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Abstract

Alzheimer’s disease (AD) is a complex disease that is mediated by numerous factors and 

manifests in various forms. A systems biology approach to studying AD involves analyses 

of various body systems, biological scales, environmental elements, and clinical outcomes to 

understand the genotype to phenotype relationship that potentially drives AD development. 

Currently, there are many research investigations probing how modifiable and nonmodifiable 

factors impact AD symptom presentation. This review specifically focuses on how imaging 

modalities can be integrated into systems biology approaches using model mouse populations 

to link brain level functional and structural changes to disease onset and progression. Combining 

imaging and omics data promotes the classification of AD into subtypes and paves the way for 

precision medicine solutions to prevent and treat AD.
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1. Introduction

Alzheimer’s Disease (AD) is a multifaceted neurodegenerative disease that currently has 

no cure or clinically effective treatments. AD is the most common form of dementia, the 

7th leading cause of death globally, and the 6th leading cause in the USA, with more than 

6.2 million Americans living with this disease (The Top 10 Causes of Death, 2020). This 

frequency is estimated to further increase in the US by 2050; however, these estimations 

may not accurately reflect disease prevalence as many cases likely go undetected due to 

diagnostic challenges that arise from the highly variable presentation of the disease (Taylor 

et al., 2017). The lack of consensus about disease manifestation and its typical progression 

emphasizes the need for improved predictive diagnostic factors. Additionally, the field 

would benefit from collectively taking a more holistic approach to studying this disease as 
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a series of interacting biological systems and factors rather than examining each involved 

system in isolation.

The aim of this review is to describe studies that have aided in the understanding and 

classification of AD using systems biology approaches that exploit imaging methods. We 

summarize the various factors that influence AD progression, the variable presentation of 

AD among individuals, and how the field of AD research is evolving to take more systems-

level approaches. We focus on studies that successfully link the components of systems 

biology to clinical outcomes, specifically using imaging data as an intermediate to analyze 

disease state.

1.1. Types of AD

AD is a debilitating disease that causes progressive decline in cognitive and motor function 

that significantly reduces one’s quality of life. A definitive diagnosis can only be determined 

by the postmortem detection of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles 

(NFT). While these two hallmarks of AD correlate with disease progression, their presence 

is not completely predictive of AD development as their prevalence varies based on type 

of AD. Plaque and tangle pathology only account for about 41% of variation in cognitive 

decline between individuals with AD (2020 Alzheimer’s Disease Facts and Figures, 2020; 

Boyle et al., 2013).

Traditionally, AD cases are initially classified by genetic inheritance pattern and the age 

at onset (AAO) of disease symptoms. Thereafter, AD progression is characterized on a 

continuum based on the extent of cognitive decline and pathological load(s) (Braak et al., 

2006; Braak and Braak, 1991; Markesbery, 1997). The two broad categories of AD are 

early onset AD (EOAD) and sporadic late onset AD (LOAD). EOAD can be subdivided to 

reflect cases that result from mendelian or nonmendelian inheritance of casual mutations. 

Mendelian, or familial, AD (FAD), is characterized by the inheritance of highly penetrant, 

autosomal dominant causal mutations in the genes APP, PSEN1, and PSEN2 (Mendez, 

2017; Tanzi, 2012). These mutations only account for a small percentage of FAD cases, 

and variation in age of onset and severity of symptoms exists among individuals, suggesting 

that additional genetic and environmental factors modify disease pathogenesis and clinical 

manifestation (Ryman et al., 2014). Nonmendelian, or non-familial, EOAD is classified by 

the aggressive onset of cognitive symptoms before the age of 65; however, individuals with 

this form of AD develop symptoms sporadically and have inconsistent inheritance patterns 

(Joshi et al., 2012; Reitz et al., 2020).

LOAD is the most common form of AD, occurring in individuals 65 years and older, with 

highly variable presentation of symptoms, which also vary in severity. Age is the greatest 

risk factor for LOAD, but research suggests that there are also additional causal genetic and 

environmental factors. According to twin and family studies, LOAD is approximately 58% 

to 79% heritable and gene variants in APOE and TREM2 are established LOAD risk factors 

(Belloy et al., 2019; Corder et al., 1993; Gatz et al., 2006; Pedersen et al., 2004; Räihä et 

al., 1996; Roses, 1996; Strittmatter et al., 1993a; Strittmatter et al., 1993b). To date, more 

than 30 genetic risk variants and susceptibility loci have been identified by genome-wide 

association studies (GWAS) or phenome-wide association studies (PheWAS), including 
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CLU, BIN1, ABCA7, and SORL1 (Andrews et al., 2020; Backman et al., 2021; Bellenguez 

et al., 2020; Kunkle et al., 2019; Lambert et al., 2013; Pimenova et al., 2018; Wang et al., 

2016b; Wightman et al., 2021; Zhao et al., 2019). Individually, each AD-associated locus 

or gene variant has a relatively small effect on the likelihood of developing AD. AD risk 

increases with each genetic variant inherited, which overall has an additive effect on AD 

severity; this is referred to as polygenic risk. The compilation of genes identified using 

GWAS allows for the assignment of polygenetic risk scores which can aid in predicting risk 

or disease progression; however, additional factors such as sex and environment also need to 

be taken into consideration to gain a comprehensive understanding of the disease and how it 

manifests in individuals (Dunn et al., 2019).

Recent studies have begun to reprioritize GWAS hits by integrating multiscale data collected 

from relevant brain regions of interest (e.g. hippocampus) to generate network-based 

functional prediction methods and gene-related imaging biomarkers (e.g. brain atrophy) 

(Elliott et al., 2018; Knutson et al., 2020; Meng et al., 2020; Shen et al., 2010; Wachinger 

et al., 2018; Xu et al., 2017). Additionally, GWAS methods and imaging data have been 

aggregated to identify loci associated with image-derived phenotypes (Cruchaga et al., 2013; 

Elsheikh et al., 2020; Furney et al., 2011; Grasby et al., 2020; Hofer et al., 2020; Li et 

al., 2017; Matoba and Stein, 2021; Meda et al., 2012; Nativio et al., 2020; Ramanan et al., 

2015; Smith et al., 2021). Ultimately, this method of combining omics and imaging data to 

link changes in gene expression, the biological pathways associated with those genes, and 

functional and structural changes in the brain, may allow researchers to further assess both 

EOAD and LOAD and potentially narrow down these disease classifications in subtypes.

1.2. Sex differences

Females have a higher prevalence of AD and experience more severe cognitive and 

noncognitive symptoms than men (2019 Alzheimer’s Disease Facts and Figures, 2019). 

Previously, this unequal distribution of cases was attributed to the longer average lifespan of 

females, but in recent years more specific evidence linking sex and AD progression has been 

identified (Mielke et al., 2014). Among those with FAD, global amyloid load and greater tau 

deposition in the frontal, inferior parietal, and temporal lobes was higher in females (Groh et 

al., 2020; Oveisgharan et al., 2018). Interestingly, sex differences in AD development varies 

based on pathology load. Both males and females with low pathology load have similar 

risks of developing AD, whereas in individuals with moderate to high levels of pathology, 

disease risk is greater in females (Barnes et al., 2005). Females diagnosed with AD also 

experience a faster progression of hippocampal atrophy compared to males (Ardekani 

et al., 2016). With increased numbers of study participants to enhance statistical power, 

as well as computational resources and large collaborative research teams, sex-stratified 

GWAS have led to identification of sex-specific genetic factors that drive pathology and 

AD progression (Deming et al., 2018; Nazarian et al., 2019; Prokopenko et al., 2020). 

Expression quantitative trait loci (eQTL) mapping was performed on putative sex-specific 

GWAS loci to identify candidate genes that were associated with a range of AD markers 

for each sex. Using this method, a single nucleotide polymorphism (SNP) of the candidate 

locus MAPT was positively associated with NFT specifically in males (Dumitrescu et al., 

2019). Until recently, sex was typically controlled or adjusted for as a demographic factor in 
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most human studies, but as experiments continue to highlight the importance of sex-specific 

differences in AD risk and development, it is apparent that sex needs to be more thoroughly 

studied in a controlled manner, while taking environmental exposures into consideration, via 

longitudinal investigations.

1.3. Environmental control

The relationship between AD and environmental factors has increasingly become a research 

topic of interest as correlations and comorbidities between AD and modifiable behaviors 

have been uncovered. Strikingly, recent meta-analyses have found that up to 40% of 

dementia and AD cases may be attributed to controllable environmental factors throughout a 

person’s life (Barnes and Yaffe, 2011; Livingston et al., 2020; Livingston et al., 2017). Links 

between the interrelated health factors or AD “exposomes” including diet, exercise, chronic 

stress, other environmental exposures, and AD development have been acknowledged 

(Biessels et al., 2006; Cui et al., 2018; De la Rosa et al., 2020; Finch and Kulminski, 2019; 

McGrattan et al., 2019; Wild, 2012; Yang and Song, 2013). Environmental considerations 

also include investigating epigenetics and gene by environment (GxE) interactions by 

implementing GWAS to better understand genetic regulators of environmental effects and 

provide novel insights and targets for precision medicine solutions (Dhana et al., 2020; 

Eid et al., 2019; Hohman and Kaczorowski, 2020). The list of modifiable environmental 

factors that potentially impact AD progression continues to increase as research techniques 

and technology evolve to better survey large populations. Each of these factors and many 

others play a synergistic role and likely interact with genes to modify expression resulting 

in a certain phenotype. These factors and their effects are conditional in their role in AD 

development and progression (Chouliaras et al., 2010). For instance, aspects of weight 

control have been subjected to evaluation as certain diets and exercise regimes have proven 

to be beneficial to long term health and reduced disease incidence in later life. Reduced 

weight is often seen as a biomarker for AD that can occur even a decade before the onset of 

cognitive symptoms (Barrett-Connor et al., 1996; Buchman et al., 2005; Gillette-Guyonnet 

et al., 2000; Johnson et al., 2006; Wolf-Klein et al., 1992). When relating body mass index 

(BMI) and polygenetic risk scores calculated using all SNPs from a recent AD GWAS 

in humans, lower BMI and higher polygenic risk score significantly predicted conversion 

to AD (Moody et al., 2021). Conversely, early and mid-life increased weight and obesity, 

including that linked to high-fat/high sugar Western diet consumption is associated with 

increased risk of AD and dementia (Naderali et al., 2009; Profenno et al., 2010; Tabassum et 

al., 2020). Overall, studying environmental effects on AD in human populations is extremely 

challenging due to lack of experimental control and wide amount of environmental variation 

humans are exposed to. This is further exacerbated because most studies rely on participant 

self-reporting and these results are often inaccurate and inconsistent (Cherbuin and Anstey, 

2012; Otaegui-Arrazola et al., 2014; Rueda et al., 2015; Singh et al., 2014; Yusufov et al., 

2017). When these inconsistencies are paired with the overwhelming amount of genetic 

diversity among humans, attempts to elucidate GxE interactions that influence AD are 

experimentally difficult.
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1.4. Opportunity to complete longitudinal studies

While sex and environmental factors contribute to the development and progression of 

AD, age is the greatest non-modifiable risk factor and the primary driver of developing 

AD. Disease risk dramatically increases after 60 years of age, but AD is not a normal 

aspect of aging, and not all individuals that exhibit hallmark AD pathology or symptoms 

develop AD (Hebert et al., 2013; Sonnen et al., 2011; Toepper, 2017). The definition of AD 

stages has evolved and become more dynamic as researchers have determined that disease 

development varies between individuals. Initially, the stages of AD were defined at the 

autopsy of individuals that showed clinical signs of AD, like severe memory impairment, in 

life. Postmortem analysis of AD stages were ultimately based on the regional distribution, 

type, and density of brain pathology (Braak and Braak, 1991). Recently, preclinical and 

presymptomatic stages of AD were identified based on pathology in the post-mortem 

analysis of brains of cognitively unimpaired people. This suggests that disease onset can be 

defined differently depending on the evaluation of brain pathology versus clinical symptoms 

(Dubois et al., 2016; Hubbard et al., 1990; Sandberg et al., 2001; Villemagne et al., 

2011). The discovery that AD-related changes in the brain and pathology accumulation 

can begin potentially decades before the onset of clinical symptoms revealed potential 

confounds in previous AD cross-sectional studies that only analyzed individuals with MCI 

and AD versus “cognitively healthy control” subjects, as their control groups could have 

included pre-symptomatic individuals with AD pathology (Aisen et al., 2017; Bennett et al., 

2006; Driscoll and Troncoso, 2011; O’Brien et al., 2009; Price et al., 2009). In addition 

to identifying asymptomatic and prodromal phases of AD, recognition of hallmark AD 

pathology in cognitively intact individuals has also led to the classification of resilience 

and susceptibility to AD-related decline (Aiello Bowles et al., 2019; Driscoll and Troncoso, 

2011; Dumitrescu et al., 2020; Hampel et al., 2019a; Hohman et al., 2016; Negash et al., 

2013; Neuner et al., 2017b; Stern et al., 2020; Walker and Herskowitz, 2020). Longitudinal 

efforts to identify biomarkers and endophenotypes that allow for refined stage assessment 

are more crucial than ever as preclinical stages at which hallmark symptoms are not 

detectable may be an opportune period to engage in disease slowing or prevention measures. 

Additionally, understanding what factors shield resilient individuals versus those that cause 

others to be severely susceptible to AD development may provide key insight for treatment 

advancement (Seto et al., 2021). Longitudinal studies allow for the evaluation of AD as a 

continuum, but most of these studies only follow up with patients for an average of 1–2.5 

years with limited repeated measures (Lawrence et al., 2017). Furthermore, only a few 

longitudinal human studies and designated aging cohorts such as the Religious Order Study, 

Mount Sinai Brain Bank study, or Rush Memory and Aging Project have the capacity to 

comprehensively assess disease progression (Bennett et al., 2018; De Jager et al., 2018; 

Wang et al., 2018). Current human biomarkers measured longitudinally lack the sensitivity 

to identify early disease stages and disease subtypes (Cummings, 2019). Ultimately, there is 

a need for model systems to better investigate the early stages of AD, AD causation, and to 

take a higher resolution look at changes in brain structure that occur with age and disease 

progression, especially during the stage when AD is clinically silent, and no overt symptoms 

are detected.
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1.5. The call for mouse models of AD

Mouse models of AD offer the opportunity to study the disease longitudinally and in a more 

controlled manner to gain a better understanding how it manifests and progresses in humans. 

Mouse models are particularly advantageous because they can provide replicable genomes 

in controlled environments across relatively short lifespans, which can be implemented to 

address gaps in human research. Although many models are pathology-centric, there are 

currently over 205 existing AD mouse models that vary in their presentation of plaques, 

tangles, neuronal loss, gliosis, and synaptic dysfunction (Research Models: Alzheimer’s 

Disease, 2021). These models mostly consist of transgenic, knock-in (KI), or out (KO) 

modifications of single genes or a combination of genes associated with human AD, 

including APP, PSEN1/2, APOE, Trem2, BACE1, BACE2, MAPT and other GWAS-

identified genes on various background strains (Drummond and Wisniewski, 2017). These 

models display AD-related phenotypes that can be accurately assessed and associated with 

disease progression (Götz et al., 2018; Granic et al., 2010; Keene et al., 2016; Romberg et 

al., 2013).

Recapitulating human AD (particularly LOAD) in mouse models has proven difficult; 

therefore, choosing the appropriate AD model mouse population is crucial since many 

models selectively display different aspects of the disease and mouse findings have not 

translated well to humans (Cao et al., 2018; Cummings et al., 2014; Franco and Cedazo-

Minguez, 2014; Jankowsky and Zheng, 2017; King, 2018). A reason for this lack of 

translatability is that most traditional mouse models of AD are made using genetically 

identical mice and lack the genetic diversity present in humans (Moore et al., 2020; Onos et 

al., 2016). While traditional mouse models, which were needed, timely, and useful for their 

era, were a great starting point for using model systems to study AD, it is now apparent that 

they are not the most translationally relevant models available and that genetic diversity is 

crucial for both the development of models and AD mouse research moving forward.

1.6. Translatable mouse models

To combat the limitations of traditional mouse models, mouse models with diverse genetic 

backgrounds have recently been generated and utilized to study AD in a more translational 

manner (Neff, 2019; Neuner et al., 2019a; Neuner et al., 2017a; Neuner et al., 2020; 

O’Connell et al., 2019; Onos et al., 2019; Yang et al., 2021). For example, genetic diversity 

can be added to standard AD mouse models with the incorporation of BXD recombinant 

inbred strains. The BXD panel is the product of independent advanced intercrosses between 

C57BL/6 J (B6) and DBA/2 J (D2) progenitor strains (Peirce et al., 2004). Application of 

the BXD panel is conducive to systems biology approaches, as the panel has a genetically 

defined diverse background that can be easily manipulated in a reproducible manner. The 

BXD family segregates at over five million common genetic variants and more than 140 

strains are currently available (Wang et al., 2016b). These additional BXD strains offer 

greater mapping power and the ability to refine mapping precision (Ashbrook et al., 2021). 

The BXD population has been highly characterized in a variety of studies, creating a 

wealth of phenotyping and omics data (Studies Involving BXD RI Panel, 2021). The BXD 

population was demonstrated to be a valuable resource for creating the first mouse model 

that better recapitulates the complex heterogeneity of genetic, molecular and cognitive 
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features of human cognitive aging and AD (Neuner et al., 2016; Neuner et al., 2019a; 

Neuner et al., 2017a). The AD-BXD population was generated by crossing the commonly 

used B6–5XFAD AD mouse model with strains from the BXD panel. The AD-BXD panel 

offers all of the advantages of the BXD population in an AD mouse model, and, importantly, 

this model mouse panel exhibits a range in age at onset and variation in AD symptom 

severity that is comparable to LOAD in human populations (Neuner et al., 2019b; Neuner 

et al., 2017a; Ryman et al., 2014). This panel also exhibits a high degree of genetic and 

transcriptomic overlap with human LOAD (Heuer et al., 2020; Lambert et al., 2013; Neuner 

et al., 2019a; Neuner et al., 2017a; Wan et al., 2020). Ultimately, genetically diverse panels 

like the AD-BXD that recapitulate multiple facets of AD offer the scientific community a 

more applicable model system to study the genetic mechanisms that modify the onset and 

progression of AD across a population.

1.7. Use of systems biology to better understand the complexity of AD

Following the advent of the amyloid beta cascade hypothesis as a proposed cause of AD, 

numerous clinical trials targeted the reduction and prevention of amyloid plaques in an 

attempt to lessen the symptoms and progression of AD (Hardy and Selkoe, 2002; Hardy 

and Higgins, 1992; Lemere and Masliah, 2010; Reitz, 2012; Schneider et al., 2014). 

None of these trials successfully alleviated pathology progression, neurodegeneration, or 

major long-term symptoms, therefore forcing the research community to acknowledge the 

immense complexity of AD (2020 Alzheimer’s Disease Facts and Figures, 2020; Cao et 

al., 2018; Chen et al., 2017; Langley, 2014). Since this realization, AD researchers more 

commonly utilize systems biology approaches to better understand interactions between 

various systems in the human body and how they impact, and are impacted by, AD 

(Alberghina and Colangelo, 2006; Castrillo et al., 2018; Lista et al., 2016; Rosario et 

al., 2020). The fact that we observe similar disease phenotypes despite differences in 

genetic modulators (ex: between FAD and LOAD) suggests that the different causes of 

disease are not unrelated but are rather likely due to dysregulation of similar biological 

networks. Systems biology is a field of study built on the organization of sub fields 

responsible for complex behaviors and outcomes, including identifying the links between 

genes and behavior according to the net interactions of varying components (Liu, 2005). 

Modern systems biology involves interdisciplinary, data-driven approaches with a greater 

focus on untangling complex interactions between genetic, epigenetic, physiological, and 

environmental factors at multiple system levels within an organism. Recent advancements 

in biotechnology have made this approach more feasible and enable genome-wide and 

multi-omics studies to be conducted with multiple disease-mediated factors (Heuer et al., 

2020; Lam et al., 2020). Systems biology puts a greater emphasis on connection, integration 

and modularity of genes and pathways rather than single causal gene predictions. This 

approach is crucial for the study of complex diseases like AD because their cures require 

multifaceted treatments tested in diverse and translatable models. Development of such 

a treatment requires the implementation and integration of transcriptomics, proteomics, 

metabolomics, genomics, epigenomics, lipidomics, and/or micro-biomics to gain a wholistic 

understanding of complex systems across representative populations (Fig. 1) (Ahn et al., 

2006; Ehrenberg et al., 2003; Hiesinger and Hassan, 2005; Kirschner, 2005; Kitano, 2002b; 

Liu, 2005; Weston and Hood, 2004). Ultimately, the harmonization of multiple data types 
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across various body systems will provide a better method of surveying the many components 

involved in the development and progression of AD.

Expanding beyond correlational analyses, systems biology has also benefitted from the 

advent of causal inference methods in establishing links between genotype and phenotypes, 

and all systems in between (Haas et al., 2016; Shen et al., 2020). Adopting this approach 

to studying AD, national and international human and mouse focused consortia were 

launched to integrate data types to gain a better understanding of the brain and the 

changes that occur in response to onset of AD. Initiatives by The Alzheimer’s Association, 

Human Brain Project, and Foundation for the National Institutes of Health Biomarkers 

Consortium have all taken steps to implement systems biology approaches to studying AD. 

The National Institute on Aging’s AD Translational Research also established programs 

including Accelerating Medicines Partnership- AD (AMP-AD), Molecular Mechanisms 

of the Vascular Etiology of Alzheimer’s Disease (M2OVE-AD), Translational Center 

for Model Development and Evaluation for Late Onset Alzheimer’s Disease (MODEL-

AD), Cognitive Resilience to Alzheimer’s Disease (Resilience-AD), and Neuropsychiatric 

Symptoms in Alzheimer’s Disease (Psych-AD), which are dedicated to uncovering the 

multifaceted roots of AD. Furthermore, there are initiatives dedicated to including specific 

methods such as the Alzheimer’s Disease.

2. AD diagnosis: from the lab to the clinic

2.1. Imaging modalities to assess AD

With advancements in technology, imaging modalities have recently become a highly 

effective method for identifying and monitoring age-and AD-related structural and 

functional changes in the brain. Modern forms of microscopy implemented in mouse models 

allows for better spatial and temporal resolution images than ever before. Cross sectional 

whole 2D and 3D brain mapping at different disease stages and ages can now be used to 

identify regional vulnerability to pathology or changes in specific cell types, especially in 

deeper brain regions difficult to access in vivo (Chen et al., 2018a; Gail Canter et al., 2019; 

Lichtenegger et al., 2018; Munoz-Castaneda et al., 2021; Whitesell et al., 2019). These 

techniques can also be applied in transgenic mice or those injected with specific tracers, 

such as those used to label active neurons during a memory task, to establish connections 

between regional activation and behavior (Roy et al., 2019; Vetere et al., 2017). While the 

application of imaging modalities can be readily applied in mouse models, currently these 

methods have been most thoroughly investigated in humans.

Improvements in in vivo imaging resolution and accessibility now allow for human AD 

diagnoses prior to pathology and atrophy detection at death. The most commonly utilized 

methods include the minimally-invasive magnetic resonance imaging (MRI) and positron 

emission tomography (PET), which give researchers and medical teams a better look at the 

active brain to then make a diagnosis and assess disease state (Marcus et al., 2014; Márquez 

and Yassa, 2019; Scheltens, 2009; Smith, 2002). Various imaging approaches (outlined in 

Table 1) allow for the detection of neural connectivity deficits, the presence and progression 

of pathology, tissue atrophy, and even metabolic measures. These measures can then aid 

in the discovery of brain regions vulnerable to specific measures collected during each 
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imaging processes (Johnson et al., 2012; Pini et al., 2016; Reiman and Jagust, 2012; Teipel 

et al., 2015; Young et al., 2020). Since many features of AD can be detected non-invasively, 

imaging can be readily used to increases the accuracy of clinical assessments and monitored 

longitudinally (Jack et al., 2013; Jack Jr. et al., 2010; Jagust et al., 2006; Karow et al., 2010; 

Oishi et al., 2011; Ota et al., 2015; Zhang et al., 2011). Identification of predictive AD 

biomarkers and patterns in structural and functional changes can be used as endophenotypes 

to relate to other aspects of systems biology to address the biological mechanisms driving 

AD progression. This integration of imaging and omics data collected with systems biology 

approaches, or neuroimaging-omics, is an emerging field dedicated to characterizing genetic, 

biological, and phenotypic clusters which can then be used to develop methods for detecting, 

treating, or possibly preventing disease development with early intervention (Hampel et 

al., 2021; Mroczek et al., 2021; Richiardi et al., 2015). Many neuroimaging-omics studies 

employ machine learning frameworks to multi-modal data to predict potential AD risk in 

MCI and pre-symptomatic patients (Basaia et al., 2019; Khanna et al., 2018; Scelsi et al., 

2018). Neuroimaging-omics has the potential to untangle genetic mutations, gene expression 

patterns, and protein-protein interactions and determine how they are linked to large-scale 

structural and functional network deficits and disease manifestation.

2.2. Technology’s contribution to enhancing the imaging field and AD experiments

Disease characterization and identification of AD biomarkers with imaging analyses have 

significantly progressed due with advances in modern technology. Methods to accommodate 

the large datasets required to power systems biology experiments are being streamlined to 

reduce the significant subjectivity and time commitment previously required to obtain and 

interpret results from imaging studies. Using automated pipelines that incorporate standard 

brain atlases, like the Allen Brain Atlas Common Coordinate Frame, comprehensive 

connectivity maps are being developed to better understand mammalian brain circuitry 

(Denk et al., 2012; Wang et al., 2020). The Mouse Brain Architecture Project, Allen Mouse 

Brain Connectivity Atlas project, and Mouse Connectome Project each have taken on the 

challenge of systematically mapping the spatial profiles and the connectivity of neuronal 

populations throughout the brain (Bohland et al., 2009; Furth et al., 2018; Helmstaedter 

and Mitra, 2012; Mitra, 2014; Oh et al., 2014; Osten and Margrie, 2013). Through these 

investigations and others, a myriad of image analysis pipelines been created to investigate 

links between regional brain activity, gene expression, and behavior (Feng et al., 2015; 

Freeman et al., 2014; Ji et al., 2014; Ng et al., 2009; Renier et al., 2016). Computational 

biologists are also creating these workflows to increase reproducibility, make machine 

learning and automated imaging processing methods more accessible to biologists, and 

allow high-throughput processing across the brain. Semi-automatic registration methods 

with all parameters shared with the scientific community encourage non-experts to analyze 

high resolution MRI, DTI, histology, and two-photon tomography results (Anderson et al., 

2019; Budin et al., 2013; Esteban et al., 2019; Furth et al., 2018; Liu et al., 2020; Niedworok 

et al., 2016; Pagani et al., 2016; Pallast et al., 2019; von Chamier et al., 2021; Winnubst et 

al., 2019; Yates et al., 2019). The recent combination of neuroimaging, computer-aided 

diagnosis techniques, and machine learning methods (e.g. linear discriminant, logistic 

regression, random forest, and neural networks analyses) have allowed researchers and 

clinicians alike to establish data-driven AD classification standards (Basheera and Sai 
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Ram, 2019; Dimitriadis et al., 2018; Leandrou et al., 2018; Liu et al., 2019; Wen et al., 

2020). Integrating multi-omics data is also increasingly more feasible and approachable for 

biologists with the development and improvement of omics technologies aimed at aiding the 

combination and analysis of multiple data types (outlined in Table 2). The availability and 

application of current tools have also been thoroughly reviewed (Adil et al., 2021; Graw et 

al., 2021; Huang et al., 2017; Krassowski et al., 2020; Ma et al., 2020; Misra et al., 2018; 

Nicora et al., 2020; Subramanian et al., 2020; Worheide et al., 2021). One noted drawback 

of many of the mentioned tools in these reviews is that they do not necessarily have the 

capacity to incorporate imaging or behavioral phenotyping data in addition to the varying 

omics data.

Moreover, systematic machine-learning assisted approaches to imaging are no longer 

exclusively restricted to post-processing analyses but also to assist in experimental 

parameter design to enhance microscopy techniques and output. This field of “smart 

microscopy” integrates feedback from the microscope to adjust computer assisted imaging 

algorithms to optimize sample coverage, extend the field of view, or improve spatial 

resolution and signal strength (Durand et al., 2018; He and Huisken, 2020; Mahecic et 

al., 2020; Royer et al., 2016). Researchers are now equipped with the ability to map regional 

behavior-induced brain activity, which can prove to be highly valuable in determining which 

regions, cell types, and circuits are most heavily affected by AD and in response to certain 

tasks assessing clinical symptoms.

3. Incorporating imaging outcomes in mouse systems biology studies to 

predict cognitive outcomes and AD progression

Imaging approaches have proven to be an invaluable resource to the field of AD research 

in terms of assessing changes in neuroanatomy and neural connections; however, attempts 

to link imaging measures and multi-omics data to phenotypic disruptions associated with 

AD in model systems remain scarce. Furthermore, many of these studies are not sufficiently 

powered with the number of mice needed for the application of systems biology approaches. 

Although current approaches for assessing the brain using imaging methods do not allow for 

the discovery of the mechanisms and interacting relationships driving these changes, efforts 

to link imaging measures to cognitive outcomes are underway. Imaging modalities used to 

visually assess disease progression provides researchers with an intermediate to model the 

relationship between structure and function in model mice.

Depending on the study of interest, imaging data is independently compared to or directly 

correlated with cognitive functioning within cohorts of model mice to assess functional 

or connectivity properties in relation to level of AD-related decline. MRI studies using 

a variety of model mouse lines have described changes in regional neuronal activity, 

differences in volume, and structural integrity to identify vulnerable brain regions. For 

example, manganese enhanced MRI (MEMRI) can be used to map complex brain circuits 

involved in spatial memory. Decrease in MEMRI signal after Morris water maze (MWM) 

testing corroborates the reduced neuronal activity in memory circuits typically seen in old 

AD mice (Badea et al., 2019). Similarly, identification of regional atrophy in relation to 
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behavioral outcomes can also be explored. Among several types of AD model populations, 

atrophy at the whole brain level, as well as memory associated areas like the hippocampus, 

entorhinal cortex, amygdala, and temporal association cortex has been observed in mice with 

reduced spatial memory (Liang et al., 2017; Tang et al., 2016). Depending on the mouse line 

used, these changes in brain structure and connectivity can be observed as early as 2 months 

of age, preceding the onset of amyloid deposition and severe cognitive decline (Badea et al., 

2010; Falangola et al., 2007). Studies that validate changes in MRI volume with histology 

provide further evidence that MRI outcomes that identify regional atrophy correspond to 

reductions in neuron counts and poor spatial memory performance (Badea et al., 2019). 

However, currently there is a lack of consensus regarding regional atrophy or enlargement in 

mice and how this difference relates to reduced cognitive performance on memory tasks and 

certain ages (Badhwar et al., 2013; Maheswaran et al., 2009).

Brain metabolism has also been related to cognitive performance using fluorodeoxyglucose 

(FDG) PET. Correlation analyses have showed that hippocampal standardized uptake values 

were significantly correlated with MWM parameters at the symptomatic-AD stage (Li 

et al., 2016). Aged Tg4-42 transgenic animals with compromised spatial memory also 

display neuron loss, regional volume decreases, and hypometabolism – as measured by 

reduced tracer uptake, in the hippocampus, forebrain, hypothalamus, amygdala and midbrain 

(Bouter et al., 2018). Likewise, neuroinflammatory response supported by histology shows 

significant effects of age and genotype on translocator protein (TPSO) tracer uptake in 

the hippocampus and cortex exist in APPswe × PS1Δe9 transgenic mice, but their working 

memory performance greatly varied with age (Chaney et al., 2018). Serial PET measures 

of TSPO and amyloid with terminal spatial memory assessment in PS2APP model mice, 

followed by immunohistochemical analyses of microglia, amyloid, and synaptic density 

revealed that high microglial activation at the onset of amyloidosis (8 m of age) predicts 

better cognitive performance in PS2APP mice at follow-up 5 months later (13 m of 

age), when amyloid pathology is extensive. Highest TSPO PET signal was found in areas 

associated with spatial learning and negatively correlated with Iba1 immunostaining (Focke 

et al., 2019). Conducting multi-modal analyses help in defining a more precise relationship 

between cognitive outcomes and morphological changes of the brain. Moreover, in vivo 2-

photon calcium imaging evaluation of APP23xPS45 mice has shown neuronal hyperactivity 

near Aβ plaques. With this information, a correlation was observed between the formation 

of amyloid plaques, the appearance of hyperactive neurons, and the age-related impairment 

of the spatial learning capability (Busche et al., 2008). Further studies investigating neuronal 

hyperactivity revealed that the function of hippocampal neurons is altered long before that of 

cortical neurons (Busche et al., 2012).

Moving beyond comparisons between imaging measures and behavior, the field is turning 

towards probing neuroimaging-omics interactions in mice (Liu and Liu, 2011). For 

example, genetic mapping of phenotypes derived from imaging data using the BXD 

panel revealed significant quantitative trait loci associated with traits such as hippocampal 

volume (Ashbrook et al., 2014). Cellular and pathology loads calculated using brain-wide 

immunohistochemistry can also be integrated with bulk RNA sequencing data to evaluate 

associations between regional cell counts, gene expression, and biological, molecular, or 

cellular pathways (Gurdon et al., 2020). Moreover, spatial transcriptomics offers the ability 
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to survey regional transcriptional changes in mice. Using this method, molecular changes 

occurring in cells in the vicinity of amyloid plaques can be investigated by characterizing 

gene co-expression networks that appeared to be highly responsive to Aβ deposition. 

The plaque-induced genes (PIGs) are a response in multiple cell types across the brain 

and are implicated to involve the complement system, oxidative stress, lysosomes, and 

inflammation, all of which are more prominent in the later phases of the disease (Chen 

et al., 2020). Furthermore, regions vulnerable to AD-related changes can be honed in 

on to uncover molecular targets, such as those that may contribute to early hippocampal 

synaptic deficits and olfactory dysfunction in AD mice (Navarro et al., 2020). Ultimately, 

these studies and many more incorporate select aspects of systems biology and imaging 

methods to tie together genotype and phenotype; however, many studies that employ 

imaging techniques are lacking complementary omics and behavioral data to achieve a 

comprehensive analysis of brain changes with AD.

4. Refining AD diagnosis with the establishment of subtypes

There is a novel opportunity to more optimally segregate AD into subtypes by combining 

in vivo depictions of AD progression (collected via imaging) with omics data. By refining 

AD diagnoses beyond typical, resilient, or susceptible, researchers will be able to better 

understand the heterogeneity of AD symptoms, manifestation, and causal influences, which 

will be crucial for executing precision medicine approaches and developing successful 

treatments for AD.

Noticing that not all human AD cases neatly follow Braak staging, researchers have begun 

to classify subtypes of AD based on the detection of regional pathology in conjunction 

with clinical data. Early approaches to tackle this discrepancy evaluated cases that had 

severe Braak scores and subdivided them by NFT density and location. Three postmortem 

classifications of typical, hippocampal sparing, or limbic predominant AD were derived 

and further characterized in terms of prevalence in the experimental population, age 

demographics, and rate of cognitive decline exhibited within each subtype (Murray et 

al., 2011). Building on this concept, tau-PET in combination with demographic data, 

clinical outcome measures, and APOE e4 frequency was used to refine these subtypes 

into pathology driven region-specific subtypes prior to death (Armstrong and Wood, 1994; 

Charil et al., 2019; Ossenkoppele et al., 2020; Vogel et al., 2021; Whitwell et al., 2018). 

Recent approaches that further evaluated these subtypes found that there is largely a 

consensus between subtyping based on tau-PET and regional atrophy measured using 

structural MRI methods (Kolanko and Malhotra, 2018; Park et al., 2017; Ten Kate et al., 

2018). Differential patterns of brain atrophy revealed general and reproducible subtypes 

of AD, including typical, limbic-predominant, hippocampal-sparing, mild atrophy, and no 

atrophy (Byun et al., 2015; Ferreira et al., 2017; Karkkainen et al., 2020; Whitwell et 

al., 2012; Zhang et al., 2016). FDG-PET has been implemented as an additional measure 

correlated with regional atrophy to enhance subtype specificity (Huang et al., 2017; Levin 

et al., 2021). Such studies link individuals with hippocampal sparing AD, greater global 

hypometabolism, and reduced executive functioning (Risacher et al., 2017). Importantly, 

while these classifications are beneficial for appreciating the heterogeneity of AD, there are 
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methodological inconsistencies, and unbiased, multi-modal approaches are needed to better 

explore disease mechanism (Mohanty et al., 2020).

With the capacity to combine imaging data with genetic information, unique subtypes 

rooted in clinical phenotypes, omics, and known regions vulnerable to dysregulation can 

be classified. Understanding subtypes of AD can allow researchers to develop targeted 

treatments and clinicians to better predict disease course in patients. By clustering 

differentially expressed genes and conducting weighted network analyses, tau-mediated 

neurodegeneration, amyloid-β neuroinflammation, and synaptic signaling subtypes were 

developed (Neff et al., 2021). These subtypes are well represented in complementary 

mouse models, including the AD-BXD mouse panel (Philip et al., 2021, unpublished 

personal communication). Since these subtypes were identified as independent of age 

and disease severity, there is potential for supplemental data types to be incorporated to 

promote the identification of predictive factors that can then be tested longitudinally. More 

specially, studying in vivo functional neuroimaging outcomes in combination with other 

systems biology approaches in transgenic mice may yield important insights regarding the 

mechanisms that underlie the development of different AD subtypes (Fig. 2).

Precision medicine is driven by the application of high-throughput systems biology, 

powerful computational and statistical modeling tools, and the integration of asymptomatic, 

preclinical, and clinical datasets to identify and connect novel causal mechanisms of AD 

(Castrillo et al., 2018; Hampel et al., 2016; Hampel et al., 2018). The resulting subtypes 

and networks identified foster precise early preclinical detection, effective prevention, 

and personalized disease modifying treatments (Collins and Varmus, 2015; Hampel et 

al., 2019b; Uddin et al., 2019). To attain this level of understanding of AD mechanism 

and manifestation, large-scale model organism experiments that survey translatable AD 

biomarkers need to be performed (Fig. 2).

5. Future directions of systems biology and use of imaging modalities to 

evaluate AD progression

Systems biology has the potential to change how AD is defined and translated from bench 

to bedside. Human studies have demonstrated that identifying structural and functional 

relationships using in vivo imaging data combined with clinical outcomes has increased 

our understanding of disease outcomes. Expanding and building upon these studies using 

model mouse populations will allow researchers better control and the ability to manipulate 

mechanistic networks across various scales of biology and environmental exposures. 

Applying systems biology approaches to large reproducible cohorts will be a crucial step 

toward identifying predictive AD biomarkers, establishing predictive models, and creating 

precision medicine solutions.

While the benefits of these approaches are clear, there are current challenges to applying 

imaging modalities and systems biology. Taking a systems biology approach to investigating 

precision medicine solutions to AD necessitates large sample sizes. Current human studies 

require hundreds to thousands of individuals to map genetic risk loci or correlate biomarkers 

with clinical outcomes (Ard and Edland, 2011; Brookmeyer and Abdalla, 2019; Ederer et 
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al., 1993; Grill et al., 2013). To achieve more confident results from genetic mapping, the 

same is also needed in mouse studies. Large sample sizes are essential to pursue multimodal 

analyses of varying biological systems and scales. Monetary and time investments can 

also greatly influence the feasibility to complete these studies, but a well powered study 

in an appropriate model has the potential to significantly contribute to the understanding 

and mechanisms of AD. Moreover, applying imaging modalities to large systems biology 

datasets requires a significant amount of data processing, which presents the opportunity to 

introduce user bias. To combat this, the field is pushing towards standardization of imaging 

acquisition and processing methods (Mueller et al., 2005; Whitesell et al., 2019). Even when 

using identical mouse models and similar imaging approaches, independent labs can achieve 

varying results for measures like rate of amyloid plaque accumulation or regional levels 

of atrophy (Kolinger et al., 2021; Mannheim et al., 2018; Morbelli and Bauckneht, 2018; 

Osborne et al., 2017). This lack of consistency makes it difficult to combine and compare 

results, and for these reasons, all processing parameters should be disclosed to promote 

reproducibility (Eisenstein, 2020). The creation of centralized data portals and collaborative 

efforts have promoted this type of synchronicity (Hodes and Buckholtz, 2016; Kitano, 

2002a). These sites provide researchers a platform to collaborate, contribute their own data, 

or to analyze data from other groups (Table 3). Furthermore, another area the AD imaging 

field can improve upon is in the analysis of subjective regions of interest (Simpson et al., 

2021). Manual stereology or delineation is based on the user’s experience and anatomical 

knowledge. Even the scope and use of machine learning and artificial intelligence guided 

methods is biased by users as they set training parameters. Use of more automated pipelines 

and standard brain atlases aid in reducing the subjectivism of quantifying and reporting 

region specific measures (Bjerke et al., 2018; Boline et al., 2008; Hawrylycz et al., 2011; 

Hjornevik et al., 2007; Johnson et al., 2010; Wang et al., 2020). High throughput studies 

including many regions of interest or brain-wide approaches can give a more comprehensive 

large-scale look at the changes that occur with disease status.

6. Conclusion

Integrating multiple imaging modalities with the various omics of systems biology permits 

a thorough investigation of AD and its interacting components across various biological 

systems and scales. The need to incorporate many imaging and omics methods to study 

individual humans or mouse strains pays tribute to the complexity of this disease. Modelling 

AD in mice offers the advantage of parsing out the interacting components underlying AD 

manifestation in a controlled fashion. Evaluating a wide variety of strains, samples, and 

methods within translationally relevant mouse panels enables researchers to untangle the 

mechanisms perturbed in the different subtypes of AD. AD progression is viewed as a 

spectrum, but patterns of interacting levels of systems biology (e.g. genomic, transcriptomic, 

or metabolomics relationship to neural connectivity) are evident and are the foundation 

for classifying mouse models and human individuals into AD subtypes. Categorizing 

individuals’ disease subtypes paves the way towards fully understanding the complexity 

of AD, how it manifests differently among individuals, and eventually, precision medicine 

solutions.
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Fig. 1. 
Analyzing the Interacting Components of System Biology in the Study of Alzheimer’s 

Disease (A) The study of systems biology and the discovery of genotype to phenotype 

relationships involves the interaction of multiple levels: 1. biological systems, 2. 

environmental perturbations, 3. biological scales, and 4. clinical traits. (B) Because AD 

is a complex disease, modeling of biological networks is required to test and discover the 

relationship between factors and mechanisms. Combinations of single or multiple factors 

from each biological and environmental scale (A:1–4) should be included in models to 

determine the correlation between data types and resulting clinical outcomes. (B) shows 

a hypothetical model of how the factors from (A) could interact. Each factor can impact 

others with varying weights of influence indicated by the width of the arrows. (Created with 

BioRender.com).
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Fig. 2. 
Utility of animal models and systems biology approaches for precision medicine solutions 

(A) Using a translationally relevant and diverse model mouse population, (B) a vast 

amount of longitudinal imaging and omics data can and has been collected to develop 

predictive networks and (C) identify drivers of resilience. (D) These identified modulators 

can guide the classification of AD subtypes. Subtypes reflect a pattern or prevalence of 

the collected imaging and omics endophenotypes measures. Single or groups of mouse 

strains can then be classified into these subtypes based on the display of similar traits, 

and if available, compared to established human subtypes. Mice sorted into these subtypes 

can then directly enter the precision medicine discovery drug cycle. (E) We recently tested 

AD-BXD strains against established human AD subtypes to define human relevant subtypes 

from hippocampal RNAseq data. (F) Mouse subtypes that appropriately align with human 

subtypes will then proceed through the pipeline. In vitro models that recapitulate the cellular 

and molecular profiles of each subtype can be create and implemented to conduct compound 

screens. Measures of neurodegeneration, synapse number and type, axonal degeneration, and 

neuron excitability can be quantified to assess the result of each compound on the model 

system. (G) The efficacy of a select compound’s ability to alter disease course in mice of 

certain subtypes can then be assessed in vivo with cognitive phenotyping. Overall outcomes 

of this pipeline will enable precision medicine solutions to be identified per disease subtype 

and then potentially applied in clinical trials for humans or to refine the selection of mouse 

strains in future discovery trials. (Created with BioRender.com).
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Table 2

Tools for multi-omics integration, viewing, and analysis.Can Table 2 and 3 be widen and displayed as one data 

frame like Table 1 is formatted in the PDF? Each table is currently split in the proof.

Tools to view and/or 
analyze multi-omics 
datasets

Purpose of tool Platform Citation

Multi-Omics Factor 
Analysis (MOFA)

• Statistical method for integrating multiple modalities of omics 
data in an unsupervised fashion

• MOFA disentangles to what extent each factor is unique to a 
single data modality or is manifested in multiple modalities

Python 
(mofapy2) 
and R 
(MOFA2)

(Argelagu et al., 
2018)

MixOmics • Classify or discriminate sample groups, to identify the most 
discriminant subset of biological features, and to predict the 
class of new samples

R Package (Rohart et al., 
2017b)

MixOmics: 
Multivariate 
INTegrative method 
(MINT)

• Integrates independent data sets while simultaneously, 
accounting for unwanted study variation, classifying samples, 
and identifying key discriminant variables

R package (Rohart et al., 
2017a)

MixOmics: Data 
Integration Analysis 
for Biomarker 
discovery using 
Latent cOmponents 
(DIABLO)

• A multi-omics method that simultaneously identifies key omics 
variables (mRNA, miRNA, CpGs, proteins, metabolites etc.) 
during the integration process and discriminates phenotypic 
groups

• DIABLO maximizes the common or correlated information 
between multiple omics datasets

R package (Singh et al., 
2019)

Similarity network 
fusion (SNF)

• Similarity network fusion (SNF) constructs networks of 
samples for each available data type and then efficiently fusing 
these into one network that represents the full spectrum of 
underlying data

• Uses similarity networks of samples as a basis for integration

R and Matlab 
Code

(Wang et al., 
2014)

Paintomics • Integrative visualization of multiple omic datasets onto KEGG 
pathways

Web-based (Hernandez-de-
Diego et al., 2018)

3Omics • Visualize and rapidly integrate multiple human inter-or 
intra-transcriptomic, prote-omic, and metabolomic data by 
combining correlation networking, coexpression, phenotyping, 
pathway enrichment, and GO (Gene Ontology) enrichment 
analysis methods

Web-based (Kuo et al., 2013)

JIVE • Quantifies the amount of joint variation between data types, 
reduces the dimensionality of the data, and provides new 
directions for the visual exploration of joint and individual 
structure

R Package (Lock et al., 2013)

MiBiOmics • Enables the exploration, integration, analysis and visualization 
of up to three omics datasets. Through the primary exploration 
of a dataset, the inference of biological networks and the 
extraction of multi-omics associated features, the application 
provides a ready-to-use analysis pipeline to interactively 
explore sources of variability and variables of interest in a given 
biological dataset, as well as associations between multi-omics 
features in multi-scale studies

Web-based (Zoppi et al., 
2021)

Multi-Omics Graph 
cOnvolutional 
NETworks 
(MOGONET)

• Explores omics-specific learning and cross-omics correlation 
learning for effective multi-omics data classification

• Supervised multi-omics integrative method that utilizes graph 
convolution networks for omics data learning to perform 
effective class prediction on new samples

Python 
Package

(Wang et al., 
2021)
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Tools to view and/or 
analyze multi-omics 
datasets

Purpose of tool Platform Citation

Survival Analysis 
Learning with 
Multi-Omics Neural 
Networks (SALMON)

• Fuses the gene co-expression network analysis, deep learning 
techniques, feature selection, Cox proportional hazard model, 
integrative analysis, and module-level enrichment analysis 
altogether

Python 
Package

(Huang et al., 
2019)

NEMO 
(NEighborhood 
based Multi-Omics 
clustering)

• Algorithm for multi-omics clustering

• Can be applied to partial datasets without performing data 
imputation

R Package (Rappoport and 
Shamir, 2019)

Galaxy • Enables users to perform integrative omics analyses by 
providing a unified, web-based interface for obtaining genomic 
data and applying computational tools to analyze the data

Web-based (Boekel et al., 
2015)

Argonaut • Code-free platform for creating customizable, interactive data-
hosting websites

• Carries out real-time statistical analyses of the data, 
Collaborating researchers worldwide can explore the results, 
visualized through popular plots, and modify them to 
streamline data interpretation

Web-based (Brademan et al., 
2020)

Alzheimer’s Disease 
Alternative Splicing-
Viewer (ADAS)

• Provides researchers with the ability to comprehensively 
investigate and visualize multi-omics data from multiple brain 
regions of AD patients

Web-based (Han et al., 2021)

Genome-wide 
Positioning Systems 
platform for 
Alzheimer’s Drug 
Discovery (AlzGPS)

• A comprehensive systems biology tool to enable searching, 
visualizing, and analyzing multi-omics, various types of 
heterogeneous biological networks, and clinical databases for 
target identification and development of effective prevention 
and treatment for AD.

Web-based (Zhou et al., 2021)
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Table 3

General multi-omics and AD specific data portals and platforms.

Data portal Portal description Citation

OpenNeuro • A free and open platform for validating and sharing Brain 
Imaging Data Structure (BID)S-compliant MRI, PET, MEG, 
EEG, and iEEG data

https://openneuro.org/

Enhancing Neuro 
Imaging Genetics 
Through Meta-
Analysis (ENIGMA)

• Consortium to bring together researchers in imaging genomics to 
understand brain structure, function, and disease, based on brain 
imaging and genetic data

http://enigma.ini.usc.edu/

Encyclopedia of DNA 
Elements (ENCODE)

• A comprehensive list of functional elements in the human 
genome, including elements that act at the protein and 
RNA levels, and regulatory elements that control cells and 
circumstances in which a gene is active

https://www.encodeproject.org/

Synapse by Sage 
Bionetworks

• A collaborative, open-source research platform that allows teams 
to share omics, imaging, and phenotypic data, track analyses, 
and collaborate

The AD Knowledge Portal, Brain Somatic Mosaicism Network Portal, Cancer 
Complexity Knowledge Portal, dHealth Digital Health Knowledge Portal, 
Neurofibromatosis Portal, and Psychencode Knowledge Portal is powered by 
Synapse

https://www.synapse.org/

Accelerating 
Medicines Partnership 
Program for 
Alzheimer’s 
Disease (AMP-AD) 
Knowledge Portal

• Collection of multi-omics data, methods, and results generated 
within the network are distributed under FAIR Distribution of 
data principles from: Accelerating Medicines Partnership in 
Alzheimer’s Disease (AMP-AD), Molecular Mechanisms of the 
Vascular Etiology of AD (M2OVE-AD) program, Resilience-
AD program; (3) the Psych-AD program, Translational Center 
for Model Development and Evaluation for Late Onset AD 
(MODEL-AD) program.

https://
adknowledgeportal.synapse.org/

AGORA • Hosts evidence for whether or not genes are associated with AD. 
Agora also contains a list of close to 100 nascent drug targets for 
AD that were nominated by AD researchers

Partnered with NIH-led Accelerating Medicines Partnership – Alzheimer’s 
Disease (AMP-AD) Target Discovery and Preclinical Validation Project

https://sagebionetworks.org/
tools_resources/agora/

Alzheimer’s Disease 
and Healthy Aging 
Data Portal

• Provides access to national and state level CDC data on a range 
of key indicators of health and well-being for older adults

https://www.cdc.gov/aging/
agingdata/

Single-cell RNA-
Seq database for 
Alzheimer’s disease 
(scREAD)

• A single-cell RNA-Seq database for Alzheimer’s Disease 
scREAD covers 73 datasets from 16 studies, 10 brain regions, 
713,640 cells

https://bmbls.bmi.osumc.edu/
scread/

Alzheimer’s Disease 
Neuroimaging 
Initiative (ADNI)

• ADNI researchers collect, validate and utilize data, including 
MRI and PET images, genetics, cognitive tests, CSF and blood 
biomarkers as predictors of the disease. Study resources and 
data from AD patients, mild cognitive impairment subjects, and 
elderly controls in the North American ADNI study are available

http://adni.loni.usc.edu/

The National Institute 
on Aging Genetics of 
Alzheimer’s Disease 
Data Storage Site 
(NIAGADS)

• NIAGADS provides qualified investigators with access to a 
national genetics data repository pertaining to late-onset AD.

• This site ensures that genotypic data for the study of AD and 
related dementias (ADRD) are harmonized and shared with the 
research community at large

https://www.niagads.org/

National Alzheimer’s 
Coordinating Center 
(NACC)

• Established by the National Institute on Aging/NIH to facilitate 
collaborative research by collecting data from 29 NLA-funded 
Alzheimer’s Disease Centers. NACC includes approximately 
25,000 subjects, roughly equal parts cognitively normal, MCI 
and demented.

https://www.alz.washington.edu/
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Data portal Portal description Citation

• Includes imaging, CSF, and genomic data at autopsy and cross-
sectional timepoints

Global Alzheimer’s 
Association 
Interactive Network 
(GAAIN)

• A big-data community for cohort discovery and data exploration 
that promotes data sharing among a federated, global network of 
data partners who are studying AD and other dementias.

• It is a collaborative project that provides researchers with access 
to clinical, genetic, and imaging data on Alzheimer’s disease 
from hundreds of thousands of subject participants

http://www.gaain.org/

The Rush Alzheimer’s 
Disease Center 
(RADC) Research 
Resource Sharing Hub

• Site for non-RADC investigators to navigate the complex data 
and biospecimens available for sharing

• Provides assistance in identifying data and biospecimens that 
you can use to support your own projects

https://www.radc.rush.edu/

Alzheimer’s Disease 
Cooperative Study 
(ADRCS)

• Develop and execute innovative clinical trials focused on 
interventions that may prevent, delay, or treat the expression of 
AD and related dementias

• Committed to sharing resources and tools including data, 
biospecimens, trial designs, outcome and analysis measures

https://www.adcs.org/
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