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a b s t r a c t

Purpose: Incorporating human behavior in a disease model can explain the oscillations in COVID-19 data 
which occur more rapidly than can be explained by variants alone on college campuses.
Methods: Dampened oscillations emerge by supplementing a simple disease model with a risk assessment 
function, which depends on the current number of infected individuals in the student population and the 
institutional public health policies. After accounting for a rapid disease impulse due to social gatherings, we 
achieve sustained oscillations that follow the trend of 2020/2021 COVID-19 data as reported on the COVID- 
19 dashboards of US post-secondary institutions.
Results: This adjustment to the epidemiological model can provide an intuitive way of understanding rapid 
oscillations based on human risk perception and institutional policies. More risk-averse communities ex
perience lower disease-level equilibria and less oscillations within the system, while communities that are 
less responsive to changes in the number of infected individuals exhibit larger amplitude and frequency of 
the oscillations.
Conclusions: Community risk assessment plays an important role in COVID-19 management in college 
settings. Improving the ability of individuals to rapidly and conservatively respond to changes in com
munity disease levels may help assist in self-regulating these oscillations to levels well below thresholds for 
emergency management.

© 2023 Elsevier Inc. All rights reserved. 

Background

The introduction of oscillations in disease models is a well-stu
died and important topic in public health management. Research 
shows that the infections of COVID-19 examine oscillatory behavior 
over long periods of time due to the development of new variants of 
the virus [1]. Seasonal changes in the environmental conditions lead 
to alterations in the virus stability, the host immune response, and 
the behavior of the susceptible individuals [2]. Therefore, these 
changes lead to oscillatory behavior in COVID-19 data over long 
periods of time.

However, oscillatory behavior also occurs at faster time scales. In 
contrast with the oscillations that occur over long time periods, this 
oscillatory behavior cannot be attributed to changing conditions or 
the development of new variants of the virus. Bukhari et al. [3] found 
that data for the COVID-19 daily reported cases and the overall 

positivity rate in Germany and Italy exhibit dampened oscillations 
with a frequency of 1 week. They hypothesize that these oscillations 
arise either due to differences in testing frequencies over the time 
span of a week or due to social factors. They prompt the scientific 
community to explore what could cause the observed oscillatory 
behavior.

Common methods for inducing periodicity in compartmental 
disease models account for processes that act on longer time scales. 
For example, including population dynamics (e.g., birth and death 
rates) allows for the consistent introduction of a new susceptible 
population—newborns [4]. Some models produce a yearly oscillation 
by imposing a seasonal forcing term to account for increased 
transmission as a result of high mixing in schools [5]. Oscillations 
could also arise due to a new strain of the disease, causing a peak in 
the data [6], in systems where the total population changes [7], or 
due to changes in testing patterns.

We present the COVID-19 data [8] from the 2020/2021 academic 
year at Tufts University (see Fig. 1), and we discuss the short-term 
oscillations that arise in the data for the infected. Then, we in
corporate behavioral and social characteristics, specifically in
dividual risk assessment, in a mathematical model. This results in 
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dampened oscillations at a faster time scale. We then introduce a 
time-dependent impulse in our model, mimicking one-time large 
social gatherings, which results in sustained oscillations.

Methods

Data analysis

We used data from Dr. Andrew Kennedy at Bates College, who 
collected data from several post-secondary institutions in the 
northeastern United States and posted the results daily to Twitter. 
These college campuses, during the 2020–2021 academic year, were 
testing all students twice per week and posting those results on their 
college’s COVID-19 reporting dashboard [9]. Employees were also 
tested, but they are not included in our data. Note that the data for 
the winter breaks are from a much smaller subset of the population 
that did not leave campus.

The highly residential colleges had rapid spiking and decline [9], 
presumably due to school holidays and subsequent rapid lockdowns. 
However, one of these institutions, Tufts University, experienced 
more regular oscillations. Notably, Tufts has a larger proportion of 
commuter students and has a large population size, reducing sto
chastic effects at small population sizes. The large peaks in the data 
for COVID-19 infected at Tufts are about 2 months apart; however, 
each peak is also followed by a smaller peak. So within a particular 
large period oscillation window, like Bukhari et al. [3], we observe 
dampened oscillations. In addition, Tufts University had regular 
weekly testing times, so these oscillations could not be due to dif
ferences in testing frequencies over the span of a week.

Epidemiological model

In order to understand the mechanisms behind high-frequency os
cillatory behavior in COVID-19 data, we make the following simplifying 
assumptions to model disease dynamics and mimic the public health 
scenario at the small colleges from which we obtained data: 

• Vaccines have not been introduced.

• Exposed individuals cannot transmit the disease until they would 
test positive as “Infected” and this process takes an average of 4 days.

• Infected individuals can transmit the disease for 14 days, but the 
rate of transmission is low due to quarantine procedures.

• Immunity after exposure is on average 90 days.

• There is no change in population size, which implies there is no 
death due to COVID-19 or other circumstances. We use the 
published enrollment numbers to infer population size.

• Populations are well mixed.

We use the Kermack and McKendrick SIR model [10], but with an 
exposed class (see Fig. 2). All susceptible individuals (S) move to the 
exposed class (E) when they have come into contact with an infected 
individual. COVID-19 takes time to build up enough viral load to 
transmit at which point, exposed individuals move to the infected (I) 
class, and can now transmit the disease. They will also test positive. 
Once they become healthy again, they move to the recovered (R) 
class. Recovered individuals move back to the susceptible class once 
their immunity wanes.

The parameters m, p, q in Figure 2 represent the rates at which 
individuals move between the different compartments of the model 
and β is the probability of disease transmission per contact. Ad
ditionally, f(I; r, Cmax) represents the risk assessment function that 
creates the oscillations in our model and we are going to discuss this 
in the Incorporating human behavior: Risk assessment subsection. The 
system of ordinary differential equations that represents the 
movement between the classes in the SEIR model in Figure 2(a) is:
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This is a closed system (i.e., there are no birth or death rates 
incorporated in the model), as the right-hand side of the differential 
equations above sums up to zero.

Incorporating human behavior: Risk assessment

People change their behavior as the number of infected in
dividuals in the community increases [11] and may begin practicing 
more preventative measures such as wearing masks and reducing 

Fig. 1. COVID-19 data for Tufts University during the academic 2020/2021 year. 
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close interactions. Likewise, as reports of infected cases drop, we 
expect individuals to engage again in higher-risk interactions. In the 
context of a small college campus, this may include interacting with 
more people, discontinuing any non-mandatory mask use, or par
taking in unmasked gatherings around food and drinks. Before 
testing was widely available, the campuses we analyzed had privi
leged access to frequent and reliable information about their own 
infection status as well as census information about their commu
nities’ overall status.

In order to model this response, we conceptualize that a person 
observing lower COVID-19 rates would reduce mitigation measures. 
For modeling purposes, this means that as infection rates decrease, 
the probability that an interaction between an infected and a sus
ceptible will result in COVID-19 transmission increases. Because we 
do not know whether individuals respond slowly or quickly to daily 
infected case data, we define a function that is parameterized 
around one’s own “perception of risk,” r:
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max
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where Cmax is a parameter that indicates the number of cases that 
would prompt institutions to impose a total lockdown (when there 
is no movement between the susceptible and exposed class), and I is 
the number of infected individuals in the model. Defining Cmax as a 
total lockdown parameter is possible because we work with data 
from a relatively small private institution, but this might not be 
possible for many larger organizations. Additionally, the risk as
sessment function f(I; r, Cmax) is designed to take values between 
zero and one. Thus, it regulates the flow of individuals from the 
susceptible to the exposed class.

The parameter r represents the risk perception of the community. 
It can take any real positive value, as negative values of r would 
cause the risk assessment function to go out of its zero-to-one range. 
If we have a community with low-risk perception (r  <  1, green in 
Fig. 2), then they do not change behaviors quickly as cases rise. In 
risk-averse communities (r  >  1, blue and purple in Fig. 2)—even a 

small number of infected individuals leads to a fast reduction in the 
number of interactions and increased precautionary measures. In 
highly risk-averse populations (large r), even the smallest possibility 
of infection causes individuals to increase the practice of precau
tionary measures.

Linking behavior and disease introduction

We notice that the data for the infected class peaked during 
Halloween in almost all institutions. Family gatherings or holidays 
also may cause students to mix with off-campus individuals. Such 
events are also often unmasked and involve eating and drinking 
indoors, carrying a high risk of transmission. Thus, these events 
produce a one-time batch of new infections.

In order to represent this scenario with our model, we add a 
periodic impulse to the infected class. After holidays such as 
Halloween that induce social gatherings, we notice peaks in the data. 
We mimic this by modifying the parameters in the ordinary differ
ential equation system in Equation (1) to have a temporarily 
heightened per capita transmission rate β, or a periodic impulse that 
creates the sustained oscillations in Figure 3(b). We also temporarily 
decrease m so that those infected with COVID do not artificially skip 
the exposed state because the infections have jumped. However, we 
maintain the recovery rate =p 1

14
and immunity rate =q 1

90
for 2 

days. This process is repeated approximately every 60 days. Thus, we 
obtain periodic increases in the fit for infected. The code that gen
erates all the figures and the impulse function is available at Ref. [9].

This impulse can be repeated at any time the user wishes, but we 
chose to utilize a regular periodic impulse in this paper to illustrate 
that this model was capable of a stable periodic response from a 
mathematical perspective.

Results

The risk-assessment SEIR model produces well-defined dam
pened oscillations (Fig. 2), as observed by Bukhari et al. [3]. We also 

Fig. 2. Panel (a): Compartmental Susceptible-Exposed-Infected-Removed (SEIR) model representing the movement between the classes for the COVID-19 spread. Panel (b): The 
risk assessment function with changes in the risk assessment parameter and keeping Cmax = 20. Panel (c): Curve for infected, while changing the risk assessment parameter in the 
risk assessment function and keeping all the other parameters constant with Cmax = 20.
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see that the level of community risk assessment affects the fre
quency and amplitude of the oscillations.

The more risk-averse a community is, the lower the disease level 
maintained in the system and the less it oscillates (both in frequency 
and amplitude). This behavioral characteristic helps the system 
maintain equilibrium below the Cmax level that might trigger a 
lockdown. Thus, human behaviors can help mitigate the need for 
enacting a lockdown policy. The dependency of the oscillatory be
havior is illustrated in Figure 3.

In communities that are less responsive to case change counts 
(see Fig. 3a), we not only observe larger amplitude and frequency of 
oscillations but also a stabilized “viral load” above the institution’s 
own Cmax policy level. This highlights the need for an overall lock
down policy in this circumstance, as some ecosystems may not be 
able to rely on self-regulation alone.

Additionally, changes in the Cmax dictate the value at which the 
oscillations stabilize for low values of risk reception, r, as shown in 
Figure 3a. However, in communities with high-risk perception, the 
number of infected individuals does not reach Cmax so they stabilize 
at lower values (see Fig. 3b).

Thus, we can account for behaviors that can introduce new dis
eases into the system. Our model exhibits sustained oscillations of 
major peaks (Fig. 4), similar to that observed at Tufts University for 
the 2020–2021 academic year.

Discussion

Oscillations in the infections for COVID-19 exist both over long 
periods of time and at faster time scales. As Bukhari et al. [3] discuss, 
models that produce oscillations as a result of incorporating beha
vioral characteristics in the system are important for the explanation 
of short-term periodicity in COVID-19 data.

The current methods used for introducing periodicity in disease 
models require either a change in the infectiousness of the disease 
over time or rapid changes in the number of susceptible individuals. 
However, these methods do not explain the short-period oscillations 
Bukhari et al. discuss, nor do they take into account human behavior 
as a factor.

Human behavior can play an important role in the spread of in
fectious diseases. Fenichel et al. [11] find that adaptive human be
havior impacts the course of epidemics and that future research in 
disease modeling should acknowledge the effect that behavioral 
characteristics have on the development of infectious diseases. 

Individual decision-making driving a combination of community 
policy and self-regulation in response to COVID-19, modeled in 
Agusto et al. [12] has been found to generate oscillations.

We argue that one likely and explanatory reason for short-term 
oscillations in COVID-19 disease is due to the risk assessment be
havior of susceptible individuals and social gatherings. Our model 
provides an epidemiological explanation for the observations of 
Bukhari et al. [3] and creates a structure that can be used in future 
research on short-term oscillations in disease models.

Unlike other studies that discuss oscillations in disease models 
[4,5,7], we manage to introduce dampened oscillations in a closed 
system with no stochasticity, without oscillatory forcing of the 
transmission rate. With periodic impulses due to social gatherings, 
the model predicts recurrent disease spiking. This is similar to pat
terns of COVID-19 data at a variety of small liberal arts colleges in 
New England. While our data exclude winter and summer break, in 
this study we do not use statistical techniques to fit data to our 
model, but rather model the overall patterns. Therefore, the effect of 
missing data on our findings is minimal.

The two parameters in the risk assessment function play an 
important part in the nature of the dampened oscillations that arise. 
As we increase the risk assessment parameter, r, the amplitude of 
the initial peak and the frequency of the subsequent oscillations 
decrease. Similarly, as lockdown ceiling Cmax decreases, COVID dis
ease stabilizes at lower rates. We define Cmax as a parameter that 
would prompt the institution into a full lockdown because this was 
one of the main tools that institutions used to manage the COVID-19 
pandemic at the time the data for this study was collected. Full 
lockdowns were implemented even in the spring of 2022 [13], 2 
years after the pandemic started, and are a possibility in future 
epidemiological outbreaks as well.

One of the main implications of this study is highlighting the im
portance of human behavior and risk assessment in disease modeling for 
public health. Figure 3a illustrates a hypothetical campus that depends 
on lockdowns to manage the disease. This is because individuals are not 
quick to adjust their contact behavior despite increasing disease le
vels—either because they lack the information to do so or for other 
reasons [7]. However, lockdowns are difficult to implement in many 
settings and are ideally only a last resort.

We find that one can manage disease oscillations when in
dividuals in the community have information to monitor their risk 
and if their perception of risk is conservative. Figure 3b relies on the 
same lockdown level, but individuals are responding more rapidly 

Fig. 3. Oscillatory behavior we obtain from the SEIR model with introduced risk assessment and impulses and a Cmax value of 35. Panel (a): Low risk perception (r = 0.5) Panel (b): 
High risk perception (r = 5).
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and conservatively to an impulse of disease, self-regulating disease 
levels to well below the lockdown threshold. Thus, understanding 
the behavior of the community is essential to institutional policy 
implementations.

Conclusion

This study reviews oscillations in disease modeling with an 
emphasis on COVID-19. Our tractable models build on prior work by 
introducing social behavior, such as social gathering and response to 
risk assessment. We show these models predict similar patterns to 
those at college campuses, which had extensive student testing data. 
We find that we are able to reproduce short-time scale oscillations 
discussed by Bukhari et al. [3]. We also find that communities with 
reliable disease dashboard information and which are risk-averse 
can self-regulate below emergency levels. However, communities 
that are less responsive to such dashboard information or may not 
have reliable information are primarily regulated through emer
gency quarantine policies.
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