samples was compatible with
a less efficient reverse transcription that artificially in-
creased the contribution of tRNA fragments in these se-
quencing data. Altogether, these results indicate that the
detected tRNAfragments inSU-DHL-5 replicate1wereal-
ready present in the total RNA isolate but that the condi-
tions of the demethylation steps are also critical to avoid
further treatment-induced fragmentation.

Since RINs did not explain the observed variation in the
tRNA population of the RNA isolates, we aimed to assess
whether similar levels of RNA fragments could also be ob-
served for other highly abundant RNAs of similar se-
quence length in our cell line samples. Therefore, we
categorized fragmented 5S, 5.8S, 18S, and 28S rRNA reads
up to 100 nt to exclude potential contaminating full-
length 5S rRNA of ∼120 nt long (which is just above our
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Figure 2. Inclusion of all tRNA reads detect-
ed by ALL-tRNAseq improves robustness of
tRNAprofiling. (A) tRNA read length distribu-
tion in percentage in cell lines SU-DHL-5,
SNB-75, and HEK293T as well as proliferating
and differentiated hESCs. (B) Principal compo-
nent analysis (PCA) of full-length tRNA anti-
codon expression in HEK293T (n =3), SNB-75
(n= 2), SU-DHL-5 (n =3), hESC (n=3), and dif-
ferentiated hESCs (n =3). (C ) Violin plot of
the full-length tRNA read fraction with the
3′-terminal CCA triplet in three replicates of
the SU-DHL-5 cell line. (D) Pearson correla-
tion of normalized tRNA fragments reads per
million and normalized rRNA reads per mil-
lion <100 nt. (E) PCA of tRNA anticodon ex-
pression including full-length and short
tRNA-derived reads in HEK293T (n=3),
SNB-75 (n= 2), SU-DHL-5 (n =3), proliferating
hESCs (n= 3), and differentiated hESCs (n=
3). (F ) Radar plot of all tRNA anticodon reads
per million mapping to cytoplasmic tRNA,
showing the distribution of reads per tRNA
anticodon for SU-DHL-5 (blue line),
HEK293T (orange line), proliferating hESCs
(green line), differentiated hESCs (red line),
and SNB-75 (purple line). Data are represented
as log10 values on the radius. (G) Detection of
tRNA-Trp-CCA, tRNA-Tyr-GTA, tRNA-His-
GTG, and tRNA-SeC-TCA in 1 µg of total
RNA isolated from proliferating hESCs (T =
day 0) and HEK293T cell lines by Northern
blot. 5S rRNA was used as a loading control.
(H) Ratio in tRNA abundance between hESCs
and HEK293T by quantification of Northern
blot signal (left) compared with relative abun-
dance detected by ALL-tRNAseq including all
tRNA reads (middle) and full-length tRNA
reads only (right). Band intensities were quan-
tified by ImageJ, background-subtracted, and
normalized to 5S rRNA signal.
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size selection during library preparation) and study rRNA
fragmentation patterns in the same sequence length as
tRNAmolecules. All tRNAmolecules thatwere not iden-
tified as full-length tRNA were considered as tRNA frag-
ments to allow all possible fragment lengths into the
analysis. Similar to a recent study that identified charac-
teristic rRNA and tRNA modification markers in the
small RNA fraction, indicative of the degradation status
(Richter et al. 2022), ouranalysis in SU-DHL-5 sample (rep-
licate 1) revealed a high correlation (Pearson correlation r:
0.76) between the amount of tRNA fragmentation and the
occurrence of rRNA fragmentation (Fig. 2D). Therefore,
we incorporated all reads in the analysis to evaluate
whether intersample variability was still present and to
further account for any unexpected technical variation/
fragmentation that may be introduced during sample col-
lection and/or RNA isolation. PCAof tRNAanticodon ex-
pression demonstrated clear separation between cell lines
of different origins and high resemblance among replicates
within the samecell line (Fig. 2, cf. B andE).The addedben-
efit of including all tRNA reads was further evident from
improved separation between the proliferative and differ-
entiated hESCs. We further compared and visualized rela-
tive tRNA anticodon expression in our cell lines using the
ALL-tRNAseq approach. The overall relative tRNA anti-
codon abundance exhibited comparable distribution
across all cell lines, as similarly observed in other studies
(Fig. 2F; Dittmar et al. 2006; Aharon-Hefetz et al. 2020).
However, our analysis also indicated cell line-specific dif-
ferences, with the most dynamic change observed for
tRNA-SeC-TCA (Fig. 2F). Despite the overall similarity
in tRNAexpression profiles, the heatmap derived fromhi-
erarchical cluster analysis also clearly separated all cell
lines based on tRNA anticodon expression using the
ALL-tRNAseq approach (Supplemental Fig. S5A). Interest-
ingly, ALL-tRNAseq generally detected relatively modest
changes in the tRNApool betweenproliferating anddiffer-
entiating cells comparedwithwhathasbeenpreviously re-
ported (Gingold et al. 2014;Aharon-Hefetz et al. 2020).The
relative changes in tRNA anticodon expression were fur-
ther validated by hybridization-based Northern blotting
of four tRNAs (tRNA-Tyr-GTA, tRNA-SeC-TCA, tRNA-
Trp-CCA, and tRNA-His-GTG) in two cell lines: hESCs
and HEK293T (Fig. 2G). We next compared Northern
blot results with ALL-tRNAseq full-length tRNA expres-
sion profiles (Supplemental Fig. S4F) and tRNAprofiles in-
cluding all tRNA-derived reads (Fig. 2F). Quantification of
Northern blot signals showed an overall high similarity to
ALL-tRNAseq results, with inclusion of all tRNA reads
providing a better evaluation of full-length ratios in the
two cell lines compared with hybridization-based meth-
ods (Fig. 2H). It should be noted that a direct comparison
of the relative levels of a specific tRNA (as assessed by
high-throughput sequencing of size-selected RNA sam-
ples) with their corresponding absolute levels in total
RNA samples (as measured by Northern blotting) may be
affected by potential differences in total tRNA levels be-
tween the cell lines compared. Nevertheless, these results
further confirmed the added benefit of our profiling strat-
egy including all reads for the relative tRNA abundance

by ALL-tRNAseq is highly concordant with hybridiza-
tion-based Northern blotting results.

tRNA expression profiling distinguishes normal from
hematological cancer tissues

To assess the utility of ALL-tRNAseq for the discovery of
tumor-associated tRNA signatures, we first examined in
more detail whether RNA quality in tissue samples had
an impact on full-length tRNA analysis. We obtained
freshly frozen tissue samples from patients diagnosed
with the hematological malignancy diffuse large B-cell
lymphoma (DLBCL; n= 15) versus reactive lymph nodes
(n= 3) that all had RIN values ≥7. An unsupervised hierar-
chical cluster analysis showed that the expression of full-
length tRNAs alone is not sufficient to fully differentiate
between reactive lymph nodes and DLBCL tumor biopsy
tissues.However, the full-length tRNAmatrix showed rel-
ative changes in expression of tRNA anticodon families in
DLBCL samples compared with normal tissues (Fig. 3A).
Specifically, tRNA-TyrGTA expression in most DLBCL
samples appeared strongly down-regulated, as previously
observed by Gingold et al. (2014). Next, we also evaluated
the contribution of tRNA fragmentation patterns to the
tRNA expression profiles by exclusively analyzing tRNA
reads <60 nt. Our analysis again showed insufficient clus-
tering of reactive lymph nodes, which was not fully sepa-
rated from DLBCL samples (Fig. 3B). Therefore, similar
to our approach of tRNA read analysis in cell lines, we
next examined whether the relationship between RNA
quality (using RINs) and the proportion of full-length
tRNAs between the tumor biopsies and healthy lymph
node samples can be compared. This analysis indicated
that, also for tissue samples, RIN valueswere not correlat-
ed or were poorly correlated with the degree of tRNA frag-
mentation (Pearson correlation r: −0.14) (Fig. 3C).
Alternatively, an additional analysis showed that the lev-
els of rRNA fragments were clearly inversely correlated
with the levels of full-length species (Pearson correlation
r: −85) (Fig. 3D), as expected based on the cell line results.
Since the contribution of shorter tRNA sequences to

the tRNA expression profiles compensated for possible
intersample variations in our cell lines (Fig. 2E), inclusion
of all tRNA-derived reads into our ALL-tRNAseq work-
flow could also further improve clustering analysis in tis-
sue samples. In line with previous studies that validated
the accuracy of their tRNA profiling methods with the
detection of brain-specific tRNA-Arg-TCT-4-1 (Ishimura
et al. 2014; Pinkard et al. 2020; Behrens et al. 2021), we
first explored whether we could observe similar tissue-re-
stricted expression using ALL-tRNAseq with inclusion of
all tRNA reads. Comparison of tRNA expression profiles
between histologically normal brain tissue (n= 3) and re-
active lymph nodes (n= 3) indeed revealed a strong expres-
sion of tRNA ArgTCT-4-1 (Supplemental Fig. S5B). Next,
in a subsequent analysis of all tRNA reads in our DLBCL
set, we showed that implementation of all tRNA read
counts for unsupervised hierarchical cluster analyses to
detect tumor-associated tRNA signatures also strongly
differentiated between DLBCL and reactive lymph nodes
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(Fig. 3E). In addition, the obtained signature from our pre-
vious full-length tRNAanalysis was further enrichedwith
multiple relative changes to the tRNA pool, including the
down-regulated tRNA-Tyr-GTA expression that was ob-
served in the full-length tRNA analysis (Fig. 3E).

ALL-tRNAseq allows tRNA expression profiling in brain
tumor tissues of highly variable RNA integrity

Meaningful studies of tRNA repertoire composition dur-
ing cancer development and its clinical consequences
can be challenging due to difficulties in obtaining high-
quality RNA from clinical tissue samples and the limited
availability of such specimens. Although lower RNA
quality in samples is often a reason for exclusion, collec-
tion and processing procedures of clinical tissue samples
often influence RNA preservation (Gallego Romero
et al. 2014). Based on our results with DLBCL analyses

of samples with good RNA integrity, we questioned
whether similar full-length tRNA expression profiles
could be observed in GBM samples (n= 18) that showed
higher variation in RNA quality (RIN values in range 4–
9) (Supplemental Fig. S6). Hierarchical cluster analysis
again indicated full-length tRNA could not fully separate
GBM from normal brain tissue (n= 3), with the latter sam-
ples branching out from a subgroup of GBMs (Fig. 4A). In
contrast, the expression of tsRNAs alone enabled strong
differentiation between GBM tissues of highly variable
RNA quality (RIN 4–9) and histologically normal brain
tissue (RIN >7) thatmay have resulted from the higher de-
gree of variation in RNA integrity and thus RNA fragmen-
tation in GBM samples (Fig. 4B). Therefore, we again
evaluated how the six low-quality tissue samples affected
the correlation between the RINs and the proportion of
full-length tRNA in histologically normal brain samples
(n= 3) and GBM samples (n= 18) (Supplemental Fig. S6).
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Figure 3. tRNA expression profiling distinguish-
es normal from hematological cancer tissues. (A)
Heat map visualization showing clustering of
full-length tRNA reads in DLBCL samples. Each
horizontal line represents a biological sample (15
DLBCL and three healthy, reactive lymph node
samples). Each row represents a tRNA type,
grouped by anticodon, displaying 46 tRNA antico-
dons in total. The color code depicts the log2 fold
change of each tRNA isodecoder group in every
sample relative to the average of the three healthy
samples. (B) Unsupervised hierarchical clustering
analysis of normalized tRNA reads <60 nt for 15
DLBCL samples and three reactive lymph nodes.
Each row represents a tRNA type, grouped by anti-
codon, displaying 46 tRNA anticodons in total. (C )
Pearson correlation (r: −0.14) between RIN values
and normalized full-length tRNA reads in 15
DLBCL samples and three healthy, reactive lymph
node samples of good RNA quality (RIN values be-
tween 7 and 9). (D) Pearson correlation (r: −0.85)
between normalized rRNA reads <100 nt and nor-
malized full-length tRNA reads in 15 DLBCL sam-
ples and three healthy, reactive lymph node
samples. (E) Heat map visualization showing im-
proved clustering of DLBCL (n =15) and reactive
lymph node samples (n=3) after inclusion of all
tRNA reads.
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Despite inclusion of low-quality samples, RIN values
were still poorly correlated with the proportion of full-
length tRNA (Pearson correlation r: 0.35) (Supplemental
Fig. S5C), as a wide range between 4% and 41% of full-
length tRNA proportion could be observed for the low-
quality samples with RIN values <5. Nevertheless, our ap-
proach of correlating the proportion of rRNA reads <100
nt with the proportion of full-length tRNA proved to be
beneficial for the determination of tRNA transcript integ-
rity in GBM and histologically normal brain samples (r =
−0.78) (Supplemental Fig. S5D). When we applied hierar-

chical cluster analysis to these samples, similar to our ob-
servations in DLBCL tissues, GBM samples still strongly
differentiated from histologically normal brain samples
once we incorporated all tRNA reads into the analysis
(Fig. 4C).
Finally, we used PCAon tRNA-derived reads fromall tis-

sue samples to understand whether the difference in RNA
quality is affecting variability in tRNA expression. Despite
a significant variability in RNA integrity, healthy tissue
samples clustered together, while both cancer types were
fully separated (Fig. 4D). A higher variability in tRNA
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Figure 4. ALL-tRNAseq allows tRNA ex-
pression profiling in brain tumor tissues of
highly variable RNA integrity. (A) Heat
map visualization showing clustering of
full-length tRNA reads in glioblastoma
(GBM) samples. Each horizontal line repre-
sents a biological sample; 18 GBM samples,
and three normal brain samples. (B) Hierar-
chical clustering ofGBM (n= 18) and normal
brain samples (n=3). tRNA reads <60 nt are
normalized permillion. Each row represents
a tRNA type, grouped by anticodon, display-
ing 46 tRNA anticodons in total. (C ) Heat
map visualization showing clustering
changes of GBM and normal brain samples
after inclusion of all tRNA reads. (D) PCA
of tRNA anticodon expression using all nor-
malized reads per million mapping to cyto-
plasmic tRNA in reactive lymph nodes (n=
3), normal brain tissue (n=3), DLBCL (n=
15), and GBM (n=18).
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expression was observed in GBM samples, which could
also reflect a higher degree of tumor heterogeneity in
GBMs (Sottoriva et al. 2013).Notably, these PCA results re-
capitulated the unsupervised hierarchical cluster analyses
(Fig. 4C). Altogether, these results confirm that tRNA
read coverage by ALL-tRNAseq-based profiling is useful
to assess sample integrity and enhances the identification
and classification of tumor-associated tRNA signatures.

Discussion

Recent studies have revealed that differential mRNA
translation rates were controlled, at least in part, by alter-
ation of the expressed cellular tRNA repertoire (Gingold
et al. 2014; Aharon-Hefetz et al. 2020; Rak et al. 2021). In-
creasing evidence suggests thatmature tRNAs are also in-
volved in cancer development and progression (Pavon-
Eternod et al. 2009; Gingold et al. 2014; Goodarzi et al.
2015; Hernandez-Alias et al. 2020), prompting the devel-
opment of optimal techniques enabling the reliable quan-
tification of tRNA repertoires in human cells and tissues.
However, the presence of RT-blocking modifications on
the highly structured tRNAs fundamentally hinders accu-
rate quantification via high-throughput sequencing tech-
nologies (Motorin et al. 2007), which limits in-depth
investigation of tRNAs’ contribution during cancer devel-
opment. Our results revealed that ALL-tRNAseq offers a
robust high-throughput sequencing technology that is
useful to explore relative mature tRNA abundance and
to simultaneously assess tRNA integrity in cell lines as
well as clinical tissue samples. We showed that ALL-
tRNAseq can detect cell type-specific regulation of
tRNA expression, providing an additional layer of infor-
mation that improves classification of cancer-specific
tRNA signatures in tumor tissues.

Combined analysis of full-length tRNA molecules and
tRNA fragmentation patterning requires classical two-
adapter-based ligation strategies, which may introduce a
source of ligation bias for some RNA sequences and struc-
tures (Fuchs et al. 2015). To overcome this problem, ALL-
tRNAseq applies an adapter ligation approach that has
been previously shown to minimize ligation bias in
miRNA sequencing methods (Giraldez et al. 2018; Kim
et al. 2019). In addition, introduction of RNA-3′ adapter
size selection simultaneously allowed for removal of ex-
cess free 3′ adapters, which enabled efficient ligation to
the full RNA repertoire by using high concentrations
of 3′ adapter. Incorporation of a demethylation step
(Zhou et al. 2019) with a combination of wild-type and
D135S mutant AlkB enzymes from Escherichia coli in-
creased recovery of mature full-length tRNA sequences,
dramatically shifting relative anticodon abundance in de-
methylated samples. One of the crucial modification
roadblocks to overcome is m2

2G26 in type II tRNAs,
which is sandwiched between the coaxially stacked D-
loop and the tRNA anticodon and forms a tight pair
with nucleotide 44, making it less accessible for reverse
transcription (Clark et al. 2016). In line with the previous-
ly reported high processivity of MarathonRT in reverse-

transcribing long and structured RNAs, we further showed
that the ALL-tRNAseq protocol allowed for the bypass of
RT roadblocks present on highly structured tRNA mole-
cules, including the bulky yW modification in tRNA-Phe
GAA. In addition, our protocol was able to dramatically in-
crease cDNA yields of type II tRNAs even under relatively
low temperatures compared with other RTs.

The main goal of ALL-tRNAseq development was to
generate a sequencing approach that was suitable for pro-
filing clinical tissue samples that often suffer fromhigher
variability in RNA integrity. We showed that incorpora-
tion of all tRNA sequencing reads compensated for com-
promised RNA quality during sample processing.
Although the Agilent 2100 bioanalyzer platform is an au-
tomated, highly reproducible approach for the evaluation
of RNA integrity (Schroeder et al. 2006), we showed in
this study that this RNA quality measurement is not
sufficient to explain the extent of rRNA and tRNA frag-
mentation in both cell line-derived and tissue-derived
samples. With the application of ALL-tRNAseq, we can
provide this layer of information on tRNA integrity
and, more importantly, compensate for technical tRNA
fragmentation during sample collection and processing
procedures.

Several additional enzymatic and/or chemical treat-
ments can be incorporated into our sequencing approach
according to the goal or application of the study. In the
current study, analysis of biological tRNA-derived frag-
ments was not included as a result of library preparation
choices to make the workflow optimal for tRNA analysis
in clinical tissue samples. The 3′ phosphate (3′-P) and 2′3′

cyclic phosphate (2′3′-cP) that are enzymatically generat-
ed at the ends of tRNA fragments during biogenesis re-
quire a treatment with T4 polynucleotide kinase
(T4PNK) to convert the 3′-P or 2′3′-cP into ligation-com-
petent ends (Hu et al. 2021; Shi et al. 2021). Although
T4 PNK treatment is not incorporated into the current
protocol, we foresee implementation of this additional
step in the future to allow simultaneous assessment of
all fragments, including tsRNAs.

A potential limitation of theALL-tRNAseq procedure is
that this protocol is incompatible with reverse transcrip-
tion-induced modification calling that has been
addressed by several other high-throughput tRNA se-
quencingmethods. Even though this provides an essential
additional layer of information on tRNA stability and pro-
cessing, tRNA-seq-based modification calling needs to be
implemented with care. Differences in RT processivity
may alter RT-specific mismatch signatures that need to
be considered during analysis of mismatch sites. Further-
more, we showed that inclusion of the demethylation step
significantly affected the relative assessment of type II
tRNA expression. Hence, assessment of tRNA methyla-
tion status by a reverse transcription-based approach may
come with the disadvantage of less accurate profiling of
tRNA expression. In addition, incorporation of Mara-
thonRT did not allow us to compare reverse transcrip-
tion-induced tRNA modification signatures due to its
high processivity compared with other RTs. Nevertheless,
MarathonRT has previously been reported to generate 2′O

Scheepbouwer et al.

252 GENES & DEVELOPMENT



methylation and pseudouridylation signatures in long
RNAs (Guo et al. 2020). Together with incorporation of
mass spectrometry data and combining specific RT
signatures, the utility of these misincorporation-induced
modification signatures can be implemented into the
ALL-tRNAseq workflow in the future. We showed that
ALL-tRNAseq can accommodate detection of mature
full-length tRNAs by alleviation of known RT roadblocks
without losing information on possible tRNA fragmenta-
tion patterns. However, similar to all other sequencing-
based protocols published so far, changes in relative
abundance of a few tRNA isodecoders can possibly still be
linked to persistent bulky RT blocks present on these
tRNAs rather than their abundance. For instance, modifica-
tion levels of 2-methylthio-6-threonylcarbamoyl-A
(ms2t6A) in lysine tRNAs or yW in tRNA-PheGAA may
be reduced in some conditions, leading to better accessibil-
ity of theRTand thus artificially increasing their abundance
in sequencing-based quantification (Rak et al. 2021), as
also described by others (Behrens et al. 2021). Whether the
abundance of such tRNAs appears affected in relation to a
change in their modification status or their expression, se-
quencing-based protocols remain powerful tools to identify
attractive targets for further investigation.
Altogether, with ALL-tRNAseq, we introduced a

method that incorporates an optimized strategy for ma-
ture tRNA quantification while making the workflow
amenable for samples thatmay suffer from compromised
RNA quality. Applying ALL-tRNAseq to profile human
cell lines of different tissue origins as well as clinical tis-
sue samples, we identified cell lineage- and tumor-specif-
ic tRNA profiles that effectively improve classification
of oncogenic signatures in samples presenting higher
levels of RNA fragmentation. This illustrates the high
potential of implementing ALL-tRNAseq for the dis-
covery of oncogenic tRNA signatures in human
malignancies.

Materials and methods

Cell culture

SNB-75 and HEK293T were cultured at 37°C in a humidified at-
mosphere containing 5% CO2 in complete Dulbecco’s modified
Eagle medium (DMEM; Sigma Aldrich D5796). All passaging
was performed with trypsin ethylenediaminetetraacetic acid
(EDTA) solution (Sigma Aldrich T3924) according to the manu-
facturer’s instructions.Media were supplemented with 10% fetal
bovine serum (FBS; Thermo Fisher Scientific) and 1% penicillin/
streptomycin. SU-DHL-5 cells were cultured in suspension at
37°C with 5% CO2 in Roswell Park Memorial Institute (RPMI)-
1640 medium (Sigma Aldrich R8758). Medium was supplement-
ed with 10% heat-inactivated fetal bovine serum (FBS; Thermo
Fisher Scientific) and 1% penicillin/streptomycin. hESC line
WA09 from WiCell was maintained in complete TESR-E8 medi-
um (Stem Cell Technologies 05990) supplemented with 1% pen-
icillin/streptomycin on Vitronectin XF-coated (Stem Cell
Technologies 07180) plates. Passaging was performedwith gentle
cell dissociation reagent (Stem Cell Technologies 100-0485). Me-
dia were supplemented with 10 µM ROCK inhibitor (RI; Selleck-
Chem S1049) after passaging. All cell lines were subjected to

mycoplasma testing and only used for experiments when con-
firmed negative.

Differentiation assay

hESCs were exposed to all-trans retinoic acid (ATRA in DMSO;
MP Biomedicals 02190269.6) at a final concentration of 1 µM in
plain TESR-E8 medium supplemented with 1% penicillin/strep-
tomycin (Thermo Fisher Scientific 15140122). Medium was
changed daily. Cells were harvested inmirVanamiRNA isolation
kit lysis buffer (Ambion AM1560) after 0 d (no ATRA) or 1, 3, and
5 d following ATRA induction. Real-time qPCR was used to
quantify levels of mRNA expression of four selected genes as pre-
viously described in Gingold et al. (2014) and Sagi et al. (2016).
First strand cDNAwas synthesized from 100 ng of total RNA us-
ing SuperScript III RT (Thermo Fisher Scientific 18080093) and
random hexamers according to the manufacturer’s instructions.
qPCR was performed using SYBR Green PCR master mix (Ap-
plied Biosystems 10187094) on an Applied Biosystems 7500
real-time PCR system (primer sequences are listed in Supplemen-
tal Table S1).

Clinical samples

Surgical tissue samples of diffuse large B-cell lymphoma (DLBCL;
n=15) and glioblastoma (GBM; n =18) were obtained from the
Department of Pathology of AmsterdamUniversityMedical Cen-
ter, Vrije Universiteit, in Amsterdam, and HemoBase Registry
(Kibbelaar et al. 2017) in Leeuwarden, theNetherlands. Complete
data on clinical features at presentation, treatment, and outcome
are available for all samples. As control tissues, reactive lymph
node tissue samples (n= 3) and histologically normal brain tissue
samples (n= 3) were included. All material and clinical data have
been fully anonymized, and the studywas performed according to
the guidelines of the Helsinki Declaration. Approval of the Med-
ical Ethical Committee at Amsterdam University Medical Cen-
ter has been obtained for the use of all included tissues and
related clinical data.

RNA isolation

Total RNA of cell lines and tissue samples was extracted using
mirVana isolation kit (Ambion AM1560). All tissue samples
were kept on dry ice during the initial processing steps. Approxi-
mately 30–80 mg of freshly frozen tissue was cut on a cryostat
at −20°C and directly disrupted by TissueRuptor II (Qiagen
9002756) with TissueRuptor disposable probes (Qiagen
990890) in mirVana miRNA isolation kit lysis buffer (Ambion
AM1560). First, total RNA isolation was performed in an RN-
ase-free environment, followed by on-column RNase-free DNase
treatment (Qiagen 79254). Deacylationwas then performed by in-
cubating total RNA in 0.1 M Tris-HCL (pH 9.0) and 1 mM EDTA
for 30 min at 37°C (Blanco et al. 2014). After ethanol precipita-
tion, total RNA was resuspended in RNase-free H2O. Quality
and integrity of all RNA samples were measured on a Nanodro-
pOne (Thermo Fisher Scientific) and Agilent 2100 bioanalyzer
(Agilent Technologies) using an RNA 6000 Nano kit (Agilent
Technologies 5067-1511).

Expression and purification of AlkB WT and mutant enzymes

Expression and purificationmethodswere adapted fromprevious-
ly published methods (Cozen et al. 2015; Zheng et al. 2015; Hra-
beta-Robinson et al. 2017). pET30a-AlkB-WT and pET30a-AlkB-
D135S, a truncated AlkB with deletion of the N-terminal 11
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amino acids, were a gift from Tao Pan (Addgene plasmid #79050
[http://n2t.net/addgene:79050; RRID: Addgene_79050] and
#79051 [http://n2t.net/addgene:79051; RRID: Addgene_79051],
respectively). AlkB in pET30a vector was overexpressed in E.
coli BL21 (DE3) pLysS, and cells were grown in 12 L of LBmedium
at 37°C in the presence of kanamycin until an OD600 of 0.5 was
reached. Cells were then incubated for 4 h with 1 mM IPTG
(Sigma Aldrich I1312) at 30°C to express the His-3C-AlkB fusion
protein. Cells were collected and pelleted at 4600g for 20min and
resuspended in sonication buffer (20 mMHEPES-KOH at pH 7.5,
5% glycerol, 1 M NaCl, 2 mM β-mercaptoethanol, 2 µg/mL leu-
peptin, 1 µg/mL pepstatin, 1 mM Pefabloc). Cells were lysed by
sonication eight times for 10 sec with 1 min rest and then centri-
fuged at 17,420g for 20 min. The soluble proteins were affinity-
purified onTalonmetal affinity resin (TakaraCL635502), concen-
trated to 0.5 mL, and then further purified by size exclusion chro-
matography over a HiLoad 16/60 Superdex 200 prepgrade column
(GEHealthcare Life Sciences 28-9893-35) using an Ultimate 3000
high-performance liquid chromatography (HPLC) system (Dio-
nex). The system was composed of an LPG-3400SD pump, a
WPS-3000 autosampler, a VWD-3100 UV detector, and an AFC-
3000 fraction collector. The column was equilibrated with five
column volumes (CVs) of elution buffer with an isocratic flow
rate of 1mL/min. Protein aggregates were removed by centrifuga-
tion on a centrifugal filter unit with 0.22 µM Durapore PVDF
membrane (Millipore Sigma UFC30GV25), and 0.5 mL of sample
was injected. Detection was carried out at 280 nm, and collected
fraction size was 3 mL. Collected fractions were pooled, concen-
trated, and then stored in buffer containing 20 mM Tris-HCl (pH
8.0), 50% glycerol, 0.2 M NaCl, and 2 mM dithiothreitol at −80°
C. All protein purification steps were performed at 4°C. Protein
concentration was measured by Pierce BCA protein assay kit
(Thermo Fisher 23227). Yield and protein quality were further as-
sessed by SDS-PAGE and Coomassie staining.

Demethylation reaction

Demethylation reactionwas adapted from a previously published
method (Hrabeta-Robinson et al. 2017) with some additional
modifications (Zhou et al. 2019) and was performed on total
RNAs. Briefly, 2 µg of total RNA was treated with 19 µM AlkB
consisting of 8.5 µM AlkB WT and 10.5 µM AlkB-D135S mutant
(ratio adapted from a previously published method) (Zheng et al.
2015), 10 mM KCl, 2 mM MgCl2, 283 µM freshly prepared
(NH4)2Fe(SO4)2, 6H2O, 0.3 mM 2-ketoglutarate, 2 mM freshly
made L-ascorbic acid, 40 U of RNase inhibitor, and 50 mM
MES buffer (pH 5.0) (Fisher Scientific 15474529) in a total volume
of 40 µL. Reactions were incubated for 2 h at 25°C and quenched
with 5 mM EDTA (Ambion AM9260). RNAwas recovered by an
oligo Clean&Concentrator-5 kit (Zymo Research D4060) and
eluted in 6 µL of nuclease-free water (Ambion AM9937). RNA
quality and integrity were assessed by Agilent 2100 bioanalyzer
(Agilent Technologies) using an RNA 6000 Nano kit (Agilent
Technologies 5067-1511).

Small RNA-seq library preparation

Demethylated total RNA was used for each cell line and tissue
sample. For sequencing libraries of ALL-tRNAseq, a 5′ phosphor-
ylated 3′ end adapter with four randomized nucleotides at the 5′

end and a 3′ blocking group (3C Spacer; IDT 3SpC3) was adeny-
lated by Mth RNA ligase (NEB M2611A) and then ligated to the
RNA template using a truncated KQ T4 RNA ligase 2 (NEB
M0373L) for 1 h at 25°C in the presence of 20% PEG8000
(NEB). Ligated RNA was gel-purified and size-fractionated on a

Novex TBE–urea 10% denaturing polyacrylamide gel (Invitrogen
EC68752BOX) to enrich small RNA molecules using two FAM
markers of 25 and 39 nt (from a previously published protocol)
(Kim et al. 2019) and the low-range ssRNA ladder (NEB
N0364S). Gels were stained using 1× SYBR Gold nucleic acid
stain (Thermo Fisher Scientific S11494) in 1× TBE for 10 min,
and 3′adapter-ligated RNA in size range of 39–150 nt was excised
on a blue-light transilluminator. RNA was recovered from ex-
cised polyacrylamide gel pieces by crushing the gel fragments
and soaking them in 0.3 M NaCl overnight at 4°C, followed by
ethanol precipitation. Subsequently, 5′ adapters with four termi-
nal randomized nucleotides at the 3′ end were ligated using T4
RNA ligase (NEB M0204S). Ligation was performed for 1 h at
25°C in the presence of 20% PEG8000. Thereafter, reverse tran-
scription was performed for 1 h at 50°C or 42°C using SuperScript
III (Invitrogen 18080093) or MarathonRT (Kerafast EYU007), re-
spectively. Reactions were terminated by incubation with 0.25
M NaOH for 3 min at 95°C and then neutralized with 0.25 M
HCl. Next, cDNA was purified using MinElute reaction cleanup
kit (Qiagen 28006), and PCRwas amplified using Phusion high-fi-
delity PCRmaster mix (Fisher Scientific F531L) for 12 cycles of 5
sec at 98°C, 10 sec at 62°C, and 10 sec at 72°C. Primers, random-
ized adapters, Illumina Multiplex, and barcode primers were ob-
tained from IDT and are listed in Supplemental Table S1. PCR
products were equimolarly pooled for cluster generation without
additional size selection. The quality of the sequence libraries
was validated using Agilent high-sensitivity DNA kit (Agilent
Technologies), and a fragment analyzer system (Agilent Technol-
ogies) was used to check size, purity, and concentration. Sequenc-
ing of ALL-tRNAseq was performed as single-end reads for 150
cycles on a NovaSeq 6000 at GenomeScan.

Sequencing analysis

Raw Illumina reads were first preprocessed using sRNAbench
(Aparicio-Puerta et al. 2019, 2022) for adapter removal and quality
control. The standard sRNAbench mapping step using bowtie
was extended with a second round of Smith–Waterman align-
ment implemented using BioJava, which further allows gaps
and/or mismatches, to recover additional tRNA-derived reads.
Reference libraries were obtained from GtRNAdb 2.0 (Homo sa-
piensGRCh38/hg38) for nuclear tRNAs andmitotRNAdb formi-
tochondrial tRNAs. tRNA expression was profiled at different
levels: tRNA gene level, anticodon level, and amino acid level.
Reads containing the 5′ end of the complete sequence with
CCA ending (allowing 1-nt truncation) were classified as mature
full-length transcripts.
To compare ALL-tRNAseq libraries with previously published

methods, we downloaded publicly available data sets from the
NCBI Gene Expression Omnibus repository for DM-tRNA-seq
(GSE66550) (Zheng et al. 2015) and mim-tRNAseq (GSE152621)
(Behrens et al. 2021) that we processed using the same pipeline de-
scribed above. All raw sequencing files generated for this study are
available at GEO accession GSE186736.

Northern blotting

Northern blots were largely performed as described by Gerber
et al. (2020) with the following modifications. Total RNAwas re-
solved on a 10% urea–polyacrylamide gel. After electrophoresis,
RNAs were transferred onto a Hybond N+ membrane (Thermo
Fisher RPN2020B) for 1 h at 30 V using a wet electrophoretic
transfer system. RNAs were UV cross-linked (0.24 J on the
RNA side and 0.12 J on the other side of the membrane). Prehy-
bridization was performed in ULTRAhyb oligo hybridization
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buffer (Thermo Fisher AM8663) for 1 h at 42°C with gentle agita-
tion. Hybridization was then performed with 50 nM biotinylated
oligonucleotide probes overnight at 37°C. Membranes were sub-
sequently washed twice for 10 min with 5× SSC and 0.5% SDS
at room temperature and then blocked for 15 min with 2× SSC,
0.5% SDS, and 3% BSA at room temperature. Membranes were
then incubated with streptavidin-HRP (1:40,000; Thermo Fisher
N100) in 2× SSC with 3% BSA and 0.5% SDS for 30 min. Mem-
branes were subsequently washed with ABS buffer (10% BSA,
1% Triton X-100 in 2× SSC) and washed twice for 5 min with
2× SSC. Membranes were rinsed briefly with PBS prior to expo-
sure using SuperSignal WestPico Plus ECL-based detection
(Thermo Fisher 34580). Finally, membranes were exposed on a
Uvitec chemiluminescence imaging system. Band intensity was
quantified using ImageJ. Oligonucleotide sequences are listed in
Supplemental Table S1.

Primer extension analysis

Demethylated total RNA (2 µg) was used for each primer extension
condition. Three biotin-labeled primers were heated to 80°C to-
gether with demethylated RNA and dNTPs in RT buffer and
slowly ramped down to 42°C. At 42°C, MarathonRT was added
and incubated for 1 h to allow primer extension. Reactions were
terminated by incubation with 0.25 M NaOH for 3 min at 95°C
and then neutralized with 0.25 M HCl. Next, cDNA was purified
using MinElute reaction cleanup kit (Qiagen 28006) and resolved
on a 10% urea–polyacrylamide gel. After electrophoresis, cDNAs
were visualized using SYBR Gold staining and subsequently trans-
ferred onto a Hybond N+ membrane (Thermo Fisher RPN2020B)
for 1 h at 30 V using a wet electrophoretic transfer system. cDNAs
wereUVcross-linked (0.24 J on theRNAside, and 0.12 J on the oth-
er side of themembrane). Membraneswere blocked for 1 hwith 2×
SSC, 0.5% SDS, and 3% BSA at room temperature. Membranes
were then incubated with streptavidin-HRP (1:40,000; Thermo-
fisher N100) in 2× SSC with 3% BSA and 0.5% SDS for 30 min.
Membranes were subsequently washed with ABS buffer (10%
BSA, 1% Triton X-100 in 2× SSC) and washed twice for 5 min
with 2× SSC. Membranes were rinsed briefly with PBS prior to ex-
posure using SuperSignal WestPico Plus ECL-based detection
(ThermoFisher 34580). Finally,membraneswere exposed onaUvi-
tec chemiluminescence imaging system.

Statistical analysis

RT-qPCR data were normalized to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), cycle threshold (Ct) values were ob-
tained, and ΔΔCt values were calculated to determine relative
abundance and are reported as mean±SD. All expression values
derived from sequencing data presented throughout this work
are expressed as normalized RPM (reads permillion) per reference
library or total mapped reads, as indicated in the figure legends.
We performed statistical analysis (Wilcoxon rank sum test for sig-
nificance) using GraphPad Prism9 software. Pearson correlations
were calculated using the function pearsonr from the scipy pack-
age (v1.8.1). PCA was carried out by means of the prcomp func-
tion in R software (http://www.r-project.org), and visualization
was performed using the factoextra R package. Heat maps were
generated using the clustermap function from the package sea-
born. Samples were clustered using single-linkage clustering im-
plemented in the cluster.hierarchy.linkage method from scipy.
We applied hierarchical clustering using average linkage based
on Euclidean distance.

Data and code availability

The sequencing data reported here have been deposited in NCBI’s
Gene Expression Omnibus under accession number GSE186736.
The ALL-tRNAseq computational pipeline is available at https
://github.com/bioinfoUGR/sRNAtoolbox. All custom scripts for
data visualization are available at https://github.com/sert23/ALL-
tRNAseq. Original blot scans were deposited as a Mendeley data
set and are accessible at http://dx.doi.org/10.17632/ctzn8mf42n.1.
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