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Abstract

Mitochondrial function and metabolic homeostasis are integral to
cardiovascular function and influence how vascular cells respond
to stress. However, little is known regarding how mitochondrial
redox control mechanisms and metabolic regulation interact in
the developing lungs. Here we show that human OLA1 (Obg-like
ATPase-1) couples redox signals to the metabolic response
pathway by activating metabolic gene transcription in the
nucleus. OLA1 phosphorylation at Ser232/Tyr236 triggers its
translocation from the cytoplasm and mitochondria into the
nucleus. Subsequent phosphorylation of OLA1 at Thr325
effectively changes its biochemical function from ATPase to
GTPase, promoting the expression of genes involved in the
mitochondrial bioenergetic function. This process is regulated by
ERK1/2 (extracellular-regulated kinases 1 and 2), which were
restrained by PP1A (protein phosphatase 1A) when stress abated.
Knockdown of ERK1 or OLA1 mutated to a phosphoresistant
T325A mutant blocked its nuclear translocation, compromised
the expression of nuclear-encoded mitochondrial genes, and
consequently led to cellular energy depletion. Moreover, the
lungs of OLA1 knockout mice have fewer mitochondria, lower

cellular ATP concentrations, and higher lactate concentrations.
The ensuing mitochondrial metabolic dysfunction resulted in
abnormal behaviors of pulmonary vascular cells and significant
vascular remodeling. Our findings demonstrate that OLA1 is an
important component of the mitochondrial retrograde
communication pathways that couple stress signals with
metabolic genes in the nucleus. Thus, phosphorylation-dependent
nuclear OLA1 localization that governs cellular energy
metabolism is critical to cardiovascular function.

Keywords: pulmonary hypertension; pulmonary vascular cells;
phosphorylation; OLA1; mitochondrial energy metabolism

Clinical Relevance

Decreases in mitochondrial biogenesis and function
accompany cardiovascular diseases. Our studies
demonstrated that the Thr(T325) phosphorylation form of
OLA1 (Obg-like ATPase-1) determines the mitochondrial
content and function of vascular endothelial cells.
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Proper functioning of mitochondria is central
to cellular homeostasis and organismal
health. Thus, diverse signaling mechanisms
respond to alteredmitochondrial function to
prevent cell death when various sensor
molecules activate transcription factors or
cofactors that regulate metabolic stress
responses (1–6). In return, mitochondria
respond to nuclear commands by feeding
information back to the nucleus that modifies
or regulates gene expression patterns, thereby
restoring cellular homeostasis (6). Central to
these processes are mitochondria that sense
and integrate stress signals into the nucleus
(1, 7, 8). Thus, the nucleus’s decision to
maintain health or promote disease critically
depends on responses initiated locally within
mitochondria.

Cells use diverse protein kinases for
dynamic two-way communication between
mitochondria and the nucleus (5, 9, 10).
Several kinases and phosphatases that add or
remove a phosphate group to or from
protein targets are ubiquitously expressed in
mammalian cells (11). Notably, ERK1/2
(extracellular-regulated kinases 1 and 2),
which are ubiquitously expressed, are stress

responders. Activating ERK1/2 through
phosphorylation induces signaling cascades
within the cell to promote cellular
homeostasis (12, 13). To prevent
overactivation, these kinases are inactivated
by protein phosphatases that
dephosphorylate them or their protein
targets. Hence, cells adapt to and resist stress
by preserving the number, integrity, and
function of mitochondria through intricate
cross-talk among signaling pathways,
kinases, and phosphatases (14).

Human OLA1 (Obg-like ATPase-1)
belongs to a large family of GTPases
belonging to the TRAFAC (translation
factor) class and YchF subfamily (15).
Although it is a member of the GTPase
family, OLA1 can hydrolyze ATP and GTP
(15). The protein is ubiquitously expressed in
all tissues, including pulmonary artery
endothelial cells (PAECs) and smooth
muscle cells (16). The OLA1 protein consists
of a central guanidine domain flanked by a
coiled-coil ATPase domain and a C-terminal
TGS (17). Although its function in cell
biology is mostly uncharacterized, OLA1 is
involved in DNA repair, tumorigenesis, cell

cycle regulation, and cellular stress response
to oxidative and heat stresses (16, 18–21).
Not surprisingly, aberrant OLA1 expression
is detected in human cancers, and its
expression positively correlates with tumor
progression (22–24). Importantly, it has been
reported that OLA1 in tumor cells promotes
mitochondrial energy metabolism by
interacting with ZFAS1 (ZNFX1 antisense
RNA 1), a long-coding RNA, and increases
glycolysis by downregulating the expression
of enzymes involved in oxidative
phosphorylation (22). Accordingly, knocking
OLA1 down reduces glycolysis and tumor
progression (25). Contrarily, despite many
similarities, persistent pulmonary
hypertension of the newborn (PPHN) is not
a sheer mimic of cancer but exhibits unique
characteristics. For example, decreased
pulmonary OLA1 expression is reported in
patients with PPHN. Furthermore, unlike
in tumor cells, knocking OLA1 down in
vascular cells increases glycolysis and cell
death (16). One plausible explanation for
this dichotomous behavior is that the
biochemical function that enables the
protective function of OLA1 in vascular cells
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Figure 1. OLA1 (Obg-like ATPase-1) deletion precipitates cardiopulmonary remodeling. (A) Representative images of lung sections immunostained
with anti-OLA1 antibodies, anti-CD31 antibodies, anti-aSMA (a-smooth muscle actin) antibodies and counterstained with DAPI in female wild-type
(WT) mice killed on P7 (scale bar, 50 mm). (Ba and Bb) Bar charts of mouse weight in grams on P7: (Ba) WT versus knockout (KO), male (n=8),
and (Bb) WT versus KO, female (n=5), killed on P7. *P, 0.0001 (Student’s t test). (C) Representative tracing of right ventricular (RV) pressure over
time in WT mice and Endo-OLA12/2 mice (male) on P7 (n=5). *P, 0.0002 (Student’s t test). (D) Representative images of lung sections
immunostained with anti-aSMA antibodies and counterstained with DAPI showing small PAs in WT mice (upper panels) and Endo-OLA1 KO mice
(lower panels) (male) killed on Day 10 (scale bar, 50 mm; n=5). *P, 0.0001 (Student’s t test). (Ea) Representative images of heart sections stained
with hematoxylin and eosin (upper panels) and Masson’s trichome (lower panels) from WT mice and Endo-OLA1 KO mice (scale bar, 1 mm). The
number represents the percentage of interstitial fibrosis (n=3, male, killed on P7). (Eb) Bar chart plots of the weight of the RV wall normalized to
the weight of the LV plus the interventricular septum (Fulton index) (male, n=5). *P,0.0001 (Student’s t test). (F) Representative images of lung
sections stained with anti-CD31 and counterstained with DAPI (scale bar, 50 mm). Bar chart depicts the ratio of CD31 to DAPI signal intensity in 10
areas of the lungs (n=4, male, on P7). *P, 0.005. Data are expressed as mean6SEM, and statistical significance was assessed using one-way
ANOVA. (G and H) Bar charts showing viability (G) and migration (H) of MLECs isolated from male WT mice and Endo-OLA1 KO mice (P7, n=5).
*P,0.001 (G) and P,0.002 (H) (Student’s t test). (I) Bar chart showing proliferation in mouse lung microvascular SMCs from WT mice and Endo-
OLA1 KO mice (n=5). *P,0.00321 (Student’s t test). LV= left ventricle; MLEC=mouse lung microvascular endothelial cell; OD260nm=optical
density at 260 nm; P7=Postnatal Day 7; PA=pulmonary artery; SMC=smooth muscle cell.
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differs from the one that promotes tumor
progression. Given that mitochondrial
dysfunction accompanies cardiovascular
diseases (3, 25–29), it is of biological
importance to characterize the mechanism
underlying OLA1’s mitochondrial protective
function.

Here, we show that the post-
translational form of OLA1 dictates its
biological activity. When phosphorylated
on T325, OLA1 effectively transforms into
a transcription factor and translocates into
the nucleus, enhancing the synthesis of
nuclear-encoded mitochondrial proteins.
Thus, our results indicate that
phosphorylation-dependent OLA1 nuclear
localization activates mitochondrial gene
expression to promote cellular energy
metabolism.

Methods

Details are provided in the data supplement.

Results

OLA1 Depletion Precipitates PPHN
Vascular Phenotypes
OLA1 is expressed in mouse lung endothelial
cells (MLECs) andmouse lung smooth
muscle cells (Figure 1A; see Figure E1A in the
data supplement). To examine the effects of
OLA1 depletion on lung vascular
development, we used an inducible OLA12/2

mouse model (Endo-OLA12/2). On
Postnatal Day 7, Endo-OLA12/2 mice
weighed less than wild-type (WT)mice
(15–226 6.2% [male] vs. 20–356 1.9%

[female]) (Figure 1B), suggesting that OLA1
might be required for fetuses to achieve their
growth potential. Because growth retardation
(intrauterine growth restriction) is an
independent variable in PPHN pathobiology
(30, 31), we compared right ventricular
systolic pressure (RVSP) betweenWT and
Endo-OLA12/2 mice. InWTOLA1mice,
RVSP was 196 10 mmHg, whereas in age-
and sex-matched OLA1 knockout mice, it
was 35–426 12mmHg (Figure 1C).
Although RVSP values varied among OLA1
knockout mice, they were consistently greater
than 35mmHg. This variation could be due
to the experimental approach used here
(RVSPmeasurements were made onmultiple
days) but may also reflect the fact that
pulmonary vascular resistance may vary
among these mice. Nevertheless, it was
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Figure 2. OLA1 deletion decreases the mitochondrial bioenergetic function of vascular cells. (A) Bar chart showing mRNA concentrations of
select nuclear-encoded mitochondrial genes (Tomm20 [translocase of outer mitochondrial membrane 20], VDAC2 [voltage-dependent anion
channel 2], QUCRC1, and ATP5A1) in WT mice and Endo-OLA1 KO lungs. GAPDH and 18S were used as housekeeping genes (n=6). Fold
changes are expressed as mean6SEM, and statistical significance was assessed using two-way ANOVA. *P, 0.0001, &P , 0.0001,
#P, 0.0001, and **P,0.0001. (B) Bar chart showing mitochondrial copy numbers in WT mice and Endo-OLA1 KO lungs (male, killed on P7).
BECN1 (beclin 1) and NEB (nebulin) (nuclear) gene expression concentrations were normalized against concentrations of TrLEV and 12S
(mitochondrial) genes (n=5). Data are expressed as mean6SEM, and statistical significance was assessed using 2-way ANOVA. *P,0.0001.
(C) Representative ultrastructural images of mitochondria in endothelial cells from WT mice and Endo-OLA1 KO lung (male, killed on Postnatal
Day 9). The orange arrows point to a mitochondrion. An AMT NanoSprint 12 camera system was used, with exposure for 2,000 ms3 2 SD
(gain=1, bin=1) (scale bar, 800 nm; direct magnification of 25,000). (D) Graph of oxygen consumption of human neonatal pulmonary artery
endothelial cells (PAECs) and PAECs transfected with siRNAs targeting native OLA1. Data represents oxygen consumption in 20,000 over time
after cell treatment with oligomycin, FCCP, and rotenone (n=4). Data were corrected against protein concentrations measured using
bicinchoninic acid assay. Data are expressed as mean6SEM, and statistical significance was assessed using a two-sided unpaired Student’s
t test. (Da and Db) Scatter plots of maximum respiratory capacity (pmol/min in normal PAECs and OLA1 depleted PAECs, n=3, 10 data points
were plotted *P, 0.0001, Student’s t test. D(c) scatter plots of ATP production in normal PAECs and OLA1-depleted PAECs (n=3, 10 data point
per sample, &P, 0.00005, Student’s t test. (Dc and Dd) Graph (Dc) and bar chart (Dd) of extracellular acid production in normal PAECs and
OLA1-depleted PAECs (n=4) *P,0.002 and &P, 0.002 (Student’s t test). CTR=control; ECAR=extracellular acidification rate;
FCCP= trifluoromethoxy carbonylcyanide phenylhydrazone; QUCRC1=ubiquinol-Cytochrome C reductase core protein 1.
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evident that OLA1 deletion in endothelial
cells precipitated pulmonary hypertension
after birth. Moreover, histological sections of
Endo-OLA12/2 mouse lungs revealed
muscularization and remodeling of normally
nonmuscularized pulmonary arteries
compared with maleWTmice (Figure 1D).
Histological sections of Endo-OLA12/2

hearts showed classic signs of right ventricular
remodeling due to persistently elevated
pulmonary vascular resistance (Figure 1E,
upper panels), associated with some degree of
cardiac fibrosis (Figure 1E, lower panels).
Moreover, Endo-OLA12/2 lungs have
decreased lung vascular density compared
with those inWTmice (Figure 1F). Although
MLECs from Endo-OLA12/2 mice were
apoptotic andmigrated less than those from
WTmice (Figures 1G and 1H), mouse lung
smoothmuscle cells proliferated excessively
in vitro (Figure 1I). These results suggest that
OLA1may be required for lung vascular
development.

OLA1 Depletion Decreases
Mitochondrial Function
Because decreases in mitochondrial
biogenesis and function often accompany

PPHN and other cardiovascular diseases
(29–31), we proposed that OLA1 is
essential for regulating mitochondrial stress
responses during development. To this end,
we compared the expression of select
mitochondrial genes between WT and
Endo-OLA12/2 mice. RT-qPCR analysis
revealed decreased mRNA concentrations of
nuclear-encoded mitochondrial proteins
related to mitochondrial structure, protein
complexes, and anion channels in Endo-
OLA12/2 lungs relative to WT mice
(Figure 2A). Furthermore, Endo-OLA12/2

lungs contain fewer mitochondria than WT
mice (Figure 2B). In addition, the
remaining mitochondria inMLECs from
Endo-OLA12/2 lungs are structurally
abnormal, with cystic dilatations and the
absence of cristae and matrix proteins,
whereas those inWT-MLECs appeared
normal (Figure 2C). Accordingly, OLA1-
depleted PAECs exhibited decreases in
maximum respiratory capacity and ATP-
linked oxygen consumption (Figure 2D),
with an increase in extracellular acid
production relative to control PAECs
(Figure 2E). These results suggest a crucial
role for OLA1 in maintaining

mitochondrial content, structure, and
function.

OLA1 Relocates into the Nucleus
upon Cellular Stress
A closer examination of OLA1 subcellular
localization revealed that OLA1 localizes in
the cytoplasm and nucleus in lung cells
(Figure 3A). Within the cytoplasm, OLA1
has a strong presence in mitochondria.
Costaining with a mitochondrial marker,
Tomm20 (translocase of outer mitochondrial
membrane 20), showed that OLA1 localizes
in the outer mitochondrial membrane
(Figure 3B). The specificity of the
immunostaining was confirmed by
proteinase K assay. The digestion of the outer
mitochondrial membrane by proteinase
K for 20 minutes reduced the expression of
OLA1 in mitochondria from PAECs
(Figure 3C). Similarly, 0.5% Triton-X 100
(T9284, sigma) decreased the expression of
OLA1 in the cytoplasm andmitochondria.
This result, for the first time, identifies OLA1
as a mitochondrial protein. We validated this
result using a series of OLA1 domain
deletion constructs (Figure 3D).
Protein–protein interaction analyses revealed
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that OLA1 interacts with mitochondria via
its C-terminal TGS domain (Figure 3E).
Because analysis of the OLA1 sequence did
not reveal any classic mitochondrial
presequence (mitochondrial localization
signal), our results suggest that the
mitochondrial localization of OLA1 is likely
driven by an internal mitochondrial

localization signal located between amino
acids (amino acids 181–396). Because OLA1
is also detected in the nucleus, we proposed
that OLA1 translocates frommitochondria
into the nucleus, where it promotes
mitochondrial function during stress. To this
end, we assessed OLA1 nuclear localization
in response to stress using multiple stressors,

including hypoxia (1% O2 for 48 h),
hydrogen peroxide (H2O2), and
trifluoromethoxy carbonylcyanide
phenylhydrazone. Not surprisingly, OLA1
accumulated in the nucleus of PAECs
exposed to acute hypoxia (Figure 3F),
trifluoromethoxy carbonylcyanide
phenylhydrazone (see Figure E1B), and H2O2

treatment (Figure 3G). Concomitantly, the
expression of OLA1 in the cytoplasm
decreased, though less evidently in
mitochondria, given their low yield in
endothelial cells. Importantly, two distinct
forms of OLA1 were detected in nuclear
fractions fromH2O2-treated cells, with one
isoform having a molecular weight higher
than the expected 45 kD for OLA1,
suggesting that OLA1may undergo post-
translational modifications that drive its
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Figure 4. Phosphorylation triggers OLA1 nuclear localization. (A) Representative images of phosphorylated OLA1 expression in the cytoplasmic
and nuclear fractions from MLECs under normoxic conditions and after exposure to acute hypoxia using a nonspecific pan-Ser/Thr antibody.
(B) Representative gel images of Coomassie blue–stained gels of SDS PAGE–separated proteins derived from whole-cell lysates from PAECs
and H2O2-treated PAECs (n=3). (C) Venn diagram of OLA1 interacting partners in PAECs at baseline and after H2O2 treatment. (D) Gene
Ontology term enrichment was analyzed using Metascape (http://metascape.org) software. The red asterisks denote pathways that associate
with protein translocation. P values were calculated using hypergeometric tests. (E) Representative images showing phosphorylated OLA1
expression in whole-cell lysate from PAECs treated PBS or a series of kinase inhibitors and after H2O2 treatment (n=3) *P,0.0001, #P,0.0001,
and &P, 0.0001 (two-way ANOVA). (F) Plots of enzyme kinetics of OLA1 protein phosphorylation by purified ERK1 (extracellular-regulated
kinase 1) or ERK2 protein in an in vitro kinase reaction. The log of kinase concentrations was plotted against absorbance read at
excitation/emission 540/590 nm with a 96-well plate reader (n=4). Data are expressed as mean6SEM, and two-way ANOVA was used to
assess statistical significance. (G) Representative images of PAECs immunostained with anti-Flag antibodies and anti–ERK1/ERK2 antibodies
and counterstained with DAPI in PAECs transfected Flag-OLA1S232D-Y236E mutant constructs after ERK1 or ERK2 was silenced using siRNA-
mediated downregulation. The phosphomimetic OLA1 mutant was quantified in the cytoplasm and nucleus using Visiopharm 2.0 (http://
visiopharm.com) software, and signal intensities were averages of three experiments. Scale bars=200 mm. *P,0.0001 and *P, 0.0001
(Student’s t test). (H) Representative images of phosphorylated OLA1 in OLA1 domain deletion mutant constructs after treatment with H2O2. IgG
was used as a control (n=5). (I) Sequence alignments in OLA1 protein among humans, mice, and rats sequences using ClusterW2 (http://www.
ebi.ac.uk) alignment software. GSK-3=glycogen synthase kinase 3; MAPK=mitogen-activated protein kinase; MEK=MAPK/ERK kinase;
RLU= relative light unit.

Table 1. Extracellular-regulated Kinase 1 and Extracellular-regulated Kinase 2
Phosphorylation Sites in Human Obg-like ATPase-1 Protein

Kinase Residue Peptide

ERK1 224–238 PMVYLVNLSpEKDpYIR
ERK2 323–333 KGTKAPQAAGKR.KGTpKAPQAAGK.I

Definition of abbreviation: ERK=extracellular-regulated kinase.
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translocation into the nucleus. Together,
these results indicate that cellular stress
drives OLA1 nuclear localization.

Ser232/Tyr236 Phosphorylation Drives
Nuclear OLA1 Translocation
To identify the post-translational
modifications that modulate OLA1 function,
we focused on phosphorylation, the most
commonmodification in biology. Using a
pan-Ser/Thr phosphorylation antibody, we
found an increase in endogenous
phosphorylation of OLA1 in PAECs exposed
to acute hypoxia (Figure 4A). Similarly,
H2O2 dose-dependently increased
endogenous phosphorylation of OLA1 in
PAECs (see Figure E1C). These results
suggest that the increased molecular weight
of OLA1 in the nucleus is likely due to
phosphorylation. To identify the putative
phosphorylation (sites), whole-cell lysate
obtained fromH2O2-treated or untreated
PAECs was separated using SDS PAGE,
Coomassie stained (Figure 4B), and
analyzed using mass spectrometry for

OLA1-specific kinase. Analysis revealed that
OLA1 interacted with 468 more proteins in
PAECs treated with H2O2 than untreated
controls (Figure 4C). Gene Ontology analysis
revealed that OLA1’s partners are involved in
diverse cellular processes, including
subcellular localization, cell signaling, and
stress responses (Figure 4D). Proteomic
screens identified ERKs, MAPK (mitogen-
activated protein kinase), GSK3 (glycogen
synthase kinase 3), and CDKs (cyclin-
dependent kinases) as top hits, validated by
co-IP (see Figures E1D and E1E). To
determine the kinase specific to OLA1, we
performed a kinase inhibition assay, finding
that inhibition of B-Raf, MAPK, or
ERK1/2—but not CDK or GSK3—decreased
endogenous phosphorylation of OLA1
(Figure 4E). This result suggests that ERK
may be one of the OLA1-specific kinases.
The specificity of OLA1 phosphorylation by
ERK1 or ERK2 in PAECs was further
assessed using in vitro kinase assays
(Figure 4F) and confirmed by ERK1 or
ERK2 downregulation using siRNA

(see Figure E2A). Although in silico prediction
analysis using NetPhos 2.0 (http://www.cbs.
dtu.dk/sevices/NetPhos/) did not identify
ERK as an OLA1 kinase, our results indicate
that ERKmay be a physiological kinase for
OLA1 (see Figure E2B). To pinpoint ERK
phosphorylation site(s), we performed a
phosphoproteomics screen, which revealed
that ERK1 phosphorylated Ser(S232) and
Tyr(Y236), while ERK2 phosphorylated
Thr(T325) in OLA1 protein (see Figures E2C
and E2D; Table 1). Custom antibodies
raised against phosphorylated S232, Y236,
or T325-OLA1 could detect OLA1
phosphorylation in phosphomimetic OLA1
mutants but not in the phosphoresistant
OLA1mutant (see Figure E3A).

Because OLA1 is extensively
phosphorylated, we examined the impact of
phosphorylation on nuclear localization.
PAECs were transfected with Flag-tagged
OLA1mutants mimicking native and
phosphorylated states. Cells expressing
phosphoresistant OLA1mutants (S232A-
Y236F) had negligible OLA1 in the nucleus,
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Figure 5. Vimentin (Vim) and importin-a1 cooperatively facilitate the nuclear translocation of phosphorylated OLA1. (A) Bar charts showing
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blocks importin-a, for 72 hours (scale bar, 100 mm). Signal intensity was quantified, and values are plotted as bar charts (n=4). *P,0.001
(Student’s t test).
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even in the presence of H2O2. Except for
OLA1T325D, the phosphomimetic OLA1
mutants (S232D-Y236E) accumulated in the
nucleus without H2O2. Upon H2O2

treatment, however, the OLA1T325D mutant
accumulated in the nucleus (see Figure E3B),
suggesting that phosphorylation of S232 or
Y236 is required for OLA1’s nuclear
translocation. Moreover, silencing ERK1
(which phosphorylates S232/Y236) blocked
the nuclear accumulation of Flag-OLA1S232D

mutant in the presence of H2O2 (Figure 4G);
conversely, silencing ERK2 (which
phosphorylates T325) increased nuclear
OLA1 expression (see Figure E3C),
suggesting that T325 phosphorylation is not
required for nuclear translocation.
Furthermore, C-terminal deletion abolished
OLA1 phosphorylation (Figure 4H).
Although we did not expect the silencing of
ERK1 or ERK2 to decrease total ERK
concentrations, the reciprocal effect of ERK1
and ERK2 depletion on the nuclear OLA1
accumulation demonstrates the specificity of
each siRNA and the biological effect of each

ERK isoform in regulating OLA1 activity.
Collectively, these results suggest that OLA1
phosphorylation on S232/Y236 by ERK1
controls its nuclear translocation.
Furthermore, the evolutionarily conserved
nature of S232/Y236/T325 residues in
humans, mice, and rats attests to the
importance of these residues in the OLA1
function (Figure 4I).

The Nucleocytoplasmic System
Facilitates Nuclear OLA1
Translocation
We then wondered howOLA1 is
translocated into the nucleus upon
phosphorylation. Our proteomic data
revealed that OLA1 interacts with several
cytoskeletal proteins, including Vim
(vimentin) and KPNA2 (karyopherin
subunit alpha 2) (importin-a1) in PAECs,
and we validated this finding with co-IP
(Figure 5A; see Figure E4A). On the basis of
publications (32–34) on the essential role of
the nucleocytoplasmic system in the nuclear
localization of proteins and our proteomic

data, we hypothesized that Vim and
importin-a1 are involved in OLA1 nuclear
localization. Moreover, there is evidence
indicating that Vim prevents mitochondrial
damage during stress (33). To test this
hypothesis, we examined the relationship
between Vim and OLA1, finding that Vim
interacted with phosphoresistant and
phosphomimetic OLA1mutants (Figure 5B).
Specifically, Vim is bound to OLA1 through
its C-terminal TGS domain (Figure 5C).
Knocking Vim down using siRNA abolished
the nuclear translocation of phosphorylated
OLA1 (Figure 5D), suggesting that Vim
regulates mitochondrial function partly by
promoting the nuclear localization of OLA1.
Like Vim, importin-a1 also interacted with
OLA1. But unlike Vim, importin-a1 is
bound to phosphomimetic OLA1mutants
more than phosphoresistant mutants
(Figure 5B), suggesting that importin-a1
interacts more with phosphorylated OLA1.
To examine the relationship between OLA1
and importin-a1 in the context of OLA1
nuclear localization, we used IVE, an
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(H–J) Bar charts of total cellular ATP concentrations (H), lactate concentrations (I), and ADP:ATP ratios (J) in MLECs isolated from WT and
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inhibitor of importin a/b, finding that
blocking importin-a1 interaction abolished
the translocation of phosphorylated OLA1
into the nucleus (Figure 5E). Mechanistically,
OLA1 interacted with importin-a1 via its
C-terminal domain (Figure 5C). These
results indicate that Vim and importin-a1
regulate mitochondrial function by
facilitating the nuclear localization of OLA1.
Hence, we propose a new paradigm for a
retrograde mitonuclear communication
pathway in which, under normal
physiological conditions, OLA1 resides on
mitochondria anchored by Vim. However,
OLA1 becomes phosphorylated upon stress,
disengages frommitochondria, and relocates
into the nucleus by interacting with Vim and
importin-a1.

Nuclear OLA1 Regulates
Mitochondrial Gene Expression
Our findings suggest that the function of
OLA1may involve interactions with nuclear
DNA. Protein–DNA interaction assays
indicated that OLA1 binds to DNA in vitro.
This DNA binding is potentiated by T325
phosphorylation (Figure 6A). Molecular
modeling using I-TASSER (35) inWTOLA1
andmutant OLA1 after T-to-Amutation
revealed that T325 phosphorylation induced
structural changes in OLA1 protein that
exposed DNA-binding motifs, which were
otherwise buried within the protein core in
the unphosphorylated form (Figure 6B;
see Figure E4B). The regulatory role of
T325 phosphorylation on DNA binding was
confirmed by C-terminal deletion (amino
acids 181–396), and ERK2-siRNA–mediated
downregulation, which abolished the binding
of OLA1 to DNA (Figures 6C and 6D).
In addition, biochemical analysis of OLA1
activity revealed that T325 phosphorylation
increases the GTPase activity of OLA1 while
suppressing its ATPase activity (Figures 6E
and 6F). These results suggest that OLA1
binds to DNA via its C-terminal residues,
which undergo phosphorylation and display
high GTPase activity.

OLA1 Regulates the Expression of
Genes Linked to Mitochondrial
Energy Metabolism
To determine the physiological significance
of OLA1 interaction with DNA, we
performed RNA sequencing, comparing
gene expression profiles between control
PAECs and OLA1-depleted PAECs.
Interestingly, OLA1 depletion in PAECs
downregulated a panel of genes involved in
oxidative phosphorylation pathways,
mitochondrial assembly, and structure
(Figures 7A–7C). The oxidative
phosphorylation category is the topmost
enriched functional group in OLA1-depleted
PAECs. In addition, OLA1 depletion
decreased the expression of nuclear-encoded
mitochondrial proteins. Reintroducing a
phosphomimetic OLA1T325D mutant
fused to a nuclear localizing sequence but not
the phosphoresistant OLA1T325A mutant
rescues the expression of the downregulated
mitochondrial genes in OLA1-depleted
PAECs (Figures 7D–7F). This result
supports that OLA1 localizes in the
nucleus to affect mitochondrial gene
transcription.

To further dissect the function of OLA1
in mitochondrial gene expression, we
performed chromatin IP with high-
throughput DNA sequencing analysis using
OLA1-silenced PAECs in which we
reintroduced red fluorescent protein
(RFP)–tagged nuclear localizing
sequence OLA1T325D. We observed an
overlap between OLA1 chromatin IP with
high-throughput DNA sequencing genes
and differentially expressed genes in OLA1-
silenced cells. In addition, we identified a
subset of de novoOLA1-binding motifs and
canonical binding motifs of various
transcription factors (Figures 7G and 7H;
see Table E1). Comparing the DNA patterns
with other transcription factors, we found
a positive correlation with transcription
factors regulating mitochondrial biogenesis,
including NRF1 (nuclear respiratory factor 1),
PGC-1a (PPARG coactivator 1a), and
others. These data suggest that OLA1may

affect the function of these factors. Indeed, the
expression of PGC-1a and NRF1 expression
was downregulated in Endo-OLA12/2 lungs
(Figure 7G), suggesting that the decreased
mitochondrial function in Endo-OLA12/2

is caused by the downregulation of multiple
metabolic genes. This conclusion is
supported by decreased total cellular ATP
concentrations and increased lactate
concentrations inMLECs isolated from
Endo-OLA12/2 lungs (Figures 7H and 7I).
Interestingly, Endo-OLA12/2 lungs have a
higher ADP:ATP ratio thanWTmice
(Figure 7J), suggesting increased ATP use
or disruption of ATP synthesis. Although a
rise in ADP:ATP ratio in healthy lungs is
a physiological cue to restore energy
homeostasis (36), the sustained increase in
ADP:ATP ratio without an increase in ATP
concentrations strongly suggests impaired
mitochondrial energy production due to
decreased expression of NRF1 and PGC-1a
genes by OLA1 depletion. These results
support a crucial role for OLA1 in cellular
energy metabolism and identified OLA1
deficiency as a factor in mitochondrial
dysfunction in PPHN.

PP1A Prevents Overactivation of
OLA1 Transcriptional Activity
Next, we investigated how OLA1 activation
is terminated once stress abates. As
phosphorylation enhances the GTPase
activity and DNA binding of OLA1,
we focused on Ser/Thr phosphatases
(PPAs [protein phosphatases]). Our mass
spectrometry data revealed that OLA1
interacts with PP1A, a ubiquitously
expressed Ser/Thr protein phosphatase,
and UBA52 (ubiquitin A-52 residue
ribosomal protein fusion product 1), an
E3 ubiquitin ligase. UBA52 and PP1A
coimmunoprecipitated with the
phosphomimetic and phosphoresistant
OLA1mutants (see Figures E4C and E4D).
To examine the relationship between
PP1A and UBA52 in the context of OLA1
activity, we performed in vitro ubiquitination
assays. WTOLA1 was substantially

Figure 7. (Continued ). Endo-OLA12/2 mice using liquid chromatography–tandem mass spectrometry (n=4). *P,0.0001 (Student’s t test).
(Ka and Kb) Representative images of lung sections immunostained with anti-OLA1, anti-CD31, and anti-aSMA and counterstained with DAPI in
patients with persistent pulmonary hypertension of the newborn (PPHN): (Ka) hypoxia/Sugen (SuHx) PPHN mice and normoxic control animals
and (Kb) patients with PPHN and age-matched control subjects. (Kc) Representative images of OLA1 expression (nonphosphorylated in the
cytoplasmic fraction and phosphorylated OLA1-T325 in the nuclear fractions from WT mice and SuHx mouse lungs killed after chronic hypoxia
and treated with Sugen 5416 20 mg/kg, intraperitoneal, weekly for 3 weeks. (Kd) Representative images showing expression of phosphorylated
OLA1-S232 in the cytosolic and nuclear fractions from WT mice and SuHx PPHN mouse lungs (n=3). Scale bars, 20 mm. CXR=control;
NADH=NAD1 reduced; NES=normalized enrichment score; SuHx=hypoxia/Sugen; UTR=untranslated region.
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ubiquitinated by UBA52. Conversely,
phosphorylated OLA1mutants were
resistant to UBA52-mediated ubiquitination
of OLA1.When active PP1A enzyme was
added to in vitro reactions between OLA1
and ERK, phosphorylated OLA1 became
significantly ubiquitinated (see Figures E4E
and E4F). These results support the idea that
PP1A and UBA52 cooperatively terminate
OLA1 activation via dephosphorylation and
ubiquitin-mediated degradation.

OLA1 Phosphorylation Is Decreased
in Patients with PPHN and
Hypoxia/Sugen Mice
To establish a connection between OLA1T325

phosphorylation and PPHN, we used human
lung samples, comparing OLA1pT325

concentrations in the nucleus between
infants who died of PPHN and age-matched
control subjects. IF analysis revealed
decreased nuclear OLA1(pT325)
concentrations in the remodeled PPHN
pulmonary arteries compared with control
subjects (Figure 7K; see Figure E5A).We
validated this result using hypoxia/Sugen
mice, finding increased expression of OLA1
in the cytosolic fractions from hypoxia/Sugen
lungs (Figure 7Kb). Despite this increase, the
concentrations of S232-phosphorylated
OLA1 and T325-phosphorylated OLA1 were
decreased in the cytoplasm and nucleus,
respectively (Figure 7Kc) in parallel to
increases in the expression of PP1A and
UBA52, both of which are targets of OLA1
(see Figure E5B). These changes led to an
increase in ubiquitinated OLA1 protein
concentrations and a decrease in total OLA1
concentrations (see Figure E5C), suggesting
enhanced degradation of OLA1 and
supporting the idea that altered
kinase–phosphatase balance induced by

chronic hypoxia contributes to OLA1
insufficiency and PPHN progression.

These findings suggest a new
mitonuclear retrograde communication
model that underlies how OLA1 expression
correlates with endothelial mitochondrial
function during stress. First, highly
expressed ERK kinases engage OLA1 in
mitochondria to promote its nuclear
translocation; second, OLA1 in the nucleus
enhances the activation of multiple
mitochondrial genes to increase cellular
energy metabolism, critical cell survival, and
function during stress.

Discussion

The stress protein OLA1 has been
implicated in multiple processes regulating
the cellular stress response (20, 21, 37).
Previous studies have focused on OLA1
roles at the post-transcriptional level, but
we report here that OLA1 also regulates
gene expression. We demonstrated that
OLA1 is an essential component of the
mitonuclear regulator hubs that link
mitochondrial redox control mechanisms to
metabolic gene networks in the nucleus. We
found that OLA1, which typically resides in
mitochondria and cytoplasm, relocates into
the nucleus when phosphorylated in
response to oxidative and metabolic
stresses. Subsequent phosphorylation of
nuclear OLA1 on T325 prompts it to turn
on a cohort of genes relevant to
mitochondrial function and cellular
adaptation to stress. Once the stress abates,
PPIA and UBA52 converge on
phosphorylated OLA1, dephosphorylating
and targeting it for proteasomal
degradation. Thus, turning off OLA1-
mediated gene expression to restore cellular

homeostasis. Our findings in vitro, in cells,
and in laboratory animals reveal OLA1 as a
target in modulating mitochondrial
function.

Our data explain why altered ERK-
OLA1 signaling contributes to mitochondrial
dysfunction underpinning PPHN.We
demonstrated that the concentration of
OLA1pT325 in the nucleus closely correlates
with mitochondrial content and function in
the vascular endothelium. Given that ERK
controls OLA1 nuclear localization, and
PP1A activation counteracts this process,
altered PP1A-OLA1 signaling might
conceivably be a key player in mitochondrial
dysfunction in PPHN. However, essential
questions remain regarding how OLA1
regulates NRF1 and PGC-1a function.

Although PPHN behaves similarly to
cancer (though it does not metastasize), our
results highlight apparent differences in
stress response in these two conditions.
PP1A and ubiquitin ligases are genetically
downregulated in many tumors (38, 39),
allowing unhindered OLA1-mediated
expression of stress response genes. We
speculate that this effect could expand
cancer cell subpopulations adept at resisting
stress and promote recovery from stress
induced by chemotherapeutic agents. In
support of this notion, many studies have
demonstrated that higher OLA1 expression
promotes tumor progression and
chemoresistance. Conversely, PP1 and
ubiquitin ligases are overexpressed in
vascular diseases, disrupting the nuclear
OLA1 localization and inhibiting
mitochondrial gene expression, thereby
sensitizing vascular cells to cellular damage
and dysfunction. �

Author disclosures are available with the
text of this article at www.atsjournals.org.
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