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ABSTRACT

Skeletal muscle is one of the leading frameworks of the musculo-skeletal system, which works in syn-
ergy with the bones. Long skeletal muscles provide stability and mobility to the human body and are
primarily composed of proteins. Conversely, improper functioning of various skeletal muscles leads to
diseases and disorders, namely, age-related muscle disorder called sarcopenia, a group of genetic muscle
disorders such as muscular dystrophies, and severe muscle wasting in cancer known as cachexia.
However, skeletal muscle has an excellent ability to undergo hypertrophy and enhanced functioning
during sustained exercise over time. Indeed, these processes of skeletal muscle regeneration/hypertro-
phy, as well as degeneration and atrophy, involve an interplay of various signaling pathways. Myostatin is
one such chemokine/myokine with a significant contribution to muscle regeneration or atrophy in
multiple conditions. In this review, we try to put together the role and regulation of myostatin as a
function of muscle regeneration extrapolated to multiple aspects of its molecular functions.
© 2023 The Korean Society of Osteoporosis. Publishing services by Elsevier B.V. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The most abundant tissue in the human body is the skeletal
muscle [1]. It is a key site for metabolic regulation and maintaining
the homeostasis of the body. The dynamicity of the muscle mass is
maintained by a fine balance between protein synthesis and
degradation. Loss of muscle mass is especially observed after
musculoskeletal trauma, damages imparted from neuromuscular
disorders which cause denervation [2], chemical toxicity such as
fluorosis [3], and also as a catabolic effect in conditions like diabetes
[4] and cancer [5]. This loss of muscle mass is governed primarily by
the Akt/mTOR pathway, which controls protein synthesis and
degradation (Fig. 1) as a function of muscle metabolic activities [6].

Over the years, myostatin, a member of the TGF-f (transforming
growth factor—f) superfamily, has gained notice as a key regulator
for maintaining muscle mass. An overexpression of this protein
leads to muscle atrophy, whereas knockout studies have reported
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muscle overgrowth. The crosstalk between myostatin and the
intracellular AKT signaling pathway validates and extends the
contributions of myostatin to protein degradation and synthesis.
Considering the profound biological significance of myostatin,
several studies have investigated the role of myostatin in regulation
of cellular response.

2. Role of myostatin in cachexia

Cachexia refers to a multifactorial syndrome that accounts for
weight loss due to accelerated loss of skeletal muscle mass. The
quality of life can be prognosed by these very indicators, i.e., muscle
atrophy and weight loss. Moreover, cachexia is exhibited by more
than 50% of patients in the advanced stages of cancer [7]. Since
myostatin is central to muscle mass regulation, researchers have
explored this particular myokine as a probable therapeutic inter-
vention. Takayama, Kentaro et al. [8] identified a pro-domain
peptide, peptide-2 of myostatin precursor, which inhibits mature
myostatin. This peptide-2, when injected intramuscularly, prolongs
survival in the cancer cachexia mice model [9]. Natural compounds
have also shown inhibitory effects on myostatin. Magnolol, a nat-
ural compound obtained from Magnolia officinalis, containing anti-
inflammatory and anti-oxidant activity, has been identified to
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Fig. 1. The overall role of myostatin in protein degradation and synthesis in skeletal muscle. Myostatin signalling is one of the fundamental signalling transduction pathways in
skeletal muscle, which dictates the balance between protein synthesis and degradation thereby controlling conditions of atrophy and hypertrophy. Myostatin activates the Smad-
mediated signalling which triggers the expression of various atrophy related E3-Ubiquitin ligases like Atrogin1 and MuRF1. On the other hand, myostatin blocks the transcription of
genes related to myogenesis i.e., Pax7, MyoD, MyoG and MyHC. FoxO is a family of transcription factor which triggers the Smad-mediated expression of atrophy genes, but this
signalling is blocked when AKT inhibits FoxO and simultaneously activates mTOR to trigger the protein synthesis pathway. MSTN also has significant interactions with miRNA of
various families which results in upregulation and downregulation of myogenesis. (MSTN: Myostatin; ActlIB: ActivinlIB; MAPK: Mitogen Activated Protein Kinase; TAK1: Trans-
forming growth factor-p (TGF-p)-activated kinase 1; MAPKK: Mitogen Activated Protein Kinase Kinase; ERK: extracellular signal-regulated kinases; PIP2: phosphatidylinositol
bisphosphate; PIP3: phosphatidylinositol trisphosphate; PDK1: 3-phosphoinositide-dependent protein kinase-1; PI3K: Phosphoinositide 3-kinases; Akt: Protein kinase B; mTOR:
mammalian target of rapamycin; GSK3: Glycogen synthase kinase-3; elF2: Eukaryotic Initiation Factor 2; IGF1: Insulin-like growth factor 1; 4EBP1: Eukaryotic translation initiation
factor 4E-binding protein 1; elF4E: Eukaryotic Initiation Factor 4E; FoxO: Forkhead box; p70S6K: Ribosomal protein S6 kinase beta-1; MyHC: Myosin Heavy chain; miR: microRNA).

target myostatin and its transducing pathway. It works by
increasing the phosphorylation of FOXO03a, thereby down-
regulating the action of MuRF-1 and Atrogin-1 [10]. Hence, mag-
nolol indirectly reduces the 26S proteasomal protein degradation in
cachexia. Myostatin is associated with inflammation of the joints as
well. Researchers have identified a relationship of elevated serum
myostatin concentration with increased joint inflammation and
reduced muscle mass in rheumatoid arthritis (RA) patients [11].
According to Gonzalez-Ponce et al. [12], concentration of serum
myostatin >17 ng/ml is associated with both myopenia and rheu-
matoid cachexia.

Therefore, myostatin is a potential clinical biomarker for diag-
nosing rheumatoid cachexia in RA patients. Additionally, further
studies are required in the light of using the peptide-2 as a thera-
peutic approach for patients with cancer cachexia.

3. Association of myostatin with bone inflammation

Muscles and bones are anatomically adjacent to one another and
emerge from a common mesenchymal progenitor during embryo-
genesis. Furthermore, clinical data has revealed that muscle is the
main factor driving the healing of traumatic bone injuries. The
muscle-derived myokines play a crucial role in this process. For
instance, during the early stages of fracture healing, there is an
enhanced expression of myostatin receptors in chondrocytes in the
fracture area, including the type IIB Activin receptor [13]. In addi-
tion to activating the SMAD pathway, myostatin also has been

observed to inhibit the Wnt/B-catenin pathway to modulate bone
formation and regeneration [14].

Rheumatoid arthritis, an autoimmune disease, is characterized
by the profound infiltration of several proinflammatory cytokines
into the synovial fluid. This leads to joint destruction and a loss in
the adjacent muscle mass [15]. According to qPCR and ELISA assays
on human MH7A cells, there is a dose-dependent increase in the IL-
1P expression with myostatin [16]. This indicates a potential role of
myostatin in inflammatory pathways, which can lead to
inflammation-induced loss of muscle mass. Apart from IL-18, TNF-a
also plays a role in the inflammation process initiated by myostatin.
Su, Chen-Ming et al. [17] elucidate the version of the PI3-Akt
pathway which leads to the expression of TNF-a. via the activa-
tion of AP-1 and the activation of c-Jun transcription factor
resulting in the inflammation in the synovium of RA patients. TNF-a.
is a crucial cytokine responsible for bone destruction. Cumulatively,
the number of the bone-forming osteoblasts decrease, while those
of the bone-resorbing osteoclasts increases (Fig. 2) [18]. Another
secreted inflammatory cytokine is IL-17A. This is secreted by
Th17 cells and is associated with the pathogenesis of various
immune-mediated inflammatory diseases like RA and multiple
sclerosis. A study by Fennen, Michelle et al. [19] showed a defi-
ciency of myostatin in arthritic mice reduced the process of Th17
recruitment to the joint sites, thereby diminishing the inflamma-
tion effect. Mechanistically, myostatin deficiency leads to reduced
expression of the chemokine CCL20 which reduces the Th17
recruitment to the inflamed site in RA. Finally, alleviating
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Fig. 2. Myostatin acts as a crucial myokine in the TNF-o. mediated inflammation of the bones in Rheumatoid Arthritis. Myostatin secreted from skeletal muscle acts as a paracrine
factor on rheumatic synovial fibroblast, triggering the production of TNF-o.. TNF-g, in turn, activates the canonical NF-kp pathway and causes the resorption of bone and activation of
genes responsible for osteoclast differentiation. (MSTN: Myostatin; ActlIB: Activin [IB; PIP3: phosphatidylinositol trisphosphate; AKT: Protein kinase B; AP1: Activator protein 1;
TNFo.: Tumour Necrosis Factor alpha; TNFR: Tumour Necrosis Factor alpha receptor; IKKB: inhibitor of nuclear factor kappa-B kinase subunit beta; NFKB: nuclear factor kappa-B).

inflammation in RA as a response to myostatin signaling has also
been studied using fenofibrate, a PPARa agonist [20]. Fenofibrate
suppresses myostatin expression at mRNA and protein levels along
with 2 prominent skeletal muscle-specific E3-ubiquitin ligase
Atrogin-1 and MuRF-1 to prevent muscle atrophy.

Myostatin also exhibits significant effects on bone-marrow-
derived mesenchymal stem cells (BMSCs). BMSCs from
myostatin-null mice show better osteogenic differentiation than
wild-type mice [21]. On the other hand, myostatin strongly acti-
vates receptor-associated nuclear factor kB ligand (RANKL),
potentiating osteoclast formation in-vitro. Hence, it can be again
concluded the resorption is more than that of the differentiation
[18].

Taking everything into account, inflammation of bones has a
close relationship with the signaling repertoire of the muscles as
they are adjacently located, and myostatin becomes a key player in
this crosstalk. Therefore, the development of myostatin-targeted
therapeutic approaches can be beneficial for both muscle and
bone regenerative strategies.

4. Regulation of myogenesis by miRNA-MSTN crosstalk

MicroRNAs (miRNAs) are small non-coding RNAs that are
evolutionarily conserved [22]. From the discovery of the first
miRNA (lin-4) in C. elegans, researchers have put substantial effort
into studying the various miRNAs, which eventually indicated a
broader phenomenon. More than 1900 miRNAs are identified in the
human genome [23], which target mammalian mRNA by negatively
regulating post-transcriptional mechanisms.

MicroRNAs (miRNAs) have emerged as critical regulators in

many cellular processes, including proliferation and differentiation,
cellular apoptosis, and determination of cell fate. Studies have also
shown that miRNA plays a significant role in muscle stem cell
(satellite cells) homeostasis [24] and also modulates the develop-
ment of skeletal muscle [25]. It has been well established that TGF-
B plays a role in regulating miRNA gene expression in skeletal
muscles [26]. Hence, it is conceivable that myostatin being a
member of the TGF-B superfamily, may regulate skeletal muscle
metabolism by fine-tuning the expressions of various miRNAs.
According to Wu et al. [27], miR-431, which is predominantly
expressed in skeletal muscles, is particularly downregulated by
myostatin. This aligns with the observation that miR-431 directly
targets Pax7 and promotes self-renewal of the satellite cells [28].
MiR27a is a member of the miR27 family. Chen, Xiaoling et al. [29]
demonstrated that mature miR-27a gets upregulated in differen-
tiated C2C12 cells compared to undifferentiated ones. Along with
this, myostatin is observed to have reduced expression [30]. This is
in accordance with the fact that myostatin is a bonafide target of
miR27a. Another microRNA, miR-27b-3p, which again belongs to
the miR-27 family, has been identified as a potential interactor for
myostatin [31]. Zhang, Genxi et al. [32], found that the seed
sequence of miR-27b-3p can interact with the 3’UTR region of the
myostatin gene. This was confirmed by reduced protein and mRNA
expressions of myostatin in overexpressed miR27b-3p cells [33].
Therefore, considering that miR27b-3p negatively regulates myo-
statin, it is also to be considered that miR27b-3p over-expression
can lead to an increase in bone strength thereby reducing the effect
of RA discussed in the previous section.

The role of miRNAs has been substantially studied for various
processes, including their role in muscle maintenance and
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homeostasis considering the regulation of myostatin as a critical
factor. Since, myostatin heavily determines the fine balance be-
tween the loss and maintenance of muscle mass through its
downstream signal transduction, the miRNA-myostatin in-
teractions can pave way to therapeutic approaches, which are
apparent in this significant crosstalk.

5. Involvement of myostatin in muscular dystrophy

Muscular dystrophies are a group of disorders which cause
progressive muscle mass loss or atrophy [34]. Since myostatin is a
myokine that triggers reduction of protein synthesis, it is a potent
factor that works in the progressive atrophy. As the muscle mass
loss is triggered due to injuries or dystrophy-associated-stress, as a
protective measure, the satellite cells/muscle stem cells are acti-
vated. To bring about regeneration of the muscle tissue, it has been
observed that IRE1a RNase is activated which degrades the myo-
statin mRNA and as a result, the growth and differentiation sig-
nalling are activated [35].

Becker muscular dystrophy (BMD) is an X-linked recessive dis-
order with a prevalence of 0.1—0.2 in Asia, 0.01 in South Africa, and
0.1 to 0.7 in European countries [36]. This genetic disorder is caused
due to mutations in the DMD gene which codes for the muscle-
specific dystrophin protein. In a clinical study it was observed
that the levels of myostatin in steroid-treated BMD patients was
low compared to other BDM patients. It was also observed that the
levels of follistatin and myostatin were compromised although the
patients presented advanced muscle atrophy [37]. Furthermore, in
myotonic dystrophy type I (DM1) which is an autosomal dominant
progressive muscle loss disorder, myostatin and myomiRNAs have
been observed to be reduced after physical rehabilitation indicating
the functional role of myostatin in dystrophic condition [38].

Finally, it is subjected to evaluation whether myostatin inhibi-
tion can alleviate the effects of the muscular dystrophy phenome-
non. Although, in some cases it may have a beneficial effect, but
alternatively, in other cases it might show no effect. This is evident
from various clinical trials as well [39]. Hence, this area can be
further investigated for better knowledge.

6. Myostatin inhibitors and activators in muscle disorders

Over the years, multiple strategies have been implemented to

Table 1
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mitigate the myostatin effects in muscle diseases (Table 1). These
include the administration of activin receptor blockers, myostatin-
neutralizing antibodies and pro-peptide, and gene transfer
[40—42]. However, these strategies are unequal, and the extent of
myostatin inhibition varies across strategies. Among these,
neutralizing antibodies and pro-peptide demonstrate high speci-
ficity for myostatin inhibition, but other strategies are less
discerning. However, the off-target effects of myostatin inhibition
are generally positive and include the attenuation of age-associated
alterations in several tissues [40]. For example, deletion or inacti-
vation of myostatin gene improves bone mineral density and car-
diac function in sarcopenic mice [43]. Additionally, these mice
demonstrate resistance to diet-induced obesity, hyperlipidemia,
and inflammatory infiltrates in body tissues [43—45]. However, the
literature is inconsistent on this notion, and adverse effects of
myostatin inhibition have also been reported in clinical trials
[46,47]. In the following section, we will discuss the clinical trials
investigating the effects of myostatin blockage in different muscle-
wasting conditions (Fig. 3).

Stamulumab and Domagrozumab were among the earliest
myostatin inhibitors tested in clinical trials. Both antibodies
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Fig. 3. The clinical interventions pertaining to activators and inhibitors of myostatin.
The figure illustrates different therapeutic interventions, which are currently being
worked upon to regulate activation and inhibition of myostatin and finetune sarco-
meric protein synthesis and degradation.

An overview of the clinical trials of various antibodies targeting myostatin. (SMA; spinal muscular atrophy, BMD; Becker muscular dystrophy, FSHD; Faciocapulohumeral
muscular dystrophy, LGMD; limb-girdle muscular dystrophy, DMD; Duchenne muscular dystrophy, CMT; Charcot-Marie- Tooth disease, sIBM; sporadic inclusion body

myositis).
Name of the Cellular target Experimental condition Remarks and references
drug
SRK-015 Inactive myostatin Mice with sarcopenia, SMA, and dexamethasone. High specificity and reduced cross-reactivity with other TGF-8
Clinical trials in patients with SMA ligands. Phase 2 clinical trials are ongoing [68].
Stamulumab Myostatin Cynomolgus monkeys, mdx mice, phase 1 (healthy) and 2 Discontinued due to lack of efficacy in clinical trials (69).

(BMD, FSHD, and LGMD) clinical trials
Domagrozumab Myostatin
LGMD) clinical trials

AMG-745 Myostatin Phase 1 and 2 (kidney failure and protein energy
malnutrition) clinical trials

BMS-986089 Myostatin Phase 1 (healthy) and 2 (DMD) clinical trials

REGN-1033 Myostatin Phase 1 (healthy) and 2 (sarcopenia) clinical trials

ACE-031 Myostatin, Activin-2 Phase 1 (healthy) and 2 (DMD) clinical trials
receptors, GDF-11

ACE-083 Myostatin, Activin-2 Phase 1 (healthy) and 2 (FSHD, CMT) clinical trials
receptors, GDF-11

FST344 Myostatin, Activin-2 Phase 1 (BMD, sIBM) and 2 (DMD)

receptors, GDF-11

Cynomolgus monkeys, phase 1 (healthy) and 2 (DMD and Trials terminated in phase 2 due to lack of efficacy (69).

Further clinical trials discontinued due to lack of efficacy (70).

Further clinical trials discontinued due to lack of efficacy [40].
No cross-reactivity with other TGF-R ligands. Evaluation of its
efficacy is ongoing (71).

Phase 2 trials were discontinued due to serious side effects,
including bleeding disorders (72).

Further clinical trials discontinued due to lack of efficacy (73).

Evaluation of its efficacy is ongoing. (74).
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showed encouraging results in preclinical trials in monkeys and
mdx mice and showed excellent safety profiles in humans [48—50].
However, these antibodies failed to show significant improvement
in human patients with muscular dystrophies and were subse-
quently removed from further clinical trials [51].

AMG-745 is a myostatin-neutralizing peptide that boosted
muscle mass in mouse models of stroke and chronic renal diseases.
The clinical trials involved patients with sarcopenia, chronic kidney
disease, and protein-energy malnutrition [52,53]. However, the
intravenous injections of AMG-745 failed to increase lean body
mass in these patients, leading to study termination [40].

BMS-986089 is a myostatin-neutralizing adenectin fused with
Fc domain of human IgG. Preliminary clinical trials demonstrated
an adequate safety profile of this molecule in healthy humans.
However, the trial on DMD patients was terminated after the study
failed to reach its primary endpoint [40].

REGN-1033 and SRK-015 are monoclonal anti-myostatin anti-
bodies demonstrating a high specificity to myostatin. Therefore,
they do not cross-react with GDF11, activins, BMPs, and other
members of TGF-B family. Both antibodies demonstrated high ef-
ficacy in preventing muscle loss due to ageing, dexamethasone
therapy, or spinal muscular atrophy in mice models [54,55]. Clinical
trials for REGN-1033 in sarcopenia were completed, but the eval-
uation of the results is still ongoing. SRK-015 is currently being
investigated in phase 2 and phase 3 clinical trials in patients with
spinal muscular atrophy.

Blocking myostatin signalling by antagonizing its receptor is
another therapeutic strategy to boost muscle mass and force.
Several molecules are currently under investigation to enhance
muscle mass by blocking myostatin receptors. For instance, ACE-
031 and ACE-083 are fusion proteins that target ACVR2B re-
ceptors. ACE-031 was first developed and showed encouraging
results in mice by increasing oxidative and glycolytic fibre sizes. It
also enhanced thigh muscle area and systemic lean muscle mass in
post-menopausal women [56,57]. However, it failed to replicate its
safety profile in ambulant boys with DMD, and the trials were
terminated following bleeding disorders [46]. ACE-083 is a modi-
fied form of ACE-031 and is designed to act locally to prevent sys-
temic side effects [58]. In Phase 1 trials, it improved local muscle
mass but not the strength in post-menopausal women [57]. How-
ever, the desired results were not obtained in the subsequent phase
2 trials involving patients with facioscapulohumeral muscular
dystrophy and Charcot-Marie-Tooth disease, leading to study
termination.

BYM-338 is a competitive blocker of activin type 2 receptors and
was approved by FDA for the treatment of sporadic inclusion body
myositis (sSIBM) [59]. Unfortunately, despite encouraging results in
earlier trials, subsequent studies failed to replicate the improve-
ment in grip strength and walking speed leading to the discon-
tinuation of BYM-338 for treating sIBM [60]. The antibody also
showed encouraging efficacy in sarcopenic patients by enhancing
gait speed, thigh muscles volume, and walking distance [61].
However, higher doses of the antibody resulted in unwanted side
effects, including the deaths of two patients [61]. Conversely, the
molecule has shown significant efficacy and safety profile in young
patients with cast immobilization [62] and the elderly with pul-
monary cachexia [63], which warrants further clinical trials.

Intramuscular gene transfer of follistatin 344 (FST344) is a novel
strategy to block myostatin in muscle-wasting conditions. FST344
is delivered via a viral vector and is cleaved to produce an active
FSH315 in circulation. Pre-clinical trials of FST344 in cynomolgus
monkeys demonstrated an improvement in muscle mass and
strength [64]. Likewise, the patients with Becker muscular dys-
trophy and sIBM improved walking speed following the FST344
gene transfer [65,66]. However, further trials are underway, and the
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results are under evaluation.

Altogether, the targeted therapies to suppress myostatin and/or
its activity demonstrate various degrees of efficacy and toxicity. It
may be imperative to clearly distinguish the molecular targets to
improve the treatment efficacy and reduce the unwanted toxic ef-
fects of various therapies. In this context, the use of nanoparticles
may be helpful in ensuring the targeted delivery of therapeutic
molecules [67]. Indeed, the nanoparticles have improved the
treatment efficacy and reduced the drug toxicity of therapeutic
agents in sarcopenia and muscular dystrophies. Further research is
required to improve myostatin specificity and targeted delivery of
therapeutic agents for treating muscle-wasting diseases.

7. Conclusions and future aspects

The role of myostatin is crucial in determining muscle homeo-
stasis, as talked about throughout the article. It is an essential sig-
nalling molecule/myokine that dictates the fine balance between
protein degradation and synthesis in skeletal muscles. Further-
more, the role of myostatin is not only restricted to muscles but can
also be extrapolated to the bones as well. Hence, developing ther-
apeutic interventions to target myostatin can be useful for tackling
both muscle wastage disorders as well as inflammatory diseases of
the bones. This would reduce the incidence of falls and fractures
globally, especially in old age, and pave the way to improve the
health of patients suffering from autoimmune diseases such as RA
or sarcopenia.
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