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Abstract

Objective: Electronic Health Record (EHR) based phenotyping is a crucial yet challenging 

problem in the biomedical field. Though clinicians typically determine patient-level diagnoses 

via manual chart review, the sheer volume and heterogeneity of EHR data renders such tasks 

challenging, time-consuming, and prohibitively expensive, thus leading to a scarcity of clinical 

annotations in EHRs. Weakly supervised learning algorithms have been successfully applied 

to various EHR phenotyping problems, due to their ability to leverage information from large 

quantities of unlabeled samples to better inform predictions based on a far smaller number of 

patients. However, most weakly supervised methods are subject to the challenge to choose the 

right cutoff value to generate an optimal classifier. Furthermore, since they only utilize the most 

informative features (i.e., main ICD and NLP counts) they may fail for episodic phenotypes 

that cannot be consistently detected via ICD and NLP data. In this paper, we propose a label-

efficient, weakly semi-supervised deep learning algorithm for EHR phenotyping (WSS-DL), 

which overcomes the limitations above.
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Materials and Methods: WSS-DL classifies patient-level disease status through a series of 

learning stages: 1) generating silver standard labels, 2) deriving enhanced-silver-standard labels 
by fitting a weakly supervised deep learning model to data with silver standard labels as 

outcomes and high dimensional EHR features as input, and 3) obtaining the final prediction 
score and classifier by fitting a supervised learning model to data with a minimal number of 

gold standard labels as the outcome, and the enhanced-silverstandard labels and a minimal set 

of most informative EHR features as the input. To assess the generalizability of WSS-DL across 

different phenotypes and medical institutions, we apply WSS-DL to classify a total of 17 diseases, 

including both acute and chronic conditions, using EHR data from three healthcare systems. 

Additionally, we determine the minimum quantity of training labels required by WSSDL to 

outperform existing supervised and semi-supervised phenotyping methods.

Results: The proposed method, in combining the strengths of deep learning and weakly 

semi-supervised learning, successfully leverages the crucial phenotyping information contained 

in EHR features from unlabeled samples. Indeed, the deep learning model’s ability to handle 

high-dimensional EHR features allows it to generate strong phenotype status predictions from 

silver standard labels. These predictions, in turn, provide highly effective features in the final 

logistic regression stage, leading to high phenotyping accuracy in notably small subsets of labeled 

data (e.g. n = 40 labeled samples).

Conclusion: Our method’s high performance in EHR datasets with very small numbers of labels 

indicates its potential value in aiding doctors to diagnose rare diseases as well as conditions 

susceptible to misdiagnosis.
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1. Introduction

Electronic Health Records (EHRs) are digital records that contain comprehensive, 

longitudinal patient information, such as administrative and billing data, demographic data, 

laboratory results, and medical notes written by clinicians during medical visits 1,2. The 

increasing adoption of EHRs for clinical care has also increased their usage as a resource 

for epidemiological and biomedical studies 2. One fundamental task in using EHRs for 

clinical research is to accurately annotate phenotypes (i.e., the presence or absence of 

disease conditions for individual patients). However, the sheer volume and heterogeneity 

of EHR data renders such tasks challenging and time-consuming. Typical phenotyping 

algorithms that predict phenotypes from diverse EHR features can be stratified into (1) 

rule-based algorithms and (2) supervised machine learning algorithms 2–6, which all require 

intensive human efforts. Although widely used in the literature, rule-based algorithms are 

challenging to scale across multiple conditions due to the need for iteratively devising and 

validating rules. On the other hand, supervised algorithms trained on a subset of manually 

annotated gold-standard labels necessitate laborious chart review. Furthermore, rule-based 

or supervised algorithms, by relying exclusively on a small subset of features or a small 

subset of labeled patients, cannot fully leverage information contained in high dimensional 

and large sample EHR data. This motivates the need for developing high-throughput 
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phenotyping algorithms capable of handling large datasets with complex structure in an 

automated fashion, to enhance the speed and efficiency of the clinical workflow and 

ultimately improve the quality of patient care using only a minimal number of gold-standard 

labels.

As such, fully unsupervised methods and weakly supervised methods, which require no 

clinical annotations, have been proposed. Studies for multi-phenotyping applications often 

utilize raw surrogate features – variables in the EHR dataset that are most predictive of 

phenotype status (e.g., patient-level counts of ICD codes or NLP mentions in the medical 

notes for the target phenotype)– as proxies for the true gold standard labels. However, 

for many diseases, the raw main ICD code is often too imprecise to be reliably used 

for prediction and can hamper the power of the downstream association study22–26. For 

example, it was reported in Tedeschi et al. (2018)26 that a published billing code algorithm 

had very low positive predictive value (PPV) (18%) for the pseudogout phenotype in an 

academic medical center EHR dataset. To efficiently and accurately assign disease status 

for patients without intensive human labor, recent efforts have been devoted to the class 

of weakly supervised methods, which train the supervised classifier using silver-standard 

labels derived from the most informative EHR features. For example, the “anchor and learn” 

algorithm trains a regularized supervised classifier using the silver-standard labels derived 

from “anchor” features 7. The XPRESS algorithm fits a regularized logistic regression on 

silver-standard labels derived based on the presence or absence of at least one ICD code 

for the phenotype of interest8. The PheNorm method 9 and High-Throughput Multimodal 

Automated Phenotyping (MAP) 10 predict patient-level probabilities of positive disease 

status from counts of ICD codes and NLP mentions for the target phenotype, variables 

highly predictive of phenotype status. Specifically, MAP first fits Poisson and log-normal 

mixture models to the ICD and NLP features, as either or both models may provide a good 

approximation to the observed data, then calculates the posterior probabilities of having 

the phenotype given the feature information from each fitted mixture model. The final 

MAP algorithm assigns the predicted probability of having the phenotype as the average of 

predicted probabilities of all the above mixture models. Wang et al. (2019) propose a weakly 

supervised deep learning NLP-based algorithm for clinical text classification 11. Ahuja et al. 

(2019) propose a surrogate-guided ensemble Latent Dirichlet Allocation (sureLDA) method 
12. Wagholikar et al. train logistic regression and random forest algorithms on silver standard 

labels created using a polar labeling algorithm, designed to use the distribution of main ICD 

code counts to inform the patient phenotype prediction 6. PheVis combines diagnosis codes 

together with medical concepts extracted from medical notes to provide an interpretable 

parametric predictor of the occurrence probability for a given medical condition at each visit 
13.

While being scalable and retraining good phenotyping performance, the weakly supervised 

methods mentioned above can still be improved in the following ways. First, most of the 

weakly supervised methods are subject to the challenge to choose the right cutoff value to 

generate an optimal classifier. Second, only the most informative features (i.e., main ICD 

and NLP counts) are utilized leaving the vast amount of moderate informative features 

unused, which may lead to bad performance for episodic phenotypes (e.g., pseudogout) that 

cannot be consistently detected via ICD and NLP data. Episodic phenotypes, by definition, 
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are conditions that only occur periodically, being marked by the incidence of specific 

clinical events (e.g. heart attacks for heart failure, week-long periods of sudden and intense 

joint inflammation for pseudogout). While ICD and NLP count for chronic conditions such 

as Type 2 Diabetes Mellitus or Ulcerative Colitis often increase over time, due to a continual 

need for medical visits to monitor a patient’s condition, those for episodic phenotypes tend 

to fluctuate, meaning that a patient’s number of ICD codes and NLP mentions at a given 

point in time may fail to adequately represent their true episodic disease status. For instance, 

following medical visits during a recovery period for an episodic condition, a patient may 

have no ICD codes recorded in the EHR system, in the same manner as another patient 

with no prior history of this disease. Furthermore, due to computing intensity, NLP may not 

be conducted on all patients for a large cohort, in which case, methods depending on NLP 

counts are not feasible.

Deep learning methods have been highly effective in EHR phenotyping tasks as they can 

extract highly complex, latent features in high-dimensional datasets, unlike many other 

methods 8,11,14–19. In this paper, we propose a weakly semi-supervised deep learning 

algorithm (WSS-DL) that accurately annotates disease status by mainly using silver-standard 

labels and unlabeled data, with the help of a very small number of gold-standard labels, to 

further improve the phenotyping performance beyond that of weakly supervised methods. 

To address the first limitation, we leverage a very small set of gold-standard labels to help 

us guide the model fitting. To address the second limitation, we leverage the strengths of 

the deep learning model to fully utilize the vast information contained in EHRs. To address 

the third limitation, we only use silver-standard labels as initial values where missingness 

is allowed. It is worth mentioning that the proposed method is label efficient, in that it 

only requires a very small set of gold standard labels. The WSS-DL method is designed 

as follows. First, silver-standard labels are derived from one or multiple surrogate outcome 

variable(s) in an unsupervised fashion. Second, enhanced-silver-standard labels are derived 

via a deep learning algorithm, using the silver-standard labels from the first step as the 

outcome, a very small set of gold standard labels to guide the learning task, and a set of high 

dimensional EHR variables as input features. Finally, a logistic regression model is applied 

to predict the gold standard labels using the enhanced-silver-standard labels and a minimal 

set of selected EHR features.

The paper is structured as follows. In Section 2, we describe the pipeline for the proposed 

algorithm, as well as the training strategies and evaluation metrics. Section 3 covers 

experimental results obtained from applying WSS-DL to a total of 17 phenotypes from 

Massachusetts General Brigham (MGB), an independent cohort of pseudogout patients from 

MGB (MGB-Pseudogout), and the Boston Children’s Hospital (BCH) EHRs. We discuss the 

results and implications of WSS-DL’s performance on phenotyping in various EHR-based 

scenarios in Section 4, and we conclude this paper in Section 5.

2. Material and methods

2.1 Weakly semi-supervised algorithm

As shown in Figure 1, the proposed weakly semi-supervised algorithm for predicting 

patient-level disease status consists of three steps: fully unsupervised, semi-supervised, and 
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fully supervised. In the unsupervised stage, we obtain the silver-standard labels Y ∗ for the 

phenotype of interest by applying a fully unsupervised algorithm to either one or multiple 

main surrogate variable(s) Xsurr known to be most predictive of the outcome, based on 

subject-matter knowledge. This step may be omitted when Xsurr is a viable surrogate that can 

be directly used as Y ∗. In the semi-supervised stage, we train a deep learning algorithm to 

obtain enhanced-silver-standard labels Y ∗ ∗ , with silver-standard labels Y ∗ as the outcome, 

the collection of all EHR covariates Xfull as input features, and with the inclusion of a very 

small number of labels from Y  to assist in guiding the learning process. Finally, in the fully 

supervised stage, we obtain the final prediction score and classifier via logistic regression, 

with a very small number of labels Y  as the outcome, and the enhanced-silver-standard 

labels Y ∗ ∗  and a minimal set of most informative features Xsel as the input covariates.

In this work, let Y = Y 1, …, Y ng  represent the binary patient phenotype of interest obtained 

via chart review, which is only available in a small subset of patients with sample size 

ng; let Y ∗ = Y 1
∗, …, Y ns

∗  be the collection of silver standard labels used as a proxy for 

Y ; Xsurr ∈ Rns × ps denote a single or multiple surrogate features that are most predictive of 

Y , which is available on all patients or a large subset of patients with sample size nS; 

Xfull ∈ RN × p denote the high-dimensional EHR features for the phenotype on all patients with 

sample size N; and Xsel ∈ RN × psel denote a minimal set of most informative features available 

on all patients with sample size N. It is worth mentioning that 1) Xsurr contains the most 

informative features that are available on a large amount of patients but may not be available 

on all patients (e.g. the main NLP mentions in clinical notes when NLP is conducted on 

only a subset of patients; a lab test conducted on only a subset of patients; patient-reported 

outcomes that can be combined with EHR data but are only available in a subset of patients); 

2) Xfull contains all informative features that are available on all patients, including both 

the stronger and the weaker features, such as a vast amount of ICD codes, laboratory 

tests, medication codes, procedure codes, healthcare utilization (a variable quantifying how 

frequent a patient utilize the healthcare system, such as the total number of all ICD codes) 

and prediction scores from algorithms in the literature; 3) Xsel contains only the minimal set 

of informative features that are available on all patients, such as the MAP-derived feature 

based on the main ICD code when the ICD code counts are provided for all patients. It is 

worth mentioning that in many cases, Xsel is a subset of Xfull.

Unsupervised stage – silver standard label generation—Due to the scarcity of 

gold standard labels Y  in the EHR, it is necessary to leverage other covariates, measured 

in a larger subset of patients in the dataset, that are highly predictive of the outcome. In 

particular, we may use these features to generate silver standard labels, Y ∗ to guide our 

algorithm in its phenotyping task. For instance, when Xsurr contains the vectors of counts for 

the main ICD code and NLP mentions in patient-level clinical notes for the phenotype of 

interest, we may obtain Y ∗ as the output of an unsupervised phenotyping algorithm, such 

as MAP8 or PheNorm7. These algorithms predict the patient-level probabilities of positive 

disease status from the surrogate variables Xsurr in a fully unsupervised fashion, adjusted for 

healthcare utilization. In our experiments, we use MAP to generate silver standard labels 

for most phenotypes. The MAP algorithm predicts the patient-level probabilities of positive 

Nogues et al. Page 5

J Biomed Inform. Author manuscript; available in PMC 2023 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disease status by fitting Gaussian and Poisson mixture models to Xsurr adjusting for the 

healthcare utilization. In other situations when Xsurr is a single covariate that is already 

a viable candidate for Y ∗ from a clinical perspective (e.g., a binary covariate for patient 

reported outcomes), the first unsupervised step may be omitted.

Due to the very small number of patients with true annotations Y , inclusion of Y ∗ is 

necessary. The main contribution of the first stage lies in the fact that Y ∗ is available for most 

patients, which thus allows for effectively leveraging high dimensional features in the large 

number of unlabeled samples.

Semi-supervised stage – creation of enhanced silver standard labels—Though 

Y ∗ alone may already be highly predictive of Y , it may fail to be representative of phenotype 

status in the full study population, namely in scenarios where Xsurr (used to compute Y ∗) is 

not available in all patients. Furthermore, there are some phenotypes in which the correlation 

between Y  and Y ∗ is not especially strong (e.g. for more common diseases or medical 

conditions in which misdiagnosis often occurs): in such cases, Y ∗ may contain substantial 

levels of random noise limiting its predictive power. As such, it is beneficial to leverage the 

remaining covariates Xfull, which may contain additional information supplementary to that 

in Xsurr for determining patient-level disease status. To summarize this relationship between 

Xfull and disease status, we train a deep-learning algorithm to learn Y ∗ from Xfull, with the 

inclusion of a very small Y  to guide the learning process.

The deep learning algorithm consists of a neural network with two separate classification 

layers: one that learns Y  from the labeled observations in the EHR dataset and another that 

learns Y ∗ from the remaining unlabeled observations. We note that the number of samples 

with entries for Y ∗ is typically large enough to effectively run a deep learning model with 

little concern for overfitting. The interdependence between both learning tasks is manifested 

through the fact that both classifier layers receive the same transformed features as input, 

being connected to the same core network. We choose to train two separate classifiers, one 

for each label type, as opposed to training a single one to learn an imputed label vector, 

with the present values in Y  and values of Y ∗ in the corresponding missing entries, for the 

following reason. Training a neural network to exclusively learn Y ∗ from Xfull on the full 

EHR dataset may yield predictions with limited accuracy, if Y ∗ has significant noise or is 

limited in accuracy. Indeed, we have included Y  in the training process to guide the feature 

learning and alleviate the detrimental effects of low-quality silver-standard labels Y ∗.

The shared feature extractor network is a feed-forward multilayer perceptron with two 

hidden (fully connected) layers separated by a single dropout layer, included to overcome 

potential overfitting. The hidden layers contain 30 and 3 nodes respectively, and the dropout 

layer involves dropout with 20 % probability. Our model is trained to optimize the joint loss 

function:

L(Θ) = λL Θg + (1 − λ)L Θs
= − λ g Y , σ(p), ng − (1 − λ) g Y sil, σ p∗ , ns
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Where ng and ns are the total number of labeled and unlabeled 

training samples, respectively, σ(x) = exp(x)
1 + exp(x)  is the sigmoid function, 

g(Y , σ(p), n) = ∑i = 1
n 1

n Y ilog σ pi + (1 − Y i log 1 − σ pi  is the mean cross-entropy, 

Y = Y 1, …, Y ng  is the vector of gold standard labels, Y ∗ = Y 1
∗, …, Y ns

∗  is the vector of silver-

standard labels, p = p1, …, png  is the vector of predictions from the gold classification layer, 

and p∗ = p1
∗, …, pns

∗  is the vector of predictions from the silver classification layer.

The expression σ g Y , p, ng  is the standard cross-entropy loss function. The hyperparameter 

λ determines the relative weighting of the gold and silver losses in the global objective 

function. Following our hyper-parameter selection procedure, we choose λ = 0.8 to 

emphasize the importance of the known gold standard labels, which alleviate the influence 

of potential noise in the silver standard labels and improve the phenotyping ability of the 

algorithm as a whole. The model is optimized using an Adam optimizer, with learning rate 

0.0005 and momentum decay 0.5.

After the training process, we generate predictions as enhanced silver standard labels Y ∗ ∗

learned by the network, which not only summarize the additional features in Xfull but further 

describe their relationship to the true disease status, via Y ∗ andY .

Fully supervised stage – prediction of gold-standard labels—Finally, we predict 

the patient-level disease status Y  from Xsel and Y ∗ ∗  using a very small number of labels 

where Y  is available (e.g..n = 40). Specifically, letting Z = 1, Xsel, Y ∗ ∗ T, we conduct a 

logistic regression:

P(Z) = g ZTβ ,

where g( ⋅ ) is the logit link function. The final prediction is calculated as Y = g ZTβ . We 

note that the low dimensional matrix Xsel, Y ∗ ∗ T efficiently summarizes the key information 

amidst the vast amount of information contained in the EHR.

The logistic regression method, by design, learns optimal weights for Xsel and Y ∗ ∗  that 

represent their relative degrees of association with Y . As such, it can be said to indirectly 

balance the influence of Xsel and the remaining features in Xfull in predicting Y , on a 

patient-level basis, without discarding information from either component of the EHR data.

1.2 Data and Evaluation Metrics

We evaluate the performance of WSS-DL using real-world EHR data from Massachusetts 

General Brigham (MGB), an independent cohort of pseudogout patients from MGB (MGB-

Pseudogout), and Boston Children’s Hospital (BCH).

Datasets

MGB:  The MGB Biobank contains linked EHR and genetic data anchored by two 

large tertiary care hospitals between 1990 and 2015: Brigham and Women’s Hospital 
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and Massachusetts General Hospital in Boston. In the biobank, a total of 17815 had 

codified data, NLP data, and genetic data. Gold standard labels for a small set of 

patients were curated for a total of fifteen phenotypes from various clinical categories 

– respiratory chronic conditions (Asthma, Chronic Obstructive Pulmonary Disease 

[COPD]), cerebral diseases (Depression, Schizophrenia [SCZ]), neurological disorders 

(Epilepsy, Multiple Sclerosis [MS]), vascular diseases (Hypertension [HTN], Ischemic 

Stroke [Stroke], Coronary Artery Disease [CAD]), musculoskeletal conditions (Rheumatoid 

Arthritis [RA]), digestive disorders (Ulcerative Colitis [UC], Crohn’s Disease [CD]), 

cancers (Breast Cancer[BrCa]), and diabetic conditions (Type 1 and Type 2 Diabetes 

Mellitus[T1DM,T2DM]). The additional clinical features Xfull consist of 5509 ICD codes, 

Logical Observation Identifiers Names and Codes (LOINC) codes for labs and Prescription 

for Electronic Drug Information Exchange (RxNorm) codes for medications. Silver standard 

labels Y ∗ are obtained from MAP, run using the main ICD and main NLP variables for 

the target phenotype (refer to step 1 in Figure 1). We remove all features with sparsity ≥ 

95%, leaving 813 additional covariates for Stroke, MS, CAD, CD, RA, UC, CD, T2DM and 

870 additional covariates for Asthma, COPD, Depression, SCZ, Epilepsy, HTN, BrCa, and 

T1DM.

MGB-Pseudogout:  The MGB-Pseudogout data derive from a cohort of Pseudogout 

(also known as acute calcium pyrophosphate crystal arthritis) patients from the Partners 

HealthCare Research Patient Data Repository (RPDR), containing EHRs from patients 

throughout 1991–2017. In particular, Partners’ RPDR includes EHR data from 5.5 million 

patients from BWH and MGH, as well as their affiliated community hospitals, community 

health centers, and primary care practices. The MGB-Pseudogout dataset’s additional EHR 

features consist of a vector of main ICD counts, 52 ICD code, LOINC code, and CUI counts, 

and 6 indicators for lab measurements known to be correlated with Pseudogout. Due to 

the episodic nature of pseudogout, the ICD and NLP covariates may not reliably represent 

patient disease status, and thus would yield MAP probabilities with low predictive power. 

As such, we define the silver standard labels Y ∗ in this dataset based on two binary lab 

covariates known to effectively identify pseudogout cases: one that indicates whether joint 

fluid was tested for the presence of crystals, and another that indicates whether calcium 

pyrophosphate crystals were found in joint fluid. We set the patient’s silver standard label to 

1 if these crystals were found in the joint fluid, 0 if not, and −1 if no crystal lab measurement 

is available. (The indicator for the presence of patient crystal lab measurements is retained 

as a feature in the dataset). Gold standard labels were determined by rheumatologist manual 

review of EHR records for the diagnosis of pseudogout.

BCH:  Data were collected from 2012–2020, and the main phenotype of interest is Pediatric 

Acute Respiratory Disease Syndrome (PARDS). The BCH PARDS dataset contains 13,814 

patients, a vector of main ICD counts, and 261 additional ICD code, LOINC code, RxNorm 

code and CUI counts for various diseases, medications, and labs. Here, unlike in the MGB 

and MGB-Pseudogout datasets, EHR entries were recorded at the visit-level, as opposed to 

the patient level, meaning that patients with more than one EHR entry would be included 

multiple times in the dataset. The prevalence of gold standard labels is notably lower than 

that of the MGB datasets (1.9 %, n = 100). The highest visit-level P/F ratios (corresponding 
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to the ratio of arterial partial pressure of oxygen to fraction of inspired oxygen delivered) 

are used as silver standard labels Y ∗, as this biomarker was found to be highly predictive 

of PARDS status. Silver standard labels are available only in the subset of 2201 patients in 

whom an arterial blood gas was analyzed; among these patients 44 also had gold standard 

labels.

For each phenotype of interest, we retain only patients satisfying a clinically established 

filter criterion. For the MGB data, this corresponds to having at least one ICD code for the 

phenotype of interest. Patients in the MGB-Pseudogout dataset were retained if they had at 

least 1 pseudogout-related ICD code, at least 2 CUI counts for pseudogout, or at least 2 CUI 

counts for chondrocalcinosis. In the BCH data, patients were selected from three intensive 

care units if their pGUESS27 score (output probability of the NLP-based algorithm used 

to determine the likelihood of positive phenotype status) outperformed 0.58. Specifically, 

we used the pGUESS method as proposed in Cai et al. (2022)27 to define the BCH 

cohort based on the NLP concepts obtained by Narrative Information Linear Extraction 

(NILE). The NILE system was normalized against the Systematized Nomenclature of 

Medicine-Clinical Terms (SNOMED-CT) reference thesaurus. SNOMED-CTs were then 

mapped to concept unique identifiers from the UMLS. The performance of NILE has been 

evaluated on MGB and VA cohorts in our previous phenotyping studies as shown in Yu et 

al. (2013)28 and Cai et al. (2022)27. More details on the pGUESS algorithm can be found 

in Cai et al. (2022)27. Omitting patients from the analysis that fail to establish the given 

filtering criteria for the phenotype will therefore increase its prevalence in the dataset, thus 

boosting the algorithm’s positive predictive value, as is necessary in designing an effective 

EHR phenotyping algorithm2. In addition, we apply a log transformation to all count data 

variables. Sample sizes, numbers of labeled patient EHRs, and phenotype prevalences for all 

filtered datasets are indicated in Table 1.

Comparison to benchmark algorithms—We compare the proposed algorithm to 

five baseline methods: ICD, XPRESS, PheCAP, DAPS20, and NN. ICD predicts the gold 

standard labels Y  in the dataset based on the raw data in Xsurr alone. XPRESS performs a 

LASSO-penalized linear regression of Y ∗ on Xfull. Although PheCAP 21 is defined as a semi-

supervised method, its learning task is fully-supervised, involving the full labeled dataset to 

generate phenotyping predictions. As such, we may consider it as a supervised counterpart 

to our WSS-DL phenotyping algorithm. PheCAP here predicts Y from the features in Xfull

transformed by a set of orthogonal basis vectors. DAPS, being a semi-supervised deep 
learning-based algorithm, does not include any silver standard labels. Furthermore, unlike 
WSS-DL, it does not separate Xsurr from Xfull in its phenotyping task. Rather, it directly 

applies a denoising autoencoder to (Xsurr, Xfull). Its hidden layer X∗ is then extracted and 

fed into a random forest algorithm, which returns predicted probabilities Y . NN merely 

corresponds to the intermediate output of WSS-DL from the deep learning stage of the 

algorithm.

Evaluation metrics—We evaluate the predictive performance of our algorithm based on 

accuracy measures of Y  in predicting Y , including AUROC, F-score metrics, PPV and NPV. 

For each dataset, the reported F-score, PPV and NPV are obtained based on the chosen 
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cutoff between positive and negative predictions that yields the highest F-score. To avoid 

overfitting and to correct for randomness in sampling, we conduct 5-fold cross-validation 

with 100 bootstrap replicates.

Minimum quantity of labels required by WSS-DL—We wish to determine the 

minimum quantity of training labels beyond which WSS-DL can outperform the fully 

supervised PheCAP, implemented on the full training set. For this, we run our algorithm 

using four different quantities of training data. This gives us four variants of WSS-DL: 

WSS-DL (20), WSS-DL (40), WSS-DL (60), and WSS-DL (80), with the numbers denoting 

the number of gold-standard labels included for training. Each variant of WSS−DL (n = 20, 

40, 60 and 80) is specifically implemented as follows: in the deep learning stage, we sample 

gold standard labels exclusively from the subset of training labeled data with n samples. 

In the fully supervised stage, we train the logistic regression model on this same n-sample 

subset of training data and validate it on the held-out testing labeled subset. We choose 

n=20, 40, 60 and 80 to represent very small, relatively small, medium and large sample sizes 

of the training data. Quantities rather than percentages are used because of the variation in 

total sample size across different phenotypes. For comparison to WSS-DL, we run ICD and 

XPRESS using the full training and test subsets. For fair comparison, we also run PheCAP 

and DAPS with n=20, 40, 60 and 80 labels used for training. All data pre-processing, 

logistic regression, ICD, XPRESS, and PheCAP are implemented in R, version 3.6.1. The 

deep learning stage of our algorithm and DAPS are run in Python, versions 3.7.4 and 3.9.1, 

respectively, using a NVIDIA Tesla K80 GPU.

3. RESULTS

3.1 MGB datasets

We observe that on average, across all 15 phenotypes from the MGB Biobank, WSS-DL 

outperformed all benchmark methods when at least n=20 of labeled samples were included 

for training (Figure 2). In terms of AUC, WSS-DL with n=20 labeled samples (AUC=0.91) 

outperformed ICD (AUC=0.87), PheCAP with n=80 (AUC=0.894), XPRESS (AUC=0.856), 

DAPS with n=80 (AUC=0.644), and NN with n=20 (AUC=0.842) respectively. In terms of 

F-score, WSS-DL with n=20 (F-score=0.863) outperformed ICD (F-score=0.843), XPRESS 

(F-score=0.836), DAPS with n=80 (F-score=0.699) and NN with n=20 (F-score=0.82), and 

yielded results only slightly lower than PheCAP’s with n=80 (F-score=0.86). Further details 

on specific AUCs and F-scores for each phenotype and method are provided in Figure S1 

Supplementary Materials. Figures S2 and S3 in the supplementary materials contain PPVs 

and NPVs for each method.

3.2 MGB-Pseudogout dataset

As shown in Figure 3, WSS-DL most notably outperformed all other methods in 

the Pseudogout dataset, yielding higher accuracy in AUC and in F-score when at 

least n=40 training labels were included. In terms of AUC, WSS-DL with n=40 

labeled samples (AUC=0.777) outperformed ICD (AUC=0.604), PheCAP with n=80 

(AUC=0.572), XPRESS (AUC=0.748), DAPS with n=80 (AUC=0.634) and NN with n=40 

(AUC=0.776). In terms of F-score, WSS-DL with n=40 (F-score=0.564) outperformed ICD 
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(F-score=0.407), PheCAP with n=80 (F-score=0.392), XPRESS (F-score=0.572), and DAPS 

with n=80 (F-score=0.416), respectively. Figures S4 and S5 in the supplementary materials 

contain PPVs and NPVs for each method.

3.3 BCH dataset

In the ARDS dataset, since the total number of available labels is 44, we only compare 

the performance of methods with n=20. As shown in Figure 4, we observed that 

WSS-DL with n=20 (AUC=0.91) outperformed ICD (AUC=0.521), PheCAP with n=20 

(AUC=0.53), XPRESS (AUC=0.772), DAPS with n=20 (AUC=0.636), and performed 

equally well with NN with n=20 (AUC=0.91). In terms of F-score, WSS-DL with n=20 

(F-score=0.842) outperformed ICD (F-score=0.693), XPRESS (F-score=0.711), DAPS with 

n=20 (F-score=0.634), PheCAP with n=20 (0.597), and performed equally well to NN with 

n=20 (F-score=0.846). Figures S6 and S7 in the supplementary materials contain PPVs and 

NPVs for each method.

4. DISCUSSION

In this paper, we have presented an algorithm that is able to effectively predict patient-level 

disease status from EHRs, using both the strengths of deep learning and weakly supervised 

learning. The principal objective is to learn patient level phenotype status from surrogate 

labels – in some cases generated from all samples in an unsupervised fashion – and a 

small set of provided gold standard labels, by leveraging and summarizing a large number 

of features without the need for manual feature engineering or feature selection. In our 

analyses, we found that the benefits of WSS-DL are most apparent in EHR datasets 

with moderate to small proportions of labeled data (n=20, or 40), thus confirming that 

the unlabeled samples contain additional information that is invaluable to determining the 

patient-level phenotype status. In particular, this information, contained in the additional 

EHR features, is effectively leveraged by the neural network in its feature-learning task. 

Additionally, diseases with low baseline ICD accuracies exhibit remarkable improvement 

in WSS-DL’s performance, even when a very small subset of labels is used for training. 

Hence, WSS-DL is most beneficial for moderate to large datasets with a small proportion 

of labeled samples. This suggests that, in practice, WSS-DL may be especially valuable 

for diagnosing rare diseases. It may also be useful in phenotypes that are difficult to detect 

in clinical practice, and thus for which there are very few clinical annotations. Indeed, the 

extent to which WSS-DL outperforms PheCAP highlights the value of including unlabeled 

samples to assist in the phenotyping task.

The proposed WSS-DL outperforms the other methods based only on main ICD and main 

NLP for classifying episodic phenotypes. Episodic phenotypes are life-long conditions, for 

which there is no cure, and some days are better than others. Due to the nature of episodic 

phenotypes, patients experience periods of fluctuating good health and ill health. As such, 

the disease information may not be fully captured in their main diagnosis code or main 

disease mentions in the medical notes. Rather, that information may be captured from 

other covariates, such as medication prescriptions and laboratory measures. In this situation, 

approaches only based on the main ICD and main NLP covariates may not reliably represent 
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patients’ disease status, and thus would yield MAP probabilities with low predictive power. 

On the other hand, the proposed WSS-DL improves the classification accuracy by leveraging 

more clinical features. For example, the AUCs of MAP in classifying ARDS, Pseudogout 

and COPD are only 0.52, 0.59 and 0.64, respectively, while those of the WSS-DL are 

0.91, 0.82 and 0.91, respectively. Please note that episodic phenotype annotation is just one 

example of a scenario where MAP fails. In general, WSS-DL performs better than MAP 

when the main ICD and main NLP are not sufficiently informative.

The limited performance of XPRESS in the episodic phenotypes ARDS, Pseudogout, 

COPD, and Stroke datasets can be attributed to the low performance of the features in 

Xfull themselves in predicting patient phenotype status Y. Indeed, XPRESS models the 

relationship between Xfull and Y ∗, a proxy for Y . As such, it indirectly quantifies how 

effectively the features in X predict Y . We note that in each case, the low performance of 

Xfull in predicting Y is reflected in the remarkably low performance of PheCAP. In the Stroke 

dataset, the low quality of Y  also contributes to the low performance of XPRESS. We note 

that low quality of Y  and limited predictive power of Xfull tend to be inherent to episodic 

phenotypes, in that patient medical history cannot always help predict the manifestation of 

these phenotypes. The strong performance of WSS-DL for these episodic phenotypes, by 

contrast, suggests that its neural network component effectively captured latent patterns in 

Xfull, undetected by most clinicians and existing phenotyping algorithms (such as XPRESS 

and PheCAP), that are truly predictive of Y .

Though both WSS-DL and DAPS are semi-supervised deep learning-based algorithms, 

their main difference lies in the method used to summarize the EHR data in their deep 

learning stages. While WSS-DL uses a neural network to learn silver standard labels from 

the remaining non-surrogate EHR variables Xfull, DAPS’s denoising autoencoder performs 

dimensionality reduction on the full set of EHR features (Xsurr, Xfull) and thus does not 

isolate the main surrogate Xsurr from Xfull. As such, DAPS does not leverage the valuable 

relationship between Xsurr and the remaining EHR features Xfull, which in itself is central 

to determining patient-level phenotype status. The deep learning stage in WSS-DL involves 

learning silver-standard labels, a target known to be predictive of patient-level unobserved 

phenotype status. In DAPS, the objective is to extract the main factors of variation in 

the EHR features, which then are used for phenotype prediction. The notable difference 

in performance between WSS-DL and DAPS suggests that the current EHR data features 

learned by the denoising autoencoder are not very informative. This not only implies that the 

EHR data may be far more complex in structure than the simulation data used in the authors’ 

original experiments for DAPS24, but also highlights the value of silver standard labels in 

patient level EHR-based phenotyping. Since we observe that WSS-DL is able to predict 

phenotype status well in the labeled samples, with the help of the data-learning process in 

the silver-standard label creation and deep-learning stage, we may infer that the phenotype 

status predicted by WSS-DL for unlabeled samples is also reliable.

WSS-DL, though already highly effective, may be further improved if its strong benefits 

could extend beyond rare or sparsely labeled phenotypes. Indeed, diseases with increasing 

prevalence in the population, such as metabolic and vascular conditions, will greatly 
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increase the number of medical visits and thus the demand for clinical annotations. As 

such, maximal accuracy in predicting these conditions is crucial. Another limitation of 

WSS-DL lies in the fact that its phenotyping accuracy strongly depends on the quality of the 

selected features included in its logistic regression model. Indeed, WSS-DL’s phenotyping 

accuracy significantly exceeds that of the probability-type silver standard labels (e.g., 

MAP probabilities) or discrete-value-type silver standard labels (e.g., {−1,0,1} as in the 

Pseudogout dataset), but it does not hold when using continuous P/F ratios silver standard 

labels in the PARDS dataset. This may be attributable to the fact that the ICD codes 

for PARDS are low in quality, thus decreasing the predictive power of the ICD-derived 

MAP probabilities included in the final logistic regression step. Probabilities derived from 

surrogate features directly quantify the likelihood of positive phenotype status, unlike P/F 

ratios which represent a patient-level clinical measure. We note that the silver standard 

labels created for Pseudogout also act as direct proxies for phenotype status, with −1 entries 

merely indicating missingness. Furthermore, the usage of continuous silver standard labels, 

in conjunction with the binary gold standard labels, may require two different types of 

loss functions in the deep learning stage to accommodate continuous silver standard and 

binary gold standard labels, thus complexifying the representation of the neural network’s 

learned features and potentially limiting its optimization and learning tasks. This may be a 

point of concern, in EHR datasets where the most predictive surrogate labels are continuous 

and main ICD codes are poor in quality or main NLP counts are not provided, meaning 

MAP probabilities generated from these ICD and NLP counts would not be effective 

silver standard labels. These problems may potentially be addressed with the usage of a 

more sophisticated neural network architecture in the deep learning stage. Potential models 

include 1) a network that adaptively adjusts the contribution of silver standard labels, 

giving more importance to those with lower prediction uncertainty or 2) a network that 

performs multitask learning, to jointly learn silver and gold standard labels. Such a network 

would possibly be able to extract further information from unlabeled samples, thus boosting 

the performance of WSS-DL even in EHR datasets with higher proportions of labeled 

samples (and thus less unlabeled samples). Additionally, it may be capable of balancing the 

optimization of two different label types (e.g. labels in the form of large continuous values 

vs. probabilities) more effectively.

5. CONCLUSION

By leveraging a small number of gold-standard labels and a large quantity of unlabeled 

data, the WSS-DL algorithm can successfully predict patient-level disease status and yield 

significant improvement compared with existing unsupervised approaches, while improving 

the efficiency and reducing the need for human annotation. We validated the WSS-DL 

algorithm in the MGB and BCH systems. The WSS-DL algorithm performed well at both 

institutions, attaining higher classification accuracy than all other competing methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The WSS-DL method pipeline. Step 1: creation of silver standard labels Y ∗ from Xsurr using 

the MAP algorithm; this step may be omitted when Xsurr is a viable surrogate that can be 

directly used as Y ∗. Step 2: creation of the enhanced-silver-standard label Y * *  using neural 

network, with Y ∗ as the outcome, Xfull as input feature, and a subset of Y  for fine-tuning. 

Step 3: final prediction of Y  using logistic regression, with the enhanced-silver-standard 

labels and a minimal set of informative features Xsel as input features. The different sizes of 

Y represented in steps 2 and 3 indicate that a mere subset of Y is included for algorithm 
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fine-tuning in Step 2, and the full vector Y in Step 3 for the final patient-level phenotype 

classification.
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Figure 2. 
Comparison of averaged (a) AUCs and (b) F-scores based on ICD count, XPRESS, PheCAP 

(n=20 to 80), DAPS (n=20 to 80), and WSS-DL (n=20 to 80) in predicting 15 disease 

phenotypes using data from MGB biobank. The dash line refers to the performance of the 

silver-standard label.
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Figure 3. 
Comparison of (a) AUCs and (b) F-scores based on ICD count, XPRESS, PheCAP (n=20 

to 80), DAPS (n=20 to 80), and WSS-DL (n=20 to 80) in predicting pseudogout using data 

from MGB EHR. The dash line refers to the performance of the silver-standard label.
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Figure 4. 
Comparison of (a) AUCs and (b) F-scores based on ICD count, XPRESS, PheCAP (n=20), 

DAPS (n=20), and WSS-DL (n) in predicting ARDS using data from BCH. The dash line 

refers to the performance of the silver-standard label.
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Table 1.

Summary of EHR datasets by phenotype. The filter positive set was defined as the set of patients passing the 

clinically established filter criterion as defined in the Method Section. Labeled set was defined as the small set 

of patients with manually curated gold-standard labels, which was randomly sampled from filter positive set. 

The prevalence is the proportion of subjects with positive phenotype status among those for whom labels are 

provided.

EHR Platform Phenotype Sample Size of Filter Positive Patients No. of Labeled Samples (%) Prevalence (%)

MGB Asthma 7289 183 (2.5 %) 47.5 (%)

Breast Cancer 2002 94 (4.7 %) 77.6

COPD 3021 153 (5.1 %) 43.1

Depression 10189 252 (2.5 %) 54.8

Epilepsy 2225 117 (5.3 %) 47.9

Hypertension 19853 390 (2.0 %) 79.0

SCZ 456 108 (23.7 %) 17.6

T1DM 2111 128 (6.1 %) 16.4

RA 987 153 (15.5%) 36.6

CAD 3793 186 (4.9 %) 37.1

CD 519 136 (26.2 %) 53.7

UC 476 126 (26.5 %) 49.2

T2DM 3460 280 (8.1 %) 35.7

MS 136 101 (74.3 %) 52.5

Stroke 2052 128 ( 6.2 %) 36.7

BWH Pseudogout 12035 365 (3.0 %) 21.9

BCH ARDS 2201 44 (1.9 %) 40.9
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