
Article
Somatic mutations alter th
e differentiation
outcomes of iPSC-derived neurons
Graphical abstract
Highlights
d Differentiation ability of individual iPSC lines is highly variable

d Somatic mutations’ effects on differentiation outcome were

evaluated in 238 iPSC lines

d Loss-of-function mutations in BCOR compromise the

production of dopaminergic neurons

d Differentiation failure due to BCOR mutations is linked to

increased proliferation
Puigdevall et al., 2023, Cell Genomics 3, 100280
April 12, 2023 ª 2023 The Authors.
https://doi.org/10.1016/j.xgen.2023.100280
Authors

Pau Puigdevall, Julie Jerber,

Petr Danecek, Sergi Castellano,

Helena Kilpinen

Correspondence
pau.puigdevall@helsinki.fi (P.P.),
helena.kilpinen@helsinki.fi (H.K.)

In brief

A remaining challenge in the use of iPSCs

to study neurodevelopment is the

variability of differentiation outcomes.

Puigdevall et al. analyzed 238 iPSC lines

and showed that those with deleterious

somatic mutations in BCOR produce

fewer neurons, proliferate faster, and

undergo major early changes in cell type

composition and gene expression.
ll

mailto:pau.puigdevall@helsinki.fi
mailto:helena.kilpinen@helsinki.fi
https://doi.org/10.1016/j.xgen.2023.100280
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2023.100280&domain=pdf


OPEN ACCESS

ll
Article

Somatic mutations alter the differentiation
outcomes of iPSC-derived neurons
Pau Puigdevall,1,4,* Julie Jerber,2 Petr Danecek,3 Sergi Castellano,1,6 and Helena Kilpinen1,3,4,5,6,7,*
1UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
2Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
3Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
4Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Haartmaninkatu 8, PO Box 63, Helsinki 00014, Finland
5Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, PO Box 65, Helsinki 00014, Finland
6These authors contributed equally
7Lead contact

*Correspondence: pau.puigdevall@helsinki.fi (P.P.), helena.kilpinen@helsinki.fi (H.K.)
https://doi.org/10.1016/j.xgen.2023.100280
SUMMARY
The use of induced pluripotent stem cells (iPSC) as models for development and human disease has enabled
the study of otherwise inaccessible tissues. A remaining challenge in developing reliablemodels is our limited
understanding of the factors driving irregular differentiation of iPSCs, particularly the impact of acquired so-
matic mutations. We leveraged data from a pooled dopaminergic neuron differentiation experiment of 238
iPSC lines profiled with single-cell RNA andwhole-exome sequencing to study how somatic mutations affect
differentiation outcomes. We found that deleterious somatic mutations in key developmental genes, notably
the BCOR gene, are strongly associated with failure in dopaminergic neuron differentiation and a larger pro-
liferation rate in culture. We further identified broad differences in cell type composition between incorrectly
and successfully differentiating lines, as well as significant changes in gene expression contributing to the
inhibition of neurogenesis. Our work calls for caution in interpreting differentiation-related phenotypes in
disease-modeling experiments.
INTRODUCTION

Induced pluripotent stem cells (iPSC) are widely used to model

human diseases, as they can differentiate to cell types and

tissues that are otherwise not accessible. However, in vitro dif-

ferentiation is subject to substantial technical and biological

confounders that often lead to variable differentiation out-

comes, a major challenge to scaling up and interpreting results

from disease-modeling studies.1 The underlying reasons for

this variability are not well understood, but different factors

have been proposed: protocol optimization,2 culture mainte-

nance,3 passage number,4 molecular determinants,5 inter-lab-

oratory variation,6 cell line intrinsic properties,7 or the loss of

iPSC heterogeneity in culture.8 Controlling differentiation

variability of iPSCs is an essential step in achieving reliable dis-

ease models, in particular in the field of developmental biology

where substantial efforts are under way to model the cell-level

consequences of genetic findings in developmental and

neuropsychiatric disorders.

The genetic background of an individual has been shown to

account for 8%–23% of phenotypic variation in iPSCs.7 While

this donor effect was driven primarily by common variants,

rare variants and somatic mutations acquired either in the

parental tissue (in vivo) or during the iPSC reprogramming

process and culture maintenance (in vitro)9 are also likely to
This is an open access article und
contribute to the observed variation. For example, it has

been shown that sub-clonal cancer-associated mutations in

P53 may provide growth advantage to stem cells in culture,

given their increased frequency in embryonic stem cell lines.10

Also, the reprogramming of parental cells, such as skin-

derived fibroblasts, can act as a bottleneck, leading to vari-

ants increasing or decreasing in frequency in the resulting

population of iPSCs.11 This can be particularly pronounced if

the parental cells contain a higher-than-average number of

mutations, as can be the case with skin-derived, UV-exposed

cells. Although such acquired mutations might not cause a

phenotype in iPSCs, they have the potential to affect specific

differentiated cell types and lineages,12 altering both their

functionality and the overall cell type composition. Still, the

contribution of somatic mutations to cellular differentiation

has not been systematically explored.

In this study, we hypothesized that somatic mutations and

rare germline variants in individual iPSC lines can affect their

ability to differentiate. To test this hypothesis, we analyzed dif-

ferentiation outcomes from four independent experiments that

produced different target cell types from iPSC lines of the

HipSci project7: dopaminergic neurons (DA),8 macrophages,13

sensory neurons,14 and definitive endoderm tissue15 (Fig-

ure 1A). We compared the exome-wide burden of acquired

mutations and rare germline variants to the differentiation
Cell Genomics 3, 100280, April 12, 2023 ª 2023 The Authors. 1
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Figure 1. Study overview—cellular basis of variable differentiation outcomes in human iPSCs

(A) Human iPSC lines from the HipSci project were differentiated into macrophages, sensory neurons, endoderm tissue, and dopaminergic neurons, the latter

being profiled with scRNA-seq in pools. iPSC lines were classified as having a failed or a successful differentiation outcome in each dataset. n, Number of iPSC

lines per differentiation with available whole-exome sequencing (WES) also from the parental fibroblasts.

(B) We evaluated the genetic determinants of iPSC differentiation outcomes using WES data from 832 iPSC lines. For 384 of the 832 lines, WES data were also

available for the parental fibroblasts, which allowed the identification of somatic mutations acquired in vitro.
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outcomes of each line (Figure 1B), and used single-cell tran-

scriptomes of the dopaminergic neurons8 to delineate in detail

how deleterious variants influence the differentiation process

of iPSC-derived neurons. We found that deleterious mutations

in developmentally important genes can compromise the suc-

cess of iPSC differentiation by increasing the growth rate of

cell lines, leading to large differences in cell type composition,

gene expression, and general outlier behavior of individual

lines. Our work highlights somatic mutations as an important

source of variation in iPSC-based models and calls for caution

when interpreting differentiation-related phenotypes to under-

stand disease. Our results support the notion that mutational

processes that affect iPSCs and their differentiation to neu-

rons reflect those that lead to somatic mosaicism during

corticogenesis.
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RESULTS

The exome-wide burden of acquired mutations does not
explain the differentiation outcome
To test whether the overall burden of somatic mutations ac-

quired by iPSC lines in vitro influenced their differentiation ability,

we studied 384 cell lines (251 individual donors) from the HipSci

project. Exomes were sequenced for both the parental fibroblast

of donors and their derived iPSC lines, allowing us to distinguish

between variants present already in the donors from those ac-

quired, or positively selected for, in the subsequent reprogram-

ming process (hereon ‘‘in vitro-acquired mutations’’)11 (STAR

Methods). After excluding 17 hypermutated lines (>240 muta-

tions), a median of 35 mutations (37 including copy number var-

iants) was observed per exome in the iPSCs, of which 14 were
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annotated as deleterious. The mutational burden was mainly

donor-specific, as multiple lines from the same donor showed

good correlation of mutation sites (R2 = 0.774). In line with previ-

ous publications,16 half (50.5%) of the mutations (single nucleo-

tide variants and dinucleotides) were predicted to be missense

or loss-of-function (LoF). Also, 30% of the CNVs acquired by

iPSCs overlapped with known CNVs annotated as pathogenic

in ClinVar dbVar.17

We considered differentiation outcomes from four different tis-

sues and cell types derived from the same cohort of HipSci

donors: dopaminergic neurons8 (DA; n = 126 observed differen-

tiations and n = 349 predicted differentiations, see STAR

Methods, Table S1), sensory neurons14 (n = 85), macrophages13

(n = 102) and definitive endoderm15 (n = 86). For each of the cell

types, we split the cell lines to those that differentiated success-

fully and to those that failed or had impaired capacity to give rise

to the desired cell type (from hereon ‘‘successful’’ and ‘‘failed’’

lines) (STAR Methods). We then tested for association between

the exome-wide mutational burden and the differentiation out-

comes, and found no difference between successful and failed

lines (all mutations, deleterious mutations (Figure 2A), and other

variant classes (Figures S1A and S1B), pAdj>0.05). Similarly,

no association was found between mutational burden and

endoderm differentiation efficiency, which was defined as a

continuous trait (Figure 2B). The identified somatic variants

were located in longer genes than unmutated ones (t-test, p =

1.02 $ 10�149) and were closer to repetitive elements (t-test,

pAdj = 1.16 $ 10�23), as previously described for somatic variants

acquired in postmitotic neurons (Figures S1C and S1D).18,19 The

mutated genes showed reduced transcription (p < 0.05, t-test),

but no differences in replication timing (p = 0.49, t-test, Roadmap

Epigenomics Project) or promoter states (p = 0.34, chi-squared

test, ENCODE BG02ES line) when compared with unmutated

genes, in contrast to mutated genes in neurons (Figures S1E

and S1F).20,21 Still, mutated genes in our study were enriched

in published sets of somatic mutations originating early in

brain development, mainly in the postzygotic stage22 (pAdj =

9.46 $ 10�4, hypergeometric test) or in the stem cell and neural

progenitor stage18 (pAdj = 9.02 $ 10�5). This overlap indicates

that mutational processes driving in vivo somatic mosaicism in

human brain development may be partially mirrored by in vitro

somatic mosaicism in iPSCs.

The burden of deleterious variants in BCOR is linked to
differentiation failure in dopaminergic neurons
Mutations that impair the function of active genes in development

might also have a critical role in altering cell line differentiation ef-

ficiency, even when they do not compromise cell survival in cul-

ture. We analyzed how burden differences in individual genes

were linked to the differentiation outcome in the DA dataset. We

focused on the total burden of deleterious mutations carried by

each iPSC line, which includes somatic mutations acquired

in vitro and in vivo, as well as germline variants (STAR Methods).

We found that only one gene, BCOR, was significantly more

mutated in failed lines compared with the successful lines (Wil-

coxon rank-sum test, pAdj <0.05, log2FC >2.5) (Figure 2C). This

effect was consistently observed with all deleterious variants as

well as LoF variants alone, and with both observed (n = 183 cell
lines, one line per donor; 48 failed, 135 successful) and predicted

DA differentiation outcomes8 (n = 793 cell lines from 529 donors;

99 failed, 694 successful). Importantly, none of the lines that differ-

entiated successfully in culture (i.e., with observed outcomes)

carried an LoF mutation in the BCOR gene, while 22 of the 48

failed lines carried at least one (Figure S1G, Table S2). Beyond

the binary outcome classification, we also observed the associa-

tion between the deleterious mutational burden in BCORwith the

continuous differentiation efficiency (pAdj = 1.06 $ 10�8, n = 183

lines), defined as the fraction of dopaminergic and serotonergic

neurons at day 52, or with the predicted model scores8 (pAdj =

7.22 $ 10�57, n = 793 lines) (STAR Methods). We confirmed a sig-

nificant reduction of BCOR expression between mutated (BCOR

LoF) and unmutated lines across all time points (p < 0.05, Wil-

coxon rank-sum test) (Figure S1H).

Although the mechanism for this association is unknown, the

BCOR gene (a BCL6 repressor) is a known epigenetic regulator23

that is both an oncogenic driver gene24 and a developmental dis-

order-causing gene,25 highlighting its key role in development.

Previously, pathogenic mutations in the BCOR gene have been

found to be recurrently mutated in blood-derived iPSC lines

and positively selected for under iPSC culture conditions.11

The gene is under strong mutational constraint, with only two

predicted LoF SNVs (pLoF) observed in gnomAD26 (version

2.1.1: 44.6 expected; LOEUF mutational constraint score

0.141). In addition, we did not find any BCOR LoF variants

among the parental fibroblasts of the iPSC lines (n = 253),

although they could still be present at very low frequencies as

subclones. In our study, while the BCOR mutations driving

impaired DA differentiation clearly increased in frequency during

the reprogramming process, we cannot determine for certain

whether they originated in vivo or in vitro.

A fraction of the lines that were classified as failed (26 of 48,

differentiation efficiency <0.2) do not carry any deleterious

BCOR mutations, which likely indicates that other genes also

contribute to DA differentiation failure but are not identified in

our analysis due to limited sample size. To overcome this, we

focused on the biological processes that control cellular differen-

tiation and performed a gene ontology (GO) enrichment analysis

on those genes that presented the largest mutational burden dif-

ferences between failed and successful cell lines (top 10% and

bottom 10% in fold change [FC], corresponding to 1,865 genes

for each outcome, STAR Methods). We found that the genes

mostly mutated in failed lines are involved in key neurodevelop-

mental functions, such as neuron fate commitment

(GO:0048663, pAdj = 0.03, OR = 1.99), response to axon injury

(GO:0048678, pAdj = 0.015, OR = 2.08) and midbrain develop-

ment (GO:0030901, pAdj = 0.03, OR = 1.8), consistent with the

failed differentiation phenotype (Figure 2D, Table S3). Among

the genes contributing to this enrichment in failed lines, we found

examples of disease-associated genes27: CDC42 in intellectual

disability,28 BMP4 in syndromic microphthalmia,29 and PMP22

in hereditary neuropathy.30 On the contrary, mutations in

successful lines disrupted genes involved in the positive regula-

tion of neuron apoptotic process (GO:0043525, pAdj = 0.006,

OR = 2.59) and neuron fate specification (GO:0048665,

pAdj = 0.001, OR = 3.8), potentially contributing to a higher pro-

duction of neurons throughout the differentiation.
Cell Genomics 3, 100280, April 12, 2023 3



Figure 2. Effect of the mutational burden on iPSC differentiations

(A) Burden of somatic mutations in each cell line, either total (left) or deleterious (right), was not associated (p > 0.05, Wilcoxon rank-sum test) with the differ-

entiation outcome inmacrophages, sensory neurons, or dopaminergic neurons. Boxplot whiskers are within the 1.5 IQR value. See also Figures S1A and S1B and

Table S1.

(B) Burden of somatic mutations in each cell line, either total (left) or deleterious (right), was not associated with the differentiation efficiency in the endoderm

(pAdj<0.05, Pearson correlation).

(C) Only theBCOR gene was consistently more mutated in failed lines than in successful lines from the dopaminergic differentiation, when considering damaging

variation (FC > 2.5 (red), Wilcoxon rank-sum test, pAdj<0.05). See also Figures S1G and S1H and Table S2.

(D) Gene ontology (GO) enrichment analysis revealed the impact of deleterious mutations on brain-related biological processes (hypergeometric test for GO term

association, pAdj<0.05, red-colored tiles) contributing to either failed or successful DA differentiation in lines whose outcome was either observed or predicted.

The number in each tile corresponds to the rank of the significant GO term, ordered by decreasing odds ratio within each analysis (only top-30 positions are

illustrated). See also Table S3.
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Differentiation failure is driven by increased
proliferation rate and BCOR LoF mutations
One of the unique features of the DA dataset is that the cell lines

were differentiated as pools.8 When cell lines are cultured and

differentiated together, individual lines may acquire mutations

that give them growth advantage, such as those in cancer-

associated genes, leading to an imbalanced representation of

lines in the pool. In order to understand the potential mecha-

nism by which the observed BCOR mutations impair DA differ-

entiation, we studied the growth dynamics in the pooled DA

dataset. We reanalyzed RNA-sequencing data from 846,841

single cells from 238 cell lines (230 donors) at three differentia-

tion time points (days 11, 30, and 52, corresponding to progen-

itors, young neurons, and mature neurons, respectively) (STAR

Methods, Figure S2), leading to a dataset consisting of 19

different pooled differentiations, including 7 to 24 cell lines

per pool (Table S4).

We first evaluated how the proportion of cell lines sampled

at the three time points (n = 164) changed over the course of

DA differentiation, assuming initial equal amounts of each

iPSC line (Figure 3A, STAR Methods). Specifically, we calcu-

lated an in silico proliferation rate for each line in a given

pool by contrasting cell line proportions at specific time points

to day 0. Although the Day52/Day0 proportion remained con-

stant for most of the lines (mean = 1.0, 95% confidence inter-

val 0.8–1.2) (Figure S3A), almost every pool contained at least

one overrepresented line (up to 3–10x, depending on the

pool), with a small fraction of lines being underrepresented

(down to 7–700x). Interestingly, lines that failed to differentiate

into neurons (n = 50) showed on average larger proliferation

rates than successful lines (n = 114), with the difference being

most significant at the last time point (p = 2.8 $ 10�3, Wilcoxon

rank-sum test) (Figure S3B). When we correlated this behavior

with the mutational burden, we found that increased prolifera-

tion rates were driven by BCOR LoF mutations (Figure 3B).

Specifically, failed lines with BCOR LoF mutations (n = 20)

had a significantly higher proliferation rate than successful

lines (n = 114) across the time points, a difference that was

not observed with failed lines without BCOR LoF mutations

(n = 30). Consistent with this, we found that the BCOR gene

had the highest ratio (5:0) of annotated cancer driver muta-

tions (LoF pathogenic Cosmic-Tier1 mutations) in failed lines

compared with successful ones (STAR Methods). Taken

together, these results suggest that proliferation advantage,

caused by recurrent somatic mutations in key developmental

genes like BCOR, has a negative effect on differentiation effi-

ciency. Of note, when we compared cell line abundances in

different types of replicate samples (Figure S3C), we found

that the correlation of the fractions was substantially lower

when replicates were differentiated as part of different pools

(R2 = 0.136, n = 41 lines) compared with replicates with the

same pool background (R2 = 0.693, n = 31 lines) (Figure 3C,

STAR Methods). Still, pool replicates were mostly concordant

in their differentiation outcome (33 of 36 lines). This suggests

that other cell lines of a given pool can influence the growth

dynamics of individual lines, likely due to the presence of

non-cell-autonomous effects, but they are not sufficient to

alter the differentiation outcome.
Poor differentiation outcomes manifest as shifts in cell
type composition already at the progenitor stage
Next, we studied how early in the differentiation process cell type

composition differences between failed (n = 58) and successful

(n = 163) lines start to appear (STAR Methods). In order to better

characterize cell type composition changes of cell lines across

the three time points, we processed and clustered all cells in

the DA dataset together (119 10x samples, Tables S5 and S6

and STAR Methods), contrary to the original study where time

points were analyzed separately.8

We then used a negative binomial regression model to eval-

uate cell type composition changes between failed and success-

ful lines (STAR Methods). The analysis revealed significant shifts

in abundance for all major cell types (>2% fraction) as early as

day 11, except for some floor-plate progenitors (FPP-1) and

ependymal cells (Epend-1) (Figure 4A). Interestingly, cell lines

that failed to generate mature neurons at day 52 showed an

earlier commitment to either the dopaminergic (DA, pAdj = 9.9

$ 10�47) or serotonergic (Sert-like, pAdj = 6,1 $ 10�14) fate at

day 11, with their neuroblasts clustering with young neurons,

but failing to express the same neuronal markers. Similar evi-

dence of accelerated neuronal maturation in vivo has been

observed in an iPSCmodel of Kabuki syndrome caused by a het-

erozygous nonsense mutation in KMT2D,31 and in iPSC-derived

brain organoids modeling schizophrenia.32 Also, different risk

genes linked to autism spectrum disorders were recently shown

to converge on an accelerated differentiation phenotype of

GABAergic and deep-layer projection neurons.33

At day 52, the overall lower fraction of neurons in failed lines

was accompanied by a significantly larger proportion of astro-

cytes (pAdj = 1.5 $ 10�36), ependymal-like cells (pAdj = 7.7 $

10�14), and of an unknown cell type (Unk-1, pAdj = 1.1 $

10�19). In agreement with these observations, iPSC lines with

deleterious BCOR mutations also presented an altered cell

type composition compared with lines without BCORmutations,

with a significant depletion of neuronal cell types (DA, p.Adj = 5,3

$ 10�6; Sert-like, p.Adj = 8.9 $ 10�8, Wilcoxon rank-sum test)

accompanied by a significant excess of astrocytes (p.Adj = 1.3

$ 10�5), proliferative floor-plate progenitors (FPP-1, p.Adj = 1.9

$ 10�3), and one unknown cell type (Unk-1, p.Adj = 6.9 $ 10�3)

(Figure S3D, STAR Methods). Importantly, we also found an as-

sociation between the cell line proliferation rate and the abun-

dance of those cell types, with faster-proliferating lines showing

a depletion of DA neurons (p.Adj = 0.01, Pearson correlation) and

an excess of astrocytes (p.Adj = 0.004) and proliferating progen-

itors (pro-FPP1, p.Adj = 0.004) at day 52. (Figure 4B, STAR

Methods). This suggests that differentiation failure is a conse-

quence of a global, early shift in cell type composition caused

by abnormally fast proliferation of cell lines that carry damaging

mutations in key developmental genes such as BCOR.

Biological processes linked to failed differentiation
manifest as differential gene expression
We tested whether differences in cell type composition between

successful and failed lines also manifest as gene expression

changes. For this, we performed a differential gene expression

(DE) analysis between failed (n = 58) and successful (n = 163)

cell lines within cell types and time points (STAR Methods). We
Cell Genomics 3, 100280, April 12, 2023 5



Figure 3. The proliferation rate of cell lines is influenced by the pool environment, but the highest rateswere observed among failed lineswith

BCOR LoF mutations

(A) Cell line proportion throughout dopaminergic neuron differentiation (days 11, 30, and 52). We observed a consistent outlier behavior featured by 1–2 lines that

proliferate significantly faster than other lines during pooled differentiation.

(B) Failed cell lines carrying at least oneBCOR LoFmutation showed, on average, a higher proliferation rate than neurons that can differentiate successfully (D52/

D0, p = 0.0015, Wilcoxon rank-sum test). Boxplot whiskers are within the 1.5 IQR value. See also Figures S3A and S3B.

(C) Cell line proportion could not be replicated between pool replicates, but it remained similar between biological replicates and showed minimal differences

between technical and 10X replicates, as expected (linear regression, p<0.05). The shaded area indicates 95% confidence interval on the proportion values. See

also Figure S3C.
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Figure 4. Failed and successful lines show major differences in cell type composition, gene expression, and functional enrichment

(A) Major cell types showed significant differences in composition as early as day 11 (negative binomial regression, STAR Methods), except for floor-plate

progenitors type 1 (FPP-1) and ependymal-like cells (Epend-1). Neuroblasts from failed lines showed an earlier commitment to dopaminergic (DA) or seroto-

nergic-like (Sert-like) fate. Minor cell types (<2% abundance) are shown in red. Boxplot whiskers are within the 1.5 IQR value. See STAR Methods for cell type

abbreviations.

(B) High proliferation rates were associated with significant changes on cell type composition at day 52 linked to a depletion (in orange) of dopaminergic (DA,

p < 0.05(*), linear regression) neurons and an excess (in blue) of astrocytes (Astro) and proliferative floor-plate progenitors type 1 (proFPP-1, **p < 0.01). See STAR

Methods for cell type abbreviations.

(C) Most of the differentially expressed genes at day 11 are enriched in developmental disorder genes (DDD, cyan), especially when considering those that act in a

dominant fashion (DDD-dominant, blue) (chi-squared test, STARMethods). Also, some of the cell types show an enrichment in cancer-associated genes (Cosmic

Tier 1, magenta). See also Figures S4A and S4B.

The significance level in (A–C) was indicated as follows: pAdj >0.05 (ns), pAdj <0.05 (*), pAdj <0.01 (**), pAdj <0.001 (***).

(legend continued on next page)
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identified between 50 and 500 DE genes per test, which, impor-

tantly, were not correlated with the number of cells observed per

outcome (Figure S4A). While the number of DE genes was rela-

tively constant throughout differentiation in certain lineages

(dopaminergic, astrocytes, floor-plate progenitors type 1),

others showed time-point-specific differences. Remarkably, in

most of the cell types at the progenitor stage, gene sets known

to cause developmental disorders34 (DDD) were overrepre-

sented among the DE list (adj.p < 0.05, chi-squared test), in

particular when only dominant DDD genes were considered.

Likewise, cancer-associated genes35 (Cosmic-Tier1) known to

influence cellular proliferation were overrepresented in five cell

types at day 11, one at day 30, and another at day 52 (Figure 4C).

We then performed a GO enrichment analysis (STAR Methods)

on the 10cell typeswith a significant proportion of differentially ex-

pressed DDD genes. We found several biological processes

related to neurodevelopment among the top-25 enriched terms

(adj.p < 0.05, ordered by odds ratio) (Figure 4D, Table S7),

including the regulation of glial cell differentiation (GO:0045685,

day 11) and cerebral cortex development in progenitors

(GO:0021987, day 11), as well as the neuron projection extension

in ependymal-like cells (GO:1990138, day 11). When aggregating

all the detected DE genes in the analysis (any cell type), we found

processes strongly linked to failed differentiation, such as the pos-

itive regulation of neuron apoptotic process (GO:0043525) and the

negative regulation of neuron differentiation (GO:0045665). We

also analyzed the changes in pathway regulation on the seven

cell types with an excess of cancer-associated DE genes (STAR

Methods, Figure S4B), and consistently identified hallmarks of

cellular proliferation: upregulation of the tumor suppressor P53,

activation of MYC targets, and exacerbated oxidative phosphory-

lation. This functional enrichment of DE genes is consistent with

that of mutated genes in failed lines (Figure 2D).

Proliferation rate predicts cell type outlier status of cell
lines
Cellular differentiation is a dynamic process with global changes

in the composition of cell populations over time. Although differ-

entiation success is usually defined by the final yield of the

desired cell type, this can give an incomplete picture of the vari-

ability in the differentiation process. To characterize such

variability, we analyzed all cell lines with reliable cell fraction es-

timates (day 11, n = 172; day 30, n = 187; day 52, n = 209, STAR

Methods) to identify those that were outliers in terms of their cell

type composition. For this purpose, we computed a Z score per

line for each cell type and time point combination and assigned

as outliers those cell lines with |Z score|>2 (Figure 5A, STAR

Methods). Under this classification, we identified 156 cell lines

(175 considering pool replicates as independent lines) that

were an outlier in at least one of the time points (day 11, n =

55; day 30, n = 78; day 52, n = 104), most of which had abnor-

mally large cell type fractions. Only on day 11, 16 cell lines

showed abnormally low fractions of progenitors and astrocytes,
(D) Functional enrichment of biological processes among differentially expresse

geometric test for GO term association, pAdj <0.05 and FC >1.5). Overrepresente

as previously observedwith genes showing differential deleterious burden betwee

position of the significant GO term, ordered by decreasing odds ratio within eac
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which were compensated by abnormally large fractions of other

cell types. We also observed an overall increase in cell type frac-

tion variability at later stages of differentiation.

To further characterize the outlier behavior, we calculated the

number of times an outlier line shows an abnormal cell type frac-

tion across the differentiation (outlier event, STAR Methods). On

average, we observed 2.21 outlier events per line (2.03–2.39,

95% CI) with even contributions per time point (Figure 5B, up-

per). When focusing only on the cell lines profiled at the three

time points (n = 112 lines), we observed that they tend to show

outlier events most frequently at the two consecutive latest

time points (day 30 and day 52) or just initially (day 11), likely

due to the final plating of neurons occurring between the first

and later time points. Only 12 cell lines showed outlier behavior

in all time points. Unexpectedly, when we explored the correla-

tion of somatic mutational burden acquired in vitro with outlier

behavior (n = 148 lines), we observed a significant reduction of

burden (p < 0.01, Wilcoxon rank-sum test) in the outlier group

(Figure 5B, lower). This difference was observed for both total

and deleterious mutations, but when detaching the outlier status

per time point, the difference remained significant only at day 30

(Figure S5A, STAR Methods).

Although observing uneven cell type fractions is common

among wild-type iPSC lines in pooled experiments, we found

that larger proliferation rates at day 52 were associated with

the outlier behavior (p = 9.68 $ 10�4, logistic regression,

n = 159 lines) (Figure 5C). To identify which genes might be

driving this behavior, we correlated cell-type-specific gene

expression with changes in cell type composition (Figure 5D,

STAR Methods). Among the significant associations, including

positively and negatively correlated genes, we observed a strong

enrichment of DDD genes (p.Adj<0.001, hypergeometric test) in

most of the cell types at the progenitor stage (Figure 5E, STAR

Methods), including BCOR (Figure S5B). Similarly, we observed

that seven of the nine cell type associations enriched in cancer-

associated genes were also enriched among DDD genes, as ex-

pected from the significant overlap between the two gene sets

(p < 2.2 $ 10�16, chi-squared test). A more limited enrichment

in adult-onset neurodegenerative disorder genes36 was also

observed for floor-plate progenitors (FPP). However, for schizo-

phrenia genes,37 weaker but still significant associations were

observed only for dopaminergic (day 30) and serotonergic neu-

rons (day 52). As expected, no enrichment was observed in

gene panels for non-brain disorders.36 Overall, this suggests

that the regulation of developmental genes during early neural in-

duction is critical for determining progenitor abundance, and as

shown for the BCOR gene, for influencing proliferation rate and

differentiation success in vitro.

DISCUSSION

One of the biggest limitations of iPSC-based diseasemodeling is

our poor understanding, and control, of factors that influence the
d (DE) genes from all (allDE), several (signifDDD), or unique cell types (hyper-

d processes in failed lines include neuron development and neuron maturation

n failed and successful lines. The number in each tile corresponds to the ranked

h analysis. See also Table S7.
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capacity of cell lines to differentiate successfully and reproduc-

ibly. Recently, it was proposed that the large variability associ-

ated with differentiation is primarily explained by cell-intrinsic

factors,8 rather than experimental or other technical factors. Ge-

netic variation has previously been shown to drivemolecular het-

erogeneity in iPSCs7,38–40 and in hESC,41 but large-scale studies

looking at the role of genetic variation in differentiation are only

beginning to emerge. In particular, somatic mutations acquired

prior to the differentiation, either in vivo during parental tissue

clonal evolution or in vitro during iPSC reprogramming and cul-

ture maintenance, are potential contributors to variation in differ-

entiation efficiency. Interpreting such variation correctly is critical

for developing better models of development and diseases,

particularly in the field of neurodevelopment, where disease-

modeling efforts are currently rapidly increasing, due to ad-

vances in identifying the genetic underpinnings of psychiatric

and developmental disorders.42,43

Here, we present an attempt to link differentiation outcomes to

somatic mutations in human iPSC lines from the HipSci

resource, which offers a unique opportunity to study multiple

cell types independently derived from the same iPSC lines.

Further, with exome sequencing available for both iPSCs and

their parental fibroblasts, we were able to focus also on the sub-

set of damaging mutations acquired in vitro, which are particu-

larly relevant for abnormal differentiation outcomes.

One of the key insights from our work is that although the total

burden of acquired mutations in iPSC lines is not predictive of

their differentiation outcome, deleterious mutations in the core

genes of a given differentiation system can cause unwanted ef-

fects on differentiation. This effect is likely not limited to muta-

tions acquired in vitro, as mutations and rare variants in the

genetic background of the parental cells selected for reprogram-

ming may account for a considerable fraction of differentiation

variability, even if not affecting reprogramming directly. In sup-

port of this, we found that somatic deleterious mutations in the

BCOR gene are strongly associated with differentiation failure

in human dopaminergic neurons. The effect was seen with 183

observed differentiations as well as 793 predicted differentiation

outcomes of iPSC to dopaminergic neurons.8 The sensitivity to

BCOR deleterious mutations is supported by the strong selec-

tion against predicted LoF variants in the Genome Aggregation

Database.44 Further, a high prevalence of acquired BCORmuta-
Figure 5. Cell lines in the pooled differentiation displayed common ou

(A) Most of the outlier cell lines showed an excess of a particular cell type throu

astrocytes and progenitors at day 11.

(B) Upper: On average, each outlier line showed 2.21 outlier events per differentia

displayed the outlier behavior either simultaneously at days 30 and 52 (young and

abnormal cell type abundance throughout the differentiation (outlier event) showed

non-outliers (total burden, p = 3.6 $ 10�3; deleterious, p = 2.7 $ 10�3; Wilcoxon rank

(C) The mean proliferation rate per line (day 52/day 0) was higher in outlier lines tha

within the 1.5 IQR value.

(D) Upper: Z score correlation of gene expression (i.e., KMT2D) and cell type prop

dopaminergic neurons (DA) at day 11. Each dot is an iPSC line; lower: The distribu

types at day 11. See also Figure S5B.

(E) The abundance of progenitor populations was associated with the expression o

genes, and to a lesser extent in adult-onset neurodegenerative disorder genes

neurons and no enrichment is observed for non-brain disorders (hypergeometr

Significance levels: pAdj >0.05 (ns, yellow), pAdj <0.05 (*, golden yellow), pAdj <
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tions was previously found in blood-derived iPSC lines, and it

was shown that they likely arose after reprogramming through

positive selection for BCOR dysfunction.11 In our dataset,

damaging BCOR variants were only observed in the iPSC lines,

although they could have originated in vivo and be present in

parental fibroblasts as subclones at very low frequencies that

later underwent positive selection in vitro.

BCOR is a key transcriptional regulator during embryogenesis.

It is part of a specific type of polycomb repressive complex that

mediates transcriptional repression through epigenetic modifi-

cations of histones24 and has been shown to have a key role in

regulating the pluripotent state and differentiation. Like many

other chromatin-related genes, BCOR is annotated both as a

developmental disorder gene and a cancer driver gene.35,45,46

In line with this dual role, we observed that failed lines with dele-

terious BCORmutations showed significantly larger proliferation

rates than lines that differentiated successfully, suggesting that

monitoring cell line proliferation rates prior to differentiation

may be an effective way to screen out lines that will not differen-

tiate correctly.47 Further, abnormal proliferation has been re-

ported as a phenotype in multiple iPSC-based disease models,

such as Kabuki syndrome31 or in tuberous sclerosis, where an

hyperproliferative population of interneuron progenitors in brain

organoids was identified as the underlying cause for the distinc-

tive phenotype of brain tumors and cortical malformations.48

Although theBCOR genewas not part of the expression signa-

ture of failed differentiation in specific iPSC populations (n = 184

lines),8 we observed that BCOR expression in dopaminergic

neurons was negatively associated with final neuron abundance,

and was also linked to the abundance of progenitor populations

earlier in the differentiation. As an epigenetic modulator of stem-

ness and differentiation, it remains unknownwhether the expres-

sivity of BCOR LoF mutations manifests already in iPSCs, at

precursor stage or at both, diverting neuron differentiation

toward astrocytes and ependymal-like cells.

Despite the strong association of BCORmutations with differ-

entiation failure, not all of the failed lines carried damaging vari-

ants in that gene, suggesting that other genes are involved as

well. Therefore, we also analyzed the most differentially mutated

genes in each differentiation outcome to pinpoint the biological

processes that were disrupted by deleterious mutations. Inter-

estingly, genes that were mutated mostly in failed lines were
tlier behavior in cell type composition

ghout the differentiation, except for some lines with a reduced population of

tion, but less than 1 event per time point (bars, 95% CI). Also, most of the lines

mature stage), or just at day 11 (progenitor stage); lower: Lines with at least one

a significant reduction in the somatic burden of acquiredmutation in vitro than

-sum test). Boxplot whiskers are within the 1.5 IQR value. See also Figure S5A.

n in non-outlier lines (p = 9.68 $ 10�4, logistic regression). Boxplot whiskers are

ortions of floor-plate progenitors type 1 (FPP-1) and neuroblasts committing to

tion of Pearson correlation coefficients for all genes expressed in previous cell

f genes in developmental disorder (DD) and cancer-associated (Cosmic-Tier1)

. In schizophrenia, the association is only observed with genes expressed in

ic test for overrepresentation, Benjamini-Hochberg multiple-test correction).

0.01 (**, orange), pAdj <0.001 (***, red).
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enriched in neurodevelopmental processes linked to neuron fate

commitment, response to axon injury, or midbrain development.

In successful lines, we observed an enrichment of brain-related

processes that are likely to boost neuron production by disrupt-

ing the positive regulation of neuron apoptotic processes. While

our study is limited to identifying acquired mutations only during

iPSC reprogramming, it is possible that somatic mosaicism in

neurons also plays a role in determining the final differentiation

outcome. To this end,mutated genes from our study significantly

overlapped with published lists of somatic mutations that origi-

nated during early cortical development,18,22 highlighting that

mutation-selection processes driving in vitro somatic mosaicism

could mirror those observed in vivo during brain formation. If

confirmed, this would have major implications for disease

modeling, as somatic mosaicism observed in vitro could be

used to understand the clinical impact of this process in vivo.

Future efforts in profiling exomes of iPSC-derived neurons will

provide further insights on the role of somatic mutations in differ-

entiation systems and on new potential applications for develop-

mental studies.

To better characterize the cell type composition dynamics

throughout the DA differentiation process, we introduced a crit-

icalmodification to theanalysis in the original study.8 Specifically,

we clustered all cells at once, rather than per time point.While we

lose some granularity in the definition of cell types, this approach

allowed us to observe cell type composition changes per line

across cellular lineages, tracing the commitment of neuroblasts

to young and mature neurons. We identified a larger fraction of

neuroblasts committing to dopaminergic and serotonergic neu-

rons in failed lines, suggesting an accelerated maturation of pro-

genitors potentially linked to the proliferative phenotype. In this

scenario, failed lines could progress faster to differentiation initi-

ation after neural induction, promoting an early production of

neuroblasts with defects in neuronal commitment.

Finally, we compared the extent of DE in each cell type across

time points and conditions between failed and successful lines.

With these comparisons, we sought to identify the key regulator

genes across the different stages of neurodevelopment and

across different biological processes. Many cell types at the

progenitor stage (day 11) showed an enrichment of DE genes

corresponding to key developmental genes, either DDD or can-

cer-associated. In those cell types, the differentially regulated

neurodevelopmental processes clearly overlap with those

affected by deleterious mutations in failed lines. We hypothesize

that among the DE genes, there is a potential list of new develop-

mental disorder (DD) candidates, whose clinical significance

should be evaluated.

Any differentiation process involves a dynamic evolution of cell

types, which does not necessarily fit into a failed or successful

outcome based on an arbitrary threshold. To avoid overlooking

other relevant changes, we analyzed general behavior in cell

type composition. We found that 64.3% of lines in pooled exper-

iments occasionally display abnormal cell type fractions during

the differentiation process. This outlier behavior reflects the large

variability in cell type composition during in vitro pooled differen-

tiations, likely resulting from the combination of donor effects,

non-cell-autonomous effects between lines and stochasticity.

Although such effects are indeed a limitation of the pooled study
design that can affect cell line abundance, they rarely compro-

mise the ultimate differentiation outcome in our dataset. Also,

the periodicity of outlier events suggests that they tend to

happen either consecutively in the last two time points or only

at the first one, which can be explained by the experimental

design, as cells were only passaged at day 20. Evenmore impor-

tantly, we found that outlier behavior was strongly associated

with larger proliferation rates in cell lines, possibly implying that

acquiredmutations in other genes that also increase proliferation

activity could be behind the abnormal cell type composition.

However, since the mutational recurrence in all other genes

was substantially lower than in BCOR, this study was not suffi-

ciently powered to detect population-level evidence for this pos-

sibility. Finally, we did not observe a higher burden of acquired

mutations in outlier lines when compared to non-outlier lines,

but rather the opposite. These observations suggest that while

individual deleterious mutations can define differentiation out-

comes, the determinants of outlier behavior during neuronal dif-

ferentiation are likely more varied.

In summary, our study demonstrates that although iPSC

models are an excellent tool for studying neurodevelopment

and developmental disorders, results from differentiated cell

types should be interpreted with caution. We studied a large

number of iPSC lines derived from healthy individuals and

observed that deleterious mutations in genes known to cause

developmental disorders cause differentiation defects via tran-

scriptional and cell type composition changes during neuronal

differentiation. Our work highlights somaticmutations as a signif-

icant source of variation in iPSC-based disease models and

further emphasizes the importance of comprehensively assaying

the genomes of iPSC lines prior to their experimental use to

achieve reproducible research.

Limitations of the study
This study considers only mutations that originated or were posi-

tively selected during iPSC reprogramming from parental fibro-

blasts, or that were present at iPSC culture. Consequently, we

lackmutational information fromdifferentiated cell types, i.e., so-

matic mutations that may have occurred during the differentia-

tion process and might also contribute to variable differentiation

outcomes. As for the DA dataset, the pooling strategy reduces

the unwanted batch effect between lines, but introduces non-

cell-autonomous effects that might alter the growth dynamics

of individual lines. Finally, we did not functionally validate the

impact of BCOR LoF mutations on differentiation failure and

the gene expression reduction that we observed with single-

cell transcriptomics data.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Pooled dopaminergic differentiation Jerber et al.8 HipSci Managed access (EGA: EGAS00001002885)

HipSci Open Access (ENA: ERP121676)

Whole exome sequencing

(WES) of HipSci lines

HipSci Project

https://www.hipsci.org

HipSci Managed access: EGA

HipSci Open Access (ENA: ERP006946)

HipSci genotype array data HipSci Project

https://www.hipsci.org

Kilpinen et al.7

HipSci Managed access (EGA: EGAS00001000866, EGA:

EGAS00001001272)

HipSci Open Access (ENA: PRJEB11750)

Metadata for the dopaminergic

differentiation single-cell dataset

This paper https://zenodo.org/record/6079122#.YlSkxNPMJhE

(Open Access)

Processed single-cell count

(dopaminergic differentiation)

for days 11, 30 and 52.

This paper https://zenodo.org/record/6079122#.YlSkxNPMJhE

(Open Access)

Macrophage differentiation Alasoo et al.13 Table S1

Sensory neuron differentiation Schwartzentruber et al.14 Table S1

Endoderm differentiation Cuomo et al.15 EGA:EGAS00001002278 EGA: EGAD0001005741

ENA:ERP016000

Somatic mutations (acquired in vitro) Rouhani et al.11 https://doi.org/10.1101/2021.02.04.429731

Software and algorithms

Variant effect predictor (VEP, release 99) McLaren et al.49 https://www.ensembl.org/info/docs/tools/vep/index.html

BCFtools (version 1.4.25) Danecek et al.50 https://samtools.github.io/bcftools/bcftools.html

Scanpy toolkit Wolf et al.51 https://scanpy.readthedocs.io/en/stable/

Cellranger v3.1.0 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

downloads/latest

R (4.0.4) / Bioconductor (3.12) R Core Team, 2021

Bioconductor Project, 2021

https://www.r-project.org/

https://www.bioconductor.org/

Seurat (v4.0.1) Butler et al.52 https://satijalab.org/seurat/

GOstats (v2.56) Falcon and Gentleman53 https://bioconductor.org/packages/

release/bioc/html/GOstats.html

Harmony Korsunsky et al.54 https://portals.broadinstitute.org/

harmony/articles/quickstart.html

Demuxlet Kang et al.51 https://github.com/statgen/demuxlet

Other

Human reference genome

NCBI build 37, GRCh37

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Developmental disorder genes

(DDG2P, version 2.2)

Wright et al.34 https://nhsgms-panelapp.genomicsengland.co.uk/

panels/484/v2.2

Cosmic database

(cancer-associated genes,

version 90 – GRCh37)

Tate et al.35 https://cancer.sanger.ac.uk/cosmic

MSigDB hallmark gene set signatures Liberzon et al.55 https://www.gsea-msigdb.org/gsea/msigdb/

1000 Genomes Project The 1000 Genomes

Project Consortium et al.56
https://www.internationalgenome.org/

Exome Aggregation Consortium 0.3.1 Lek et al.57 https://gnomad.broadinstitute.org/downloads

CADD Phred scores (version 1.6) Rentzsch et al.58 https://cadd.gs.washington.edu/score

Original code

(Zenodo)

This paper https://doi.org/10.5281/zenodo.7641259

(Open Access, frozen repository)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Helena Kilpinen (helena.

kilpinen@helsinki.fi).

Materials availability
This study did not generate new unique reagents or new human iPSC lines.

Data and code availability
Exome sequencing from the HipSci project (www.hipsci.org) is available for both the parental fibroblasts and the iPSC lines (raw

data). Data for the open access samples is deposited in the European Nucleotide Archive under study accession number

(ENA: ERP006946). It includes 325 iPSC lines, of which 260 are also available for the parental fibroblasts. WES data for the managed

access samples is deposited in the European Genotype-Phenotype Archive (EGA, https://ega-archive.org), with normal and specific

disease cohort datasets available upon request and data access agreement. The variant call sets of acquired mutations in vitro and

the code used to generate them are available at Rouhani et al.11

As for the single-cell data from the iPSC dopaminergic differentiation, managed access data is available in the European Genome–

phenome Archive (EGA: EGAS00001002885), as part of the EGAD00001006157 dataset. Open access samples are available in the

European Nucleotide Archive (ENA: ERP121676) from the project PREJB38269. Metadata information for 828,937 processed cells

from the DA dataset and AnnData/H5AD files containing the single-cell expression for days 11, 30 and 52 that are related to the

STAR Methods are publicly available at Zenodo, https://zenodo.org/record/6079122#.YlSkxNPMJhE. Chip genotypes for HipSci

lines are available from the EGA (EGAS00001000866, EGAS00001001272) and the ENA (PRJEB11750) portals.

All original code is publicly available in a frozen Zenodo repository (https://doi.org/10.5281/zenodo.7641259). The repository in-

cludes the single-cell processing scripts, the downstream analysis, and the code to reproduce themain figures and the supplemental

ones.

METHOD DETAILS

Somatic mutations acquired in vitro (SMAV)
A joint variant calling (BCFtools/mpileup and BCFtools/call, version 1.4.25, human genome assembly GRCh37d5) between 384 pairs

of parental fibroblasts and their corresponding iPSC lines (251 donors) was performed to identify 18,999 somatic mutations that were

acquired or positively selected throughout iPSC reprogramming as described in Rouhani et al.11 This calling was performed for sin-

gle-nucleotide variants (SNVs), dinucleotides, indels and copy number variants (CNVs) for both autosomal chromosomes and chro-

mosome X. Only in the case of indels, chromosome X was not included.

We filtered the initial call set11 following these steps: the variants out of the exome sequencing baits were excluded, germline var-

iants were filtered-out assuming they show aminor allele frequency MAF>0.1% in 1000 Genomes Phase356 or in ExAC 0.3.1,57 or be

carried by the parental fibroblast of more than one donor. Only high-quality variants were filtered-in (PASS filter). Variants with an

allelic fraction larger than 0.6 in iPSC or in fibroblasts were removed to filter potential spurious mutation calls. We classified variants

either as acquired in vitro or positively selected only when a significant rise in allele frequency was observed between the iPSC and

the parental fibroblast (Fisher’s exact test p<1.6$10-4, equivalent to FDR 5% using the Benjamini-Hochberg multiple test correction

procedure). 17 out of the 384 iPSC lines were found to be hypermutated in vitro (>240 mutations corresponding to a Z-score>2) and

were discarded for further analysis downstream. Finally, we defined our gene universe as the 19,653 genes that were protein-coding

genes in the Ensembl gene annotation (GRCh37, version 87) and were covered by the exome sequencing baits. In line with that, we

discarded all those variants that could not be annotated to the gene universe, finally releasing a call set of 18,999mutations, including

460 CNVs, 642 indels, 2,445 dinucleotides and 15,452 SNVs (Table S1).

Functional annotation of SMAV
We annotated the somatic mutations acquired in vivo (SNVs, dinucleotides and indels from the 384 pairs of iPSC lines and their cor-

responding parental fibroblasts, n=251 donors) by predicting their functional consequence using the variant effect predictor49 (VEP,

release 99) and the haplotype-aware BCFtools/csq tool50 (version 1.9). We used Ensembl gene annotations (GRCh37, version 87)

and recorded only the most impactful consequence for each mutation, as determined by the following decreasing order of severity:

https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html.

We definedmutations as loss-of-function (LoF) when they were annotated as frameshift, stop-gain, splice acceptor or splice donor

variants; and as missense pathogenic (or damaging missense) when annotated as missense or start loss with a CADD58 Phred score

cutoff > 15 (version 1.6). The definition of deleterious mutations included the union of LoF and missense pathogenic mutations. The

remaining mutations were annotated as synonymous or as ‘‘others’’ (either as coding, non-coding or unannotated). Overall, we

annotated 1,002 LoF mutations, 5,722 missense pathogenic, 2,631 missense non-pathogenic, 3,158 synonymous and 6,026 other

mutations (Table S1).
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Differentiation outcome of iPSC-derived cell types
Sensory neurons

We processed the Table S1 of the original publication14 (‘‘IPSDSNs’’) that contained the metadata for all cell lines differentiated to

sensory neurons. We annotated the differentiation outcome by re-labelling the neuron quality status per line from ‘‘Poor’’ to failed

and from ‘‘Good’’ to successful. We excluded those cell lines with undefined neuron quality status and renamed the non-neuronal

differentiation outcome to failed differentiation. We identified 13 iPSC lines with differentiation replicates, all of which had a concor-

dant outcome (2 failed, 10 successful), except for one line ("HPSI0613i-eojr_3") that was discarded. In total, we annotated the

outcome for 105 cell lines (5 failed and 100 successful), of which 85 lines (3 failed, 82 successful) had also WES data for the parental

fibroblasts (N=83 donors) (Table S1).

Macrophages

We processed the Table S1 of the original publication13 that contained the status of the differentiation outcome per line. We removed

those cell lines that showed a lowmacrophage purity (‘‘FC_QC_fail’’) or presented degraded RNA (‘‘RNA_QC_fail’’). We identified 11

iPSC lines with differentiation replicates, all of which had a concordant outcome (7 failed, 4 successful). In total, we annotated the

outcome for 123 cell lines (23 failed and 90 successful), of which 102 lines (22 failed, 80 successful) had alsoWESdata for the parental

fibroblasts (N=102 donors) (Table S1).

Dopaminergic neurons

We reprocessed thewhole scRNA-seq dataset (excluding cells treatedwith rotenone), re-clustering all cells at once and annotating the

resulting cell types using the same markers from the original publication8 (see also Reanalysis of pooled single-cell data). We then

computed the total number of cells and the cell type proportion per line in each pool. For each time point, we removed those cell lines

with the lowest number of cells (first twentile) to increase the confidence level of the cell type proportion estimates.We then defined the

neuronal differentiation efficiency per cell line in each pool as the proportion of dopaminergic and serotonergic neurons observed at

day 52 of the differentiation.We annotated this efficiency for 209 cell lines distributed in 18 pools, and classified lines accordingly either

as failed lines (<0.2, this includes lines with poor/impaired outcome) or successful lines (R0.2). Only 3 out of the 36 iPSC lines placed in

more than one pool (pool replicates) were discordant. The DA outcomes for the remaining 206 lines corresponded to 56 failed and 150

successful lines, of which a subset of 126 lines (35 failed, 91 successful) had alsoWES data for the parental fibroblasts (N=126 donors).

Overall, we reached a 98.8% agreement with the neuronal differentiation outcome classification of the original paper.

Additionally, we processed the Table S5 from Jerber et al.8 which contained the model scores from the predicted efficiency. Those

scores were obtained from a logistic regression trained with a binary outcome definition per line (either successful lines with >20%

measured efficiency or failed lines with <20%) and an independent dataset of bulk RNA-seq that uses all expressed genes from 184

iPSC lines. The model scores classified 812 HipSci iPSC lines as failed (N=103) and successful (N=709) differentiators (precision=0.9

and recall=0.35 for threshold=0.02231), of which 349 lines (33 failed, 316 successful) had also WES data for the parental fibroblasts

(N=231 donors) (see Figure 1A, Table S1).

Endoderm

We processed a table obtained from the authors of the original publication15 with the differentiation efficiency for 108 lines, of which

86 also had WES data for the parental fibroblasts. Here, differentiation efficiency is computed as the average pseudotime on day 3,

having a continuous distribution of efficiencies rather than a binary outcome (‘‘failed’’, ‘‘successful’’).

Gene burden differences upon differentiation outcome
We leveraged the 832 iPSC lines (from 547 donors) profiled with WES available from the HipSci project and annotated the most se-

vere consequence for each variant using the variant effect predictor49 (VEP, release 99) and the Ensembl gene annotation from the

release (version 75). We summarise the results by building a matrix of mutation counts per variant category either for LoF or delete-

riousmutations representing gene damage categories, or synonymous variants asmutational burden control. The inclusion criteria in

each of the variant categories was the same as provided with the annotation of somatic acquired mutations in vivo (see Functional

annotation of SMAV). Each matrix contained the 19,653 genes (of the gene universe) as rows and the 832 lines as columns.

We then combined the mutational burden data per line for each variant category (LoF, deleterious and synonymous) with the cor-

responding binary differentiation outcome (DA predicted (N=793 lines from 529 donors), DA observed (N=183 lines, one line per

donor), macrophages (N=118 lines, one line per donor)). We excluded the sensory neurons from the analysis due to the low number

of failed lines in that dataset (N=3). For each variant category and outcome combination, we performed a Wilcoxon Rank Sum Test

per gene (N=19,653 tests) to identify those that presented a differential burden between failed and successful lines. For each com-

bination, we performed a multiple test correction using the Benjamini & Hochberg approach. The level of statistical significance was

set at FDR=5%. To compute a fold change of the mutational differences per gene between failed and successful lines, we initially

normalised the mutation ratio by the gene length (as in Ensembl Annotation release 87) and the number of lines per outcome and

divided the ratios using pseudocounts. The pseudocounts used for each combination corresponded to the minimum non-zero nor-

malised mutation rate observed across all genes for any of the outcomes. We used a threshold of FC>2.5 or FC<1/2.5 to classify

genes as disproportionately mutated in failed lines or in successful lines, respectively. Alternatively in the case of the DA dataset,

we also combined the burden data with the continuous distribution of differentiation efficiencies (N=183 lines) and predicted scores

(N=793 lines) to check the robustness of the BCOR association. In this case, we performed a Pearson’s correlation per gene for each

combination.
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GO enrichment analysis (mutational burden)
For the gene ontology enrichment analysis on biological processes, we only focused on the deleterious burden of iPSC lines. Given

the number of lines for the DA differentiation (183 lines for the observed outcomes, one line per donor: 48 failed vs 135 successful; and

793 lines for the predicted ones from 529 donors: 99 failed vs 694 successful), it is the variant category linked to gene damagewith the

best power to detect enrichment. We proceeded with the matrix of counts previously generated for the identification of gene burden

differences linked to the differentiation outcome. Likewise, we computed the fold change of mutational differences per gene between

failed and successful lines using the ratio of the mutation burden (mutations per Kb) normalised by gene length, number of lines per

outcome and adding 0.001 as pseudocounts. Prior to the GO analysis, we annotated all genes with their corresponding Entrez gene

identifiers and selected the most differentially mutated genes in successful lines (top-10% in log2FC) and the most differentially

mutated in failed lines (bottom-10% in log2FC). We then run the hypergeometric test for GO term overrepresentation of biological

processes conditional to the hierarchical GO structure (package GOstats53 from R). For each of the four tests, we provided the

selected genes in each DA outcome combination: failed/observed, failed/predicted, successful/observed and successful/predicted.

We used the following thresholds: the cutoff for significancewas set at p<0.05, we considered only those gene sets definedwithmore

than 20 genes and each gene set had to account for at least 10 counts in each analysis. All gene sets found to be significantly enriched

are shown in Table S3. Finally, we highlighted only those significant GO terms related to neurodevelopment or chromatin

modification, so we highlighted any gene set with the following words in Figure 2D: ‘‘Axon’’, ‘‘neuron’’, ‘‘glial’’, ‘‘brain’’, ‘‘hindbrain’’,

‘‘forebrain’’, ‘‘midbrain’’, ‘‘synapse’’, ‘‘chromatin’’, ‘‘cerebellum’’, ‘‘neural’’, ‘‘cortex’’, ‘‘neurogenesis’’, ‘‘axonogenesis’’, ‘‘nervous’’,

‘‘hippocampus’’, ‘‘neurotransmitter’’, ‘‘dopaminergic’’, ‘‘axenome’’, ‘‘action potential’’ and ‘‘synaptic’’.

Reanalysis of pooled single-cell data (DA)
Sample selection and data pre-processing

The dopaminergic neuron differentiation was profiled by droplet-based scRNA-seq (10x Genomics). We processed a subset of the

dopaminergic neuron differentiation dataset8 that consisted of 119 10x samples out of the total 166 (Table S5). Here, a 10x sample is

defined as the cells sequenced from one inlet of a 10x chip. For the sake of this study, we did not include those samples from the

original experiment profiled under rotenone treatment at day 52 or containing iPSC-derived cerebral organoids (day 119). We also

did not process samples for pool 10 (day 11) with reported problems on library preparation. We processed the 119 10x samples using

CellRanger software (version 3.1.0) and aligned them to the GRCh37/hg19 reference genome. Gene counts were quantified by the

‘‘count’’ option of the software, using the Ensembl 87 reference gene annotation (N=32,738 genes). After pre-processing, we

excluded 4 additional 10x samples due to quality control issues, mainly due to low percentages of cell singletons in deconvolution

(%50%) and low cell viability: two technical replicates from pool 12 on day 52, one sample from pool 8 on day 30 and a sample from

pool 1 on day 30 (Figure S2B). The final 115 10x samples covered all pooled experiments (N=19, pools 1-17 and pools 20-21),

including 238 different cell lines (230 donors, 7-24 lines per pool). Only one cell line (‘‘HPSI0913i-gedo_33’’) was previously removed

due to an abnormally high cell line proportion (>90%) in pool 14.

Quality control and deconvolution of cell donor identity

Each 10x sample went through a quality control step in which we removed dying cells or those with broken membranes, displaying a

low number of genes per cell (<200) and an excess of mitochondrial count fraction (>5%). Also, we discarded those cells with an

abnormal percentage of reads consumed by the top-100 mostly expressed genes (<75%), which indicate technical artefacts

compromising the coverage of the full transcriptome of the cells. On the other hand, we filtered out those genes that were not ex-

pressed in at least 0.1% of the total cells.

For each of the 19 pools, we performed cell deconvolution using demuxlet51 using existing genetic variation (genotypes of common

biallelic exonic variants, MAF>5%) available from the HipSci Project7 as in the original paper. In those cases when iPSC cell lines had

not been genotyped (intended cell lines from Table S4), we used the genotypes from the primary fibroblast instead when available.

Demuxlet was run using a default prior doublet rate of 0.5. We only retained those (singletons) cells that could unambiguously be

linked to a donor and discarded those 10x samples for which the overall singleton outcome was low (<50%) (Figure S2B). After de-

convolution, 236 (n=228 donors) out of the 238 lines of the experiment had at least one cell detected. We performed the quality con-

trol and the integration of the 10x samples using the Scanpy Python-based toolkit59 (version 1.4.5.1).

Normalisation, dimensionality reduction, batch correction and clustering

Weperformed a combined analysis of all the three time points (day 11, day 30 and day 52) to have a shared embedding for all 236 lines.

Initially, genes that were not expressed in at least 0.1% of total cells were removed. Then, gene counts were normalised to the total

number of counts per cell and log-transformed (log1p). After adjusting for mean-variance dependence, we selected the 2,928 highly

variable genes and scaled gene counts to unit variance and zeromean.We then calculated the first 50 principal components (PCs) and

batch-corrected them with Harmony,54 treating each 10x sample as a different batch (parameters: theta=2, max.iter.harmony=25,

max.iter.cluster=500). We then used the batch-transformed PCs to compute a neighbourhood graph (n_neighbors=10), visualise it us-

ing UMAP and perform the cell clustering using the Leiden algorithm (resolutioN=0.3) identifying 12 different clusters (Figures S2H–

S2J). We also used the Scanpy toolkit (version 1.4.5.1) for all the steps, except for Harmony that was run in R version 4.0.3.

Cell type annotation

Cell type annotation was performed using the same set of literature-curated markers as in Jerber et al.8 (Figures S2E–S2G and

Table S6). We confidently annotated 10 out of the 12 identified clusters. Interestingly, we could also identify neuroblasts at day 11
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with a commitment to dopaminergic neurons, as they clustered together, but at the same time did not exhibit the neuron marker

expression.

At day 11, we characterised four populations of floor-plate midbrain progenitors, either proliferating (proFPP-1, proFPP-2) or non-

proliferating (FPP-1, FPP-3). We could also link the population of neuroblasts to their early dopaminergic or serotonergic commit-

ment. At day 30 and 52, we identified six additional cell types, including another cell type of non-proliferating progenitors (FPP-2),

two neuronal populations (dopaminergic-like (DA) and serotonergic-like (Sert-like) neurons) and three non-neuronal ones (astrocytes

(Astro), ependymal-like cells (Epend-1) and an unknown population (Unk-1) potentially linked to Cajal-Retzius transient neurons. At

day 30, two additional rare cell types (<2%) were identified, either belonging to a subgroup of Sert-like neurons associated with pro-

liferation markers (pro.Sert-like), or to an unknown population (Unk-2) only detected in a single 10x sample of pool 12.

Pool reproducibility of cell line abundance
We started processing the metadata object containing annotations from all cells (available online, see Data and code availability). To

define different types of replicates, we used the information provided by the metadata of the 115 10x samples (Table S5). Four repli-

cate types were defined per cell line (Figure S3C).

- Pool replicates (41 cell lines, N=90 replicate comparisons): The same cell line was placed in different pooled experiments

(different cell lines in the background).

- Biological replicates (31 cell lines, N=31 replicate comparisons): One cell line underwent independent differentiations (different

time and plate), but within the same pool (same background).

- Technical replicates (200 cell lines, N=644 replicate comparisons): One cell line underwent differentiationwithin the same pool,

same time, but different wells of the same plate.

- 10x replicates (109 cell lines, N=699 replicate comparisons): One cell line underwent differentiation within the same pool, same

time and same well of the plate.

Initially, we calculated the cell line proportion within each 10X sample. Then, for each cell line, the corresponding replicate group

and a given time-point, we calculated the averaged cell line proportion per replicate taking into account the contributing 10X samples.

For instance, to compare the cell line proportion of the two biological replicates for ‘‘HPSI1014i-tuju_1’’ at day 11, we averaged the

cell line proportion of the four 10X samples contributing to replicate 1 on one side, and the four 10x samples contributing to replicate

2, on the other. To evaluate the reproducibility between replicate proportions, we fitted a linear regression and computed the adjusted

R-squared and the p-value of the association. Data points on Figure 3C correspond to matched replicates per line/time-point com-

bination. Note here that the designation of replicate 1 or replicate 2 before the regression is random.

Cell line proliferation in DA differentiation
The cell suspension for each pool was prepared with an equal amount of each iPSC line.8 For this analysis, we only considered those

cell lines within a given pool that had been sampled in the three time points of the differentiation (N=164 cell lines used in 187 pool/line

combinations, one cell line per donor). For each pool and time-point, we computed the log-transformed (log1p) cell line proportion.

Then, we calculated the proliferation rate at day 11, day 30 and day 52, dividing the cell line proportions observed at each respective

time point by the equal proportions from day 0. We then annotated each cell line with the observed outcome in the DA dataset, either

successful or failed, based on the neuron differentiation efficiency threshold of 0.2. Additionally, we annotated failed cell lines with

either BCOR+ (N=20) or BCOR- (N=30) based on the presence of LOF BCOR variants in each line. Note here that none of the suc-

cessful lines (N=114) carried any LoF mutation in our iPSC exome-sequencing data.

Annotation of cancer-driver mutations
For each of the 832 iPSC cell lines with exome sequencing data, we annotated the most severe consequence for each variant using

the variant effect predictor (VEP, release 99) as described earlier (see Functional annotation of SMAV). We then overlapped the pre-

dicted LoF variants from each line with those listed in the database for the cancer-associated genes (Cosmic Tier 1, version 94) under

the strongest evidence for oncogenic activity (Tier 1). We restricted the overlap search to those Cosmic Tier 1 variants that have a

defined genomic position and a FATHMM11 score >= 0.7. We identified 726 potential driver mutations with 606 iPSC lines carrying

at least one driver mutation. The most mutated driver genes were PDE4DIP (564), CCND3 (35), TCF3 (29) and the BCOR (24), also

after normalising the burden by the CDS length. We then annotated each cell line with both the observed (183 lines, 48 failed and 135

successful) and predicted DA differentiation (793 lines from 529 donors: 99 failed and 694 successful) and computed the driver muta-

tional ratio (log2-transformed) given the outcome. In both cases,BCOR ranked as the genewith the highest ratio of drivermutations in

failed lines versus successful ones (5:0 with the observed DA outcome, 17:6 with the predicted DA outcome).

Differential abundance analysis
After annotating the cell type, we used the metadata information for each cell to compute the cell type proportions per line (available

online, see Data and code availability). We used the outcome annotation for the 206 lines classified either as failed or successful, as

described for dopaminergic neurons. For 8 pool replicates missing day 52 time-point in one of the pools, we imputed the same
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outcome as observed in the other replicate. We also included 15 out of the 18 lines that were not profiled at day 52, but with data from

previous time-points (either fromday 11 or 30, or fromboth). To take advantage of those lines in the cell type composition analysis, we

classified them either as successful or failed using the predicted model scores from Jerber et al.8 Following those steps, we end up

annotating the differentiation outcome for 221 lines (58 failed, 163 successful) from 214 donors.

For each time-point and cell type, we used a negative binomial regression model to evaluate the composition changes between

failed and successful lines. We modelled the total number of cells per line as an offset variable, given that the accuracy of cell type

proportion estimates increases with their magnitude.

glm:nbðncells � outcome + offsetðlogðnTotalCellsÞÞÞ
We finally performed amultiple-test correction (N=36 tests) using the Benjamini & Hochberg approach (FDR<5%). The significance

level of the mean cell type proportion difference between mutated and unmutated groups is indicated by different levels: pAdj<0.05

(*), pAdj<0.01 (**), pAdj<0.001 (***).

Impact of deleterious burden in BCOR

We considered 141 iPSC lines (one line per donor) with these available information layers: cell type proportion estimates on day 52

(see Differentiation outcomes of iPSC-derived cell types), in vitro proliferation rates (see Cell line proliferation in DA differentiation) and

deleterious burden (see Gene burden differences upon the differentiation outcome). For each gene (N=19,653), we compared the cell

type composition differences at the end of the differentiation between those lines carrying at least one deleteriousmutation and those

lines unmutated (Wilcoxon Rank Sum Test). For each cell type, we appliedmultiple-test correction (Benjamini & Hochberg, FDR<5%)

to the raw p-values obtained from each gene and indicated whether they are more abundant in mutated (blue) or unmutated lines

(orange). Note here that only those cell types that show >2% of abundance at day 52 were considered, discarding FPP-1, FPP-3,

proliferative serotonergic-like neurons, proliferative FPP-2 and the unknown cell type 2.

Alternatively, for each major cell type at day 52 (>2% abundance), we tested for the association between cell type proportions per

line and their corresponding proliferation rates between day 52 and day 0, using Pearson’s correlation (N=154 lines, one line per

donor). We corrected for multiple-test correction using the Benjamini & Hochberg method (N=7 major cell types, FDR<5%). We

also indicated if the cell type proportions correlate (blue) or anti-correlate (orange) in Figure 4B. The significance level of all compar-

isons was indicated as follows: pAdj<0.05 (*), pAdj<0.01 (**), pAdj<0.001 (***).

DE analysis between failed and successful lines
We leveraged the gene expression data from 221 lines (214 donors) annotated with the DA outcome (58 failed, 163 successful), see

Differential abundance analysis. Overall, we processed 273,804, 266,226 and 306,811 cells from day 11, day 30 and day 52, respec-

tively. For each time-point, we load the ‘‘AnnData/H5AD’’ object with the unscaled log-transformed gene expression per cell (avail-

able online, see Data and code availability) and filtered out those genes expressed in less than 1% of the cells, finally processing

12,912, 14,149 and 14,737 genes, respectively. We performed differential gene expression analysis between failed and successful

lines for each cell type and time point combination using theWilcoxon Rank Sum test (as implemented in Seurat52). We requiredmore

than 10 cells to be represented in each of the outcomes to run the DE test for each combination. DE genes were selected based on an

adjusted P-value < 0.05 and a FC >1.5.

For each cell type and time point, we also tested the overrepresentation of three gene sets (Cosmic-Tier1, DDD and a subset of

dominant DDD genes) among the list of DE genes (Chi-squared test using p-values computed by Monte Carlo simulation using

100,000 replicates). The employed gene universe consists of the union of pass-filtered genes across all time points (N=15,367).

We corrected for multiple-test correction using the Benjamini & Hochberg method (N=102, FDR<5%). The significance level of

each test was indicated as follows: pAdj<0.05 (*), pAdj<0.01 (**), pAdj<0.001 (***).

GO enrichment analysis (gene expression)
We performed 12 gene ontology enrichment tests on biological processes based on.

- The union of genes found to be differentially expressed in any given time point and cell type combination (labeled allDE).

- The union of genes found to be differentially expressed in any given time point and cell type combination with an overrepresen-

tation of DDD DE genes (labeled signifDDD).

- The lists of DE genes for each of the 10 time point and cell type combinations with an overrepresentation of DDD DE genes

(cyan circles with p<0.05, Figure 4C).

Previous to theGO analysis, we annotated each feature of the gene universe (N=15,367) with their corresponding Entrez gene iden-

tifiers using the package org.Hs.eg.db fromR/Bioconductor.We discarded from the analysis those geneswithout correspondence or

showing duplicate identifiers. We then run the hypergeometric test for GO term overrepresentation of biological processes condi-

tional to the hierarchical GO structure (package GOstats53 from R). Given the different magnitude of DE genes between allDE

(N=1,884) or signifDDD (N=972) and each of the combination tests (N=131-372), we used different thresholds for significance in

each case: allDE/signifDDD: {minimum gene set size = 30, maximum gene set size=200, pAdj<0.001, minimum number of counts
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per gene set = 20}; combinations: {minimum gene set size = 10, maximum gene set size=200, pAdj<0.001, minimum number of

counts per gene set = 7}.

All gene sets found to be significantly enriched are shown in Table S7. Finally, we highlighted only those significant GO terms

related to neurodevelopment or chromatin modification, so we highlighted any gene set with the following words in Figure 4D:

‘‘Axon’’, ‘‘neuron’’, ‘‘glial’’, ‘‘brain’’, ‘‘hindbrain’’, ‘‘forebrain’’, ‘‘midbrain’’, ‘‘synapse’’, ‘‘chromatin’’, ‘‘cerebellum’’, ‘‘neural’’, ‘‘cortex’’,

‘‘neurogenesis’’, ‘‘axonogenesis’’, ‘‘nervous’’, ‘‘hippocampus’’, ‘‘neurotransmitter’’, ‘‘dopaminergic’’, ‘‘axenome’’, ‘‘action potential’’

and ‘‘synaptic’’.

Gene set enrichment analysis (cancer genes)
We performed a gene set enrichment analysis (GSEA) on those time point and cell type combinations in which the list of differentially

expressed genes were enriched in cancer-associated genes. For this purpose, we used the curated MSigDB hallmark gene set sig-

natures (version 7.4 for symbol identifiers).55 We considered only those gene sets with a larger size than 10 genes. For each gene set,

we then ran the preranked gene set enrichment analysis with a maximum gene set size of 500 genes, an eps parameter of 0 and used

10,000 permutations for preliminary estimation of p-values. We highlighted significantly enriched gene sets as those with a BH-

adjusted p-value < 0.05 and an enrichment score normalised to mean enrichment of random samples of the same size (NES):

NESR 1.5 for upregulated pathways and NES % -1.5 for downregulated ones.

Outlier lines in cell type composition
We calculated the cell type fraction per line within each pool and time point, removing those lines with the lowest number of cells (first

twentile, 227 lines from 219 donors). Those cell lines pooled in more than one experiment (pool replicates) were treated as indepen-

dent lines (N=272 combinations). We then computed the z-score associated with the calculated fractions and marked as outliers

those lines showing a cell type fraction with a |Z-score|>2, either showing a deficiency or an excess of a given cell type.

We characterised the outlier behaviour focusing on those cell lines represented in the three time points of the differentiation (112

lines, 121 pool-line combinations). Based on that, we computed the number of times each line shows an abnormal cell type fraction

(outlier event) throughout the entire differentiation or specifically per time point (bars represent 95% confidence interval in Figure 5B,

top-left). For each cell line, we explored when outlier events occurred and identified the most common time point combinations.

For those lines profiled with WES for the iPSC and the corresponding parental fibroblasts, we annotated the burden of somatic

acquired mutations in vivo (Table S1) considering either total or deleterious variants. We then evaluated whether cell lines defined

as outliers of cell type composition (91 lines, 103 pool-line combinations) showed mean differences on the mutational burden (Wil-

coxon Rank Sum Test) to the non-outliers (N=57 lines, 60 pool-line combinations). Alternatively, we also evaluated the outlier lines

within each specific time point.

Finally, we also annotated each cell line with their corresponding proliferation rate at day 52 (see Cell line proliferation in DA dif-

ferentiation) and fitted a logistic regression to predict the outlierness of cell type composition (N=159 lines, 182 pool-line

combinations).

Gene expression and cell type abundance links
We analysed the correlation between the cell type abundance and the cell-type-specific expression for all genes using the existing

cell line variability throughout the differentiation (N=236 lines from 228 donors). We computed the z-scores for cell type composition

as in Outlier lines in cell type composition. As for the gene expression (log1p normalised counts, not-scaled), we computed the

z-score per cell type using the average gene expression per line at each time point. The average gene expression per line was calcu-

lated considering all the cells of that given line in one specific pool experiment (N=281 combinations), including those from different

10x samples when available. We required a minimum of 10 cells per line (in any time point - cell type combination) to calculate the

average gene expression. We discarded all those combinations in which less than 10 lines matched this threshold (proliferative Sert-

like neurons at day 11 and the glial cells (Unk-2) at days 11 and 52).

We then correlated the expression z-scores with the cell type fraction z-scores, as shown in the example for KMT2D gene for DA

and FPP-1 in day 11 (Figure 5D). To identify the key genes driving the outliereness in cell type composition, we performed the z-score

correlations for all the detected genes per time point (day 11, N=12,912; day30, N=14,149; day 52, N=14,737). Those genes with no

detectable expression in at least 10 lines of a given combination were not considered.We then sampled the genes with either positive

or negative significant associations (p.Adj<0.05) from the resulting distribution of Pearson correlation coefficients per cell type (Fig-

ure 5D, lower).

From the list of genes with significant correlation (or anti-correlation) per cell type and time point, we tested whether there was a

gene set enrichment on several panels of genetic disease associations: developmental disorder genes34 (DDD), cancer-associated

genes35 (Cosmic-Tier1), schizophrenia37 (Open Targets Platform), and three panels from Genomics England:36 adult onset neurode-

generative disorder (Panel App v2.178), bleeding and platelet disorders (v1.2) and family pulmonary fibrosis (v1.29). We performed an

hypergeometric test for overrepresentation considering the list of significantly and non-significantly correlated genes and the overlap

with each gene set and cell type separately. We then performed multiple-test correction using the Benjamini & Hochberg method

(N=198 tests, FDR<5%). The significance level of each test was indicated as follows: pAdj>0.05 (ns), pAdj<0.05 (*), pAdj<0.01 (**),

pAdj<0.001 (***).
Cell Genomics 3, 100280, April 12, 2023 e7


	Somatic mutations alter the differentiation outcomes of iPSC-derived neurons
	Introduction
	Results
	The exome-wide burden of acquired mutations does not explain the differentiation outcome
	The burden of deleterious variants in BCOR is linked to differentiation failure in dopaminergic neurons
	Differentiation failure is driven by increased proliferation rate and BCOR LoF mutations
	Poor differentiation outcomes manifest as shifts in cell type composition already at the progenitor stage
	Biological processes linked to failed differentiation manifest as differential gene expression
	Proliferation rate predicts cell type outlier status of cell lines

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Somatic mutations acquired in vitro (SMAV)
	Functional annotation of SMAV
	Differentiation outcome of iPSC-derived cell types
	Sensory neurons
	Macrophages
	Dopaminergic neurons
	Endoderm

	Gene burden differences upon differentiation outcome
	GO enrichment analysis (mutational burden)
	Reanalysis of pooled single-cell data (DA)
	Sample selection and data pre-processing
	Quality control and deconvolution of cell donor identity
	Normalisation, dimensionality reduction, batch correction and clustering
	Cell type annotation

	Pool reproducibility of cell line abundance
	Cell line proliferation in DA differentiation
	Annotation of cancer-driver mutations
	Differential abundance analysis
	Impact of deleterious burden in BCOR
	DE analysis between failed and successful lines
	GO enrichment analysis (gene expression)
	Gene set enrichment analysis (cancer genes)
	Outlier lines in cell type composition
	Gene expression and cell type abundance links




