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ABSTRACT Five siphoviruses were isolated from soil in southeastern Pennsylvania using
Microbacterium foliorum. Bacteriophages NeumannU and Eightball have 25 predicted genes,
Chivey and Hiddenleaf have 87 genes, and GaeCeo has 60 genes. Based on gene content
similarity to sequenced actinobacteriophages, these five phages are distributed across
clusters EA, EE, and EF.

Bacteriophages are an abundant and genetically diverse group of viruses that prey
on bacteria (1). Here we report on the isolation and characterization of five bacterio-

phages isolated usingMicrobacterium foliorum NRRL B-24224.
All bacteriophages were isolated from soil collected in southeastern Pennsylvania

(Table 1), using standard methods (2). Soil samples were suspended in peptone-yeast
extract-calcium (PYCa) liquid medium and incubated with shaking at 250 rpm for 2 h at 30°C.
The wash was then collected by centrifugation and filtered through a 0.22-mm filter, and the
filtrate was plated in PYCa soft agar containing M. foliorum and incubated at 30°C for up to
48 h. Each bacteriophage was purified through three rounds of plating, and plaque morpholo-
gies are presented in Table 1. Bacteriophage morphology was determined by negative-staining
transmission electron microscopy (TEM), and measurements of the capsids and tails were
determined manually for a minimum of three particles. All isolated bacteriophages are
siphoviruses (Table 1).

Genomic DNA was isolated from phage lysates using a ZnCl2 precipitation method
as previously described (2, 3). The DNA was prepared for sequencing using the NEBNext
Ultra II FS kit (New England BioLabs) and sequenced using Illumina MiSeq (v3 reagents),
yielding;200,000 single-end 150-base reads. Untrimmed reads were assembled and then
checked for completeness using Newbler v2.9 (4) and Consed v29 (5), respectively (6). Phages
were assigned to clusters (Table 1) based on at least 35% gene content similarity to sequences
in the actinobacteriophage database, phagesDB (7, 8).

Initial autoannotations of the genome were performed using DNA Master v5.23.6
(http://cobamide2.bio.pitt.edu/computer.htm) embedded with GeneMark v4.28 (9)
and Glimmer v3.02b (10) and then refined using Phage Evidence Collection and
Annotation Network v20211202 (PECAAN [https://pecaan.kbrinsgd.org/index.html]),
Phamerator (11), and Starterator v462 (https://github.com/SEA-PHAGES/starterator).
Transmembrane helices were predicted using TMHMM v2.0 (12), DeepTMHMM
v1.0.11 (13), TOPCONS v2.0 (https://topcons.cbr.su.se/pred/) (14), and SOSUI v1.11
(15). tRNAs were predicted using ARAGORN v1.2.41 (16) and tRNAscanSE v2.0 (17),
and functional assignments were made using BLASTP v2.9 (18) and HHPRED v3.2 (19).
All annotations were performed with default parameters. Genome characteristics of
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each bacteriophage are listed in Table 1, and the bacteriophage morphology is shown
in Fig. 1.

NeumannU and Eightball are highly similar, sharing 99.9964% nucleotide identity,
and contain 25 predicted genes, of which 22 are transcribed rightwards. The 3 genes that
are transcribed leftward (genes 20 to 22) encode DNA-binding proteins. Hiddenleaf and
Chivey also share 99.5% nucleotide identity, with all 84 predicted genes transcribed right-
wards. GaeCeo has 60 predicted genes, including 1 tRNA tRNAPro, with structure, assembly,
and lysis genes occupying the left half of the genome (genes 2 to 27) and transcribed right-
wards and DNA metabolism genes (genes 34 to 51) occupying the right half of the genome
and transcribed leftwards, with the exception of the rightmost gene (gene 60), which is tran-
scribed rightwards. None of the five phages encode identifiable immunity repressor or

FIG 1 Transmission electron micrographs of bacteriophage morphology. (A) Hiddenleaf, cluster EF; (B) Chivey, cluster EF; (C) GaeCeo, cluster EA9; (D) NeumannU,
cluster EE.
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integrase functions, and they are therefore likely to be lytic, consistent with the life cycle of
other phages in these clusters.

Data availability. All genomes, NeumannU, Eightball, Chivey, Hiddenleaf, and GaeCeo,
are available at GenBank under accession no. MT657332, OK040783, MT684591, MN497954,
and MT657343 and Sequence Read Archive (SRA) no. SRX15940725, SRX15940721,
SRX15940720, SRX15940723, and SRX15940722, respectively.
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