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Abstract

Background

The prognostic and pathophysiologic significance of the biliary microbiota in pancreaticobili-

ary malignancies is little understood. Our goal was to find malignancy-related microbiomic

fingerprints in bile samples taken from patients with benign and malignant pancreaticobiliary

diseases.

Methods

Bile specimens were collected from consenting patients during routine endoscopic retro-

grade cholangiopancreatography. We used PowerViral RNA/DNA Isolation kit to extract

DNA from bile specimens. The Illumina 16S Metagenomic Sequencing Library Preparation

guide was used to amplify the bacterial 16S rRNA gene and create libraries. QIIME (Quanti-

tative Insights Into Microbial Ecology), Bioconductor phyloseq, microbiomeSeq, and mixMC

packages were used for post-sequencing analysis.

Results

Of 46 enrolled patients, 32 patients had pancreatic cancers, 6 had cholangiocarcinoma and

1 had gallbladder cancer. Rest of the patients had benign diseases including gallstones, and

acute and chronic pancreatitis. We used multivariate approach in mixMC to classify Opera-

tional Taxonomic Units (OTUs). Doing this, we found a predominance of genera Dickeya (p

= 0.00008), [Eubacterium] hallii group (p = 0.0004), Bacteroides (p = 0.0006), Faecalibacter-

ium (p = 0.006), Escherichia-Shigella (p = 0.008), and Ruminococcus 1 (p = 0.008) in bile

samples from pancreaticobiliary cancers as compared to benign diseases. Additionally, bile
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samples from patients with pancreatic cancer exhibited a predominance of genus Rothia

(p = 0.008) as compared to those with cholangiocarcinoma, whereas bile samples from

patients with cholangiocarcinoma exhibited a predominance of genera Akkermansia (p =

0.031) and Achromobacter (p = 0.031) as compared to those with pancreatic cancers.

Conclusions

Both benign and malignant pancreaticobiliary diseases have distinct microbiomic finger-

prints. The relative abundance of OTUs in bile samples varies between patients with benign

and malignant pancreaticobiliary diseases, as well as between cholangiocarcinoma and

pancreatic cancer. Our data suggest that either these OTUs play a role in carcinogenesis

or that benign disease-specific microenvironmental changes differ from cancer-specific

microenvironmental changes, resulting to a clear separation of OTU clusters. We need

more research to confirm and expand on our findings.

Introduction

Our understanding of the human microbiome in the context of cancer is evolving rapidly.

Studies in the past have suggested that close to 16% of global cancer burden could be attributed

to infections [1, 2]. Emerging studies reveal the role of the microbiome as a causative, prognos-

tic, and predictive factor in cancer and its treatment [3–5]. For example, Bacteroides fragilis
and Escherichia coli are implicated in colon carcinogenesis in patients with familial adenoma-

tous polyps [6], and the gut microbiome may influence how cancer cells respond to immuno-

therapy, both for melanoma and epithelial malignancies [7, 8]. However, little is known about

the carcinogenic role of bacteria in body sites that are generally considered sterile [9]. Specifi-

cally, in pancreaticobiliary cancers, which arise from organs typically not harboring microbes,

there is some evidence that the microbiome may play a role in cancer initiation and progres-

sion, as well as recovery from surgery and response to therapy [10, 11]. Indeed, recent surveys

of human tumor samples suggest both the presence of tumor-residing bacteria in non-mucosal

sites including pancreas, breast, ovary, lung and skin; and correlation of microbiome’s meta-

bolic functions to their specific tumor types [12–14]. However, there is limited clinical data on

microbiota in pancreaticobiliary malignancies and their most intimate environment—bile.

In patients with benign pancreaticobiliary diseases, a recent study evaluated the microbial

communities in bile of patients with primary sclerosing cholangitis (PSC) to suggest the preva-

lence of Prevotella, Streptococcus, Veillonella, Fusobacterium, and Haemophilus in the biliary

tract and the pathogenic role of Streptococcus in disease progression [15]. Both culture-depen-

dent and independent techniques in the past have demonstrated the presence of a microbial

community in the human gallbladder and the bile duct in some benign hepatobiliary diseases

including acute cholecystitis and gallstones [16–20]. There remains a knowledge gap in our

understanding of a “normal” biliary microbiome due to obvious ethical difficulties of obtain-

ing bile from healthy individuals who do not have any hepatobiliary pathologies. A recent

study that tried to address this by evaluating bile obtained from liver donors without any

record of biliary or hepatic disorders showed abundance of sequences belonging to the family

Propionibacteriaceae in healthy controls compared to patients with cholelithiasis who had

abundance of sequences belong to the families Bacteroides, Prevotellaceae, and Veillonellaceae
[21].
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Studies from animal models and human beings in the past have suggested that the biliary

tract might harbor an indigenous microbiome that might be well adapted to face the local envi-

ronmental challenges of the biliary microecosystem [21, 22]. However, the question on how

this microbiome responds to or contributes to the local inflammatory and neoplastic processes

in the pancreaticobiliary tract is not quite fully understood. We conducted an extensive analy-

sis of the bile collected from a series of patients with benign and malignant pancreaticobiliary

diseases to identify and correlate the unique signatures of such microbiome to the underlying

disease process.

Materials and methods

We enrolled 46 patients in this study approved by the Cleveland Clinic Institutional Review

Board. All patients provided written informed consent. Bile samples were collected from the

common bile duct during routine endoscopic retrograde cholangiopancreatography (ERCP).

DNA extraction

Total DNA was extracted from bile specimens using PowerViral RNA/DNA Isolation kit

according to the manufacturer’s protocol (Mo Bio Laboratories, Carlsbad, CA) with minor

modifications. Bile specimens were centrifuged at 1500rpm for 10 minutes, and pellets were

resuspended in 650 ul MoBio PV1 solution. Samples were then transferred to PowerViral glass

bead tubes and warmed at 55˚ C for 10 minutes. Samples were homogenized using the Tissue-

Lyser LT (Qiagen, Valencia, CA) at 25 Hz for 10 minutes and centrifuged at 13,000 x g for 1

minute, after which supernatants were transferred to a clean 2 ml collection tube with 150 uL

of PV2 solution and incubated at 4˚ for 5 minutes. Lysates were centrifuged at 13,000 x g for 1

minute, and supernatants transferred to a clean 2.2 ml tube with 600 ul of PV3 and PV4 solu-

tions and vortexed, after which 625 ul of supernatant was repeatedly loaded onto a spin filter

and centrifuged at 13,000 x g for 1 minute until all supernatant was loaded onto the filter. 600

ul each of solutions PV5 and PV6 were added, with 1 minute of centrifugation after each, dis-

carding flow-through; tubes were then centrifuged for 2 minutes before each spin filter basket

was placed into a clean tube and DNA eluted in 100 ul of RNAse-free water.

16S rRNA gene sequencing

Bacterial 16S rRNA gene amplification and library construction were performed according to

the 16S Metagenomic Sequencing Library Preparation guide from Illumina (Forest City, CA)

with minor modifications. All beads, tubes, and non-enzymatic reagents were treated with UV

light for 60 minutes prior to use [23]. Briefly, total DNA was PCR-amplified using primers

targeting the 16S V3 and V4 region (Illumina) under the following conditions: 95˚ C for 5

minutes, followed by 35 cycles of 95˚ C for 30 seconds, 56˚ C for 30 seconds, 72˚ C for 30 sec-

onds, and a final extension of 72˚ C for 10 minutes [24]. The resulting 16S rDNA amplicons

were run on a 1% agarose gel, size selected at 450–500 bp, and gel-purified using QIAquick

Gel Purification kit (Qiagen, Valencia, CA). A second round of PCR was performed to add

Nextera XT indices (Illumina) to purified amplicons. Indexed PCR products were purified

with Ampure XP beads (Beckman Coulter, Inc., Brea, CA), and quantified with Qubit dsDNA

system (ThermoFisher Scientific, Waltham, MA). Samples were then normalized and pooled

into sequencing libraries at 20 nM then validated on a Bioanalyzer DNA 1000 chip (Agilent,

Santa Clara, CA), and sequenced on the Illumina MiSeq with a V3 reagent kit at the Case

Western Reserve University Genomics Core Facility.
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Bioinformatics

After the sequencing, the paired-end sequences were processed with QIIME2 package (version

2019.7) [25]. For the subsequent downstream data analysis, we used the Bioconductor phylo-

seq [26], microbiomeSeq and mixMC [27] packages in R (version 3.6). Initial quality control

was checked using fastqc followed by multiqc. The Diverse Amplification Denoise Algorithm

(DADA2) pipeline within QIIME2 was used to trim the sequences, dereplicate, filter chimeric

sequences and finally merge the paired end reads. DADA2 models corrects for amplification

errors, which is more reliable than OTU construction methods. After the quality control visu-

alization, 20bps were trimmed from the beginning of the reads and the reads were truncated to

240bps.

The feature table of amplicon sequence variants (ASV, which is the QIIME2 equivalent of

operational taxonomic units [OTUs]), the phylogenetic tree and taxonomy files were con-

structed within QIIME2. Reads were classified against the SILVA database (silva-132-99-515-

806-nb-classifier).

The output of the QIIME2 pipeline was converted to phyloseq object with Qiime2R pack-

age (). Phyloseq object was then further filtered and used for creating diversity plots using

ggplot2 and with microbiomeSeq R package.

The main statistical approach we used in this study was mixMC, a multivariate analysis

framework implemented in mixOmics R package for microbiome data analysis. mixMC helps

in identifying OTU features discriminating between multiple groups of samples. mixMC han-

dles compositional and sparse data, repeated-measures experiments and multiclass problems;

it highlights important discriminative features, and it provides interpretable graphical outputs

to better understand the microbial communities’ contribution to each habitat.

mixMC framework includes unsupervised analyses to visualize diversity patterns with

Principal Component Analysis (PCA) and supervised analyses to identify indicator species or

determinant microbiota members characterizing differences between habitats or body sites

using sparse Partial Least Square Discriminant Analysis, sPLS-DA algorithm.

To apply mixMC we processed data with following steps: a) to the whole data matrix an off-

set of 1 was added to deal with zeroes after centered log ratio transformation, (b) to remove

features with low counts across all samples we prefiltered the raw count data, and (c) we

applied a centered log-ratio transformation was to the data.

Results

Patient characteristics

A total of 46 patients were enrolled in the study. Of these 46 patients, 32 had cancer of the

pancreaticobiliary system including pancreatic carcinoma (n = 25), cholangiocarcinoma

(CCA, n = 6), and gallbladder carcinoma (n = 1). Remaining 14 patients were tumor-free vol-

unteers who underwent routine ERCP for benign pancreaticobiliary diseases including acute

and chronic pancreatitis, and gallstone disease. Clinical details are shown in Table 1.

Microbiome profiling of benign versus malignant pancreaticobiliary

disease

We explored the microbial signature of bile in patients with benign (controls) and

malignant (cases) pancreaticobiliary conditions and compared the relative abundance of

microbiota between these two groups. Microbial composition at the phylum level showed five

dominant phyla in both cases and controls, namely, Firmicutes, Bacteroidetes, Proteobacteria,
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Actinobacteria, and Fusobacteria. Relative abundance of these dominant phyla was similar in

bile samples from patients with and without cancer of the pancreaticobiliary tract (Fig 1).

We then compared the richness and diversity of the microbial community in bile samples

from both the cases and controls. Overall, there was no significant difference in alpha diversity

by Richness, Fisher alpha, and Shannon indices, but significant difference in alpha diversity

by Simpson and Pielou’s evenness indices (Fig 2). Furthermore, we used the multivariate

Table 1. Overall characteristics of all patients.

Patients with malignant pancreaticobiliary diseases Patients with benign pancreaticobiliary diseases

Description Overall Description Overall

n 32 n 14

Patient age, median (range) 66 (37–

82)

Patient age, median (range) 56.5 (34–

82)

Patient sex, n (%) Female 11 (34.4) Patient sex, n (%) Female 7 (50.0)

Male 21 (65.6) Male 7 (50.0)

Patient race, n (%) Caucasian 28 (87.5) Patient race, n (%) Caucasian 13 (92.9)

African American 3 (9.4) African American 1 (7.1)

American Indian/Native

Alaskan

1 (3.1) American Indian/Native

Alaskan

0

Tumor type, n (%) Pancreatic cancer 25 (78.1) Disease type, n (%) Acute pancreatitis 3 (21.4)

Cholangiocarcinoma 6 (18.8) Biliary stricture 1 (7.1)

Gallbladder cancer 1 (3.1) Choledocholithiasis 2 (14.3)

Antineoplastic therapy, n (%) No 19 (59.4) Cholelithiasis 1 (7.1)

Yes 13 (40.6) Chronic pancreatitis 3 (21.4)

Jaundice (dilated bile

ducts)

2 (14.3)

Primary sclerosing

cholangitis

2 (14.3)

Exposed to antibiotics within the preceding 2

weeks of ERCP, n (%)

Yes 3 (9.4%) Exposed to antibiotics within the

preceding 2 weeks, n (%)

Yes 3 (21.4%)

Deranged Liver Function Tests within the

preceding 2 weeks of ERCP, n (%)

Yes 28

(87.5%)

Deranged Liver Function Tests within

the preceding 2 weeks, n (%)

Yes 8 (57.1%)

https://doi.org/10.1371/journal.pone.0283021.t001

Fig 1. Relative abundance of dominant phyla in bile from patients with benign (control) and malignant (case)

pancreaticobiliary diseases.

https://doi.org/10.1371/journal.pone.0283021.g001
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approach sparse Partial Least Squares Discriminant Analysis (sPLS-DA) in mixMC to classify

OTUs between the cases and controls by agglomerating the data to the Genus level (Figs 3 and

4). mixMC was able to distinctly cluster the data differentiating cases and controls. sPLS-DA

showed the effect size of OTUs contributing to the differences between cases and controls (Fig

3). This showed a predominance of the genera Dickeya (p = 0.00008), [Eubacterium] hallii
group (p = 0.0004), Bacteroides (p = 0.0006), Faecalibacterium (p = 0.006), Escherichia-Shigella
(p = 0.008), and Ruminocococcus 1 (p = 0.008) in bile samples from pancreaticobiliary cancers

compared to the group of benign pancreaticobiliary diseases (Fig 4).

Microbiome profiling in pancreatic adenocarcinoma versus

cholangiocarcinoma

We explored the microbial signature of bile in patients with malignant pancreaticobiliary con-

ditions with a focus to compare the relative abundance of microbiota between patients with

pancreatic cancer (PC, n = 25) and cholangiocarcinoma (CCA, n = 6). Microbial composition

at the phylum level showed five dominant phyla in both subgroups: Firmicutes, Bacteroidetes,

Proteobacteria, Actinobacteria, and Fusobacteria. Relative abundance of Firmicutes (43.03%

in PC vs 42.86% in CCA), Bacteroidetes (17.85% in PC vs 18.08% in CCA), Proteobacteria

(17.5% in PC vs 14.87% in CCA), Actinobacteria (13.11% in PC vs 13.41% in CCA), and Fuso-

bacteria (5.65% in PC vs 8.16% in CCA) was similar in bile samples from patients with pancre-

atic cancer and those with cholangiocarcinoma (Fig 5).

We compared the richness and diversity of the microbial community in bile samples from

patients with pancreatic cancer, cholangiocarcinoma, and gallbladder cancer by examining

Fig 2. Alpha diversity of biliary microbiota in patients with benign vs malignant pancreaticobiliary diseases.

https://doi.org/10.1371/journal.pone.0283021.g002
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alpha diversities. Overall, there was no significant difference in alpha diversity by Richness,

Fisher alpha, Simpson, Shannon, and Pielou’s evenness indices (Fig 6). Furthermore, we used

the multivariate approach sparse Partial Least Squares Discriminant Analysis (sPLS-DA) in

mixMC to classify OTUs in bile samples between patients with pancreatic cancer and with

cholangiocarcinoma by agglomerating the data to the Genus level. mixMC was able to identify

the differentially abundant microbes between these two subgroups and sPLS-DA clearly sepa-

rated the two subgroups (Fig 7). Using this analysis, bile samples from patients with pancreatic

cancer compared to those with cholangiocarcinoma showed a predominance of genus Rothia
(p = 0.008). Similarly, bile samples from patiens with cholangiocarcinoma showed a predomi-

nance of genera Akkermansia (p = 0.031) and Achromobacter (p = 0.031) (Fig 8).

Discussion

Over the past decades, with the increase in next generation sequencing and bioinformatics-

based studies investigating the relationship between microbiota and human diseases, we have

arrived at an intersection of microbial mechanisms and previously established host-centric

cancer hallmarks in our understanding of human cancer [28]. Indeed, an array of metabolites,

genotoxins, and antigens derived from microbes influence host immunity, inflammation,

energetics, cellular signaling, and metastasis [28]. The ease of obtaining non-invasive biological

samples has expanded our understanding of fecal microbiome and its relation to cancer and

response to antineoplastic therapies- particularly in gastrointestinal, skin, and lung cancers.

Recently, organ-specific commensal microbiomes were revealed in the surveys of samples

Fig 3. Multivariate analysis and diversity of biliary microbiota in patients with malignant (case) vs benign (control) pancreaticobiliary diseases

using mixMC.

https://doi.org/10.1371/journal.pone.0283021.g003
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from non-mucosal sites like pancreas, breast, ovary, lung and skin [14]. Also, evolving litera-

ture in microbiomics includes recent evaluations of microbiomes in other liquid niches like

bile- both in the benign and malignant cohorts. This has also added to the fundamental knowl-

edge on the composition and activity of the biliary microbiome and its relationship with bile-

related disorders [21]. Our pilot study suggests that distinct microbiome signatures in bile are

Fig 4. Mann Whitney-U test showing differential abundance of bacterial genera in bile from patients with malignant (case) and benign (control)

pancreaticobiliary diseases.

https://doi.org/10.1371/journal.pone.0283021.g004
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associated with benign and malignant pancreaticobiliary diseases. By using a targeted ampli-

con sequencing strategy for the 16S rRNA gene, this study demonstrates an underlying dysbio-

sis of the biliary microbiota among patients with different pancreaticobiliary diseases.

Specifically, we found a difference in the relative abundance of OTUs in bile samples between

patients with benign pancreaticobiliary diseases and pancreaticobiliary cancers, and between

pancreatic cancers and cholangiocarcinomas.

The findings from this study fill an important knowledge gap and are timely for several rea-

sons. First, this study confirms the growing body of evidence that high microbial diversity is

present within the biliary milieu of patients with benign and malignant pancreaticobiliary con-

ditions [29–31]. Second, this study shows a high dominance of phyla Firmicutes, Bacteroidetes,

Proteobacteria, Actinobacteria and Fusobacteria in the biliary microenvironment and which

are also parts of the intestinal microbiota. This is consistent with a recent analysis by del Cas-

tillo et. al. that showed the occurrence of these five major phyla in pancreatic tissue samples

collected from both the cancer and non-cancer cohorts [13]. This finding correlates with a

possibility that biliary microbiota could have their origin from the duodenum despite the

sphincter of Oddi. Third, despite the lack of uniform difference in the alpha diversity of the

microbial community in bile samples between patients with benign pancreaticobiliary diseases

and pancreaticobiliary cancers, a multivariate analysis using mixMC showed a clear separation

between these two subgroups. This leads to two hypotheses: that these OTUs may have a role

in carcinogenesis, and/or that changes in the microenvironment of benign pancreaticobiliary

diseases might differ from the changes in the microenvironment of pancreaticobiliary cancers

leading to distinct separation of the OTU clusters. Also, it is not quite clear whether these

microbes are cancer-causing oncomicrobes, complicit microbes or so-called innocent

Fig 5. Relative abundance of dominant phyla in bile from patients with pancreatic cancer and cholangiocarcinoma.

https://doi.org/10.1371/journal.pone.0283021.g005
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bystanders. This observed differential abundance in microbiome raises a possibility that the

difference could be due to the nature of the tumor itself by its influence on the gut-liver axis

and further alteration of the bidirectional communication between the gastrointestinal tract

and the liver via the biliary tract, portal vein and systemic circulation subsequently exposing

biliary tract to the gastrointestinal microbiome [32]. Furthermore, this influence on the gut-

liver axis might be different for pancreatic cancer which may cause local stasis of the bile

through extramural compression of the common bile duct versus cholangiocarcinoma which

may cause the stasis in bile flow through intramural obstruction of the common bile duct. A

recent study based on mouse models demonstrated that the microbiome is more abundant in

the malignant pancreas, as compared with normal controls, and may lead to immune tolerance

and lack of response to immunotherapy [33]. In our study, at the genus level, Dickeya, [Eubac-
terium] hallii group, Bacteroides, Faecalibacterium, Escherichia-Shigella, and Rumicococcus1
were significantly predominant in bile samples from patients with pancreaticobiliary cancers

as compared to their benign counterparts. Fourth, in this study, multivariate analysis using

mixMC clearly separated the microbial taxa at the genus level between patients with pancreatic

cancer (increased abundance of Rothia) and those with cholangiocarcinoma (increased abun-

dance of Akkermansia and Achromobacter). This is important because it adds to the growing

literature on the microbiomic profile of bile with a focus on cancer. One recent study compar-

ing bile specimens from 10 cholangiocarcinoma patients with 10 patients without malignancy,

Fig 6. Alpha diversity of biliary microbiota in bile from patients with pancreatic cancer vs cholangiocarcinoma.

https://doi.org/10.1371/journal.pone.0283021.g006
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showed an abundance of H. pylori in cholangiocarcinoma samples [29]. In our study, Helico-
bacter species were not found to be abundant in cholangiocarcinomasamples. In another

study, biliary duct tissue microbiome from liver fluke (Opisthorchis viverrine) associated cho-

langiocarcinoma patients showed significant increase in Stenotrophomonas species compared

to non-cancer controls, however, this study looked into the microbiome of biliary duct tissue

and not the bile per se [34].

Not only do our observations here add to the growing literature on microbiome associated

with pancreaticobiliary neoplasia, but also importantly, this is one of the first clinical studies to

evaluate bile microbiome in pancreaticobiliary diseases, with a focus on cancer. Prior studies

have mostly evaluated salivary and gut microbiota in relationship to pancreaticobiliary cancers

[10]. In one recent study that investigated bile microbiome in patients with pancreatic cancer,

bacteria were detected in only 4 out of 7 bile samples, specifically Enterobacter and Enterococ-
cus species [35]. Neisseria and Porphyromonas in oral microbiome have been associated with

pancreatic cancer [36, 37] whereas in biliary cancer, there have been multiple reports of Helico-
bacter species with somewhat disparate findings [30]. The role of microbiome in response to

immunotherapy for cancer is also being elucidated [7, 8, 38]. Faecalibacterium, Collinsella and

Enterococcus species have been reported to be associated with improved response to immuno-

therapy when present in fecal microbiomes [7, 38]. In our study, Fecalibacterium was signifi-

cantly present in pancreaticobiliary cancer patients when compared to patients with benign

pancreaticobiliary diseases.

A strength of this study lies in the collection of specimens solely for the purpose of micro-

biome analysis and analyzing them to add to the growing body of literature on microbial pro-

file of bile, with a focus on cancer. Moreover, this is the first study to investigate the differential

presence and abundance of microbiome in bile in benign compared to malignant pancreatico-

biliary diseases, and between pancreatic and biliary cancers.

Fig 7. Multivariate analysis and diversity of biliary microbiota in patients with pancreatic cancer versus cholangiocarcinoma using mixMC.

https://doi.org/10.1371/journal.pone.0283021.g007
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Our study has several limitations. First, because of the non-randomized nature of the

study, our study provides room for the traditional confounders of selection bias. These

include but are not limited to the differences in host factors like dietary habits, alcohol con-

sumption, tumor markers and tumor stage, presence of viral hepatitis and liver cirrhosis. We

acknowledge the influence that prebiotics, probiotics and antibiotics might have in the bili-

ary microbiome, but although we do not have information on the use of pre- and pro-biotics,

only 3 patients each in the benign and malignant pancreaticobiliary disease groups were

exposed to antibiotics within the preceding two weeks of bile collection. Second, given the

observational design of the study with one-time bile draw and no plan for subsequent bile

Fig 8. Mann Whitney-U test showing differential abundance of bacterial genera in bile from patients with pancreatic

cancer vs cholangiocarcinoma.

https://doi.org/10.1371/journal.pone.0283021.g008
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draws, we do not clearly understand the longitudinal effects of systemic antineoplastic thera-

pies in the biliary microbiome. In a culture-dependent study from patients who had under-

gone pancreatoduodenectomy for pancreatic cancer, operative bile cultures showed an

alteration of biliary microbiome in patients who had received neoadjuvant therapy with an

increased likelihood of harboring enterococci and gram-negative bacteria [39]. We do not

clearly understand the effect of antineoplastic therapy on the biliary microbiome from our

study. Third, the relatively small sample sizes in both benign and malignant pancreaticobili-

ary subgroups precludes any firm conclusion in this study but do provide good preliminary

foundational data. Fourth, this study suggests the presence of a biliary dysbiosis in patients

with benign versus malignant pancreaticobiliary diseases and within pancreaticobiliary

cancers but does not look into the possibility of dysbiosis in the bile of healthy people with-

out any pancreaticobiliary disorders. This is due to the obvious ethical difficulty of obtaining

bile through an invasive procedure like ERCP in healthy volunteers who do not have any

pancreaticobiliary disorder, but it would still have added to our understanding on the evolu-

tion of pancreaticobiliary cancers if we could have profiled the biliary microbiome among

healthy, those with benign diseases and those with cancers. Fifth, despite efforts to reduce

contamination during collection of bile, the intervention itself could have introduced bacte-

ria from patients’ oral, gastric, and duodenal flora in the collected sample. And finally, given

the cross-sectional nature of the study, this study only profiles the bacterial taxa in bile from

cancer patients and non-cancer volunteers and does not establish causality by identifying

carcinogenic and non-carcinogenic bacteria.

Conclusions

This clinical study demonstrates that microbiome analyses of bile may differentiate malignant

from benign samples in pancreaticobiliary diseases. Furthermore, distinct microbiome signa-

tures may be associated with pancreatic versus biliary cancers. Taken together, this study adds

novel insights to the growing literature on the microbial composition of the biliary microbiota

and could help provide a pilot bases for future large-scale studies by utilizing the bile micro-

biome and its role in human metabolism and health in the diagnosis and treatment of pancrea-

ticobiliary diseases, with a focus on cancer.
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