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Advancement in our understanding of immune cell recognition and emerging cellular engineering technologies during
the last decades made active manipulation of the T cell response possible. Synthetic immunology is providing us with an
expanding set of composite receptor molecules capable to reprogram immune cell function in a predefined fashion. Since
the first prototypes in the late 1980s, the design of chimeric antigen receptors (CARs; T-bodies, immunoreceptors), has
followed a clear line of stepwise improvements from antigen-redirected targeting to designed ‘‘living factories’’ deliv-
ering transgenic products on demand. Building on basic research and creative clinical exploration, CAR T cell therapy
has been achieving spectacular success in the treatment of hematologic malignancies, now beginning to improve the out-
come of cancer patients. In this study, we briefly review the history of CARs and outline how the progress in the basic
understanding of T cell recognition and of cell engineering technologies made novel therapies possible.
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INTRODUCTION
HISTORICALLY, TREATMENT REGIMENS in oncology are based

on three pillars, namely, surgery, chemotherapy, and ra-

diotherapy. Advancement in the basic understanding of

the molecular processes involved in T cell recognition

and the application of synthetic immunology technologies

made it possible to reprogram patients’ own immune cells

to recognize and combat cancer. These developments

during the last decades are providing the basis of ratio-

nally designed immunotherapy that is now recognized as

the fourth pillar in cancer therapy.

The recent breakthrough in cancer treatment with de-

signed immune cells is a result of a long development in

biomedical research and in cellular engineering technol-

ogies reaching back to the early times of cellular immu-

nology. It is more than a century ago when Paul Ehrlich

presented the hypothesis that the immune system has the

power to selectively attack and control cancer.1 Only

modern molecular immunology, genetic engineering, and

cell manufacturing technologies provided us with tools

to test for the hypothesis and to establish immuno-

oncology in clinical practice. Within this development,

it is just three decades ago that the first synthetic immune

receptors were genetically engineered to engraft pre-

defined T cell specificity and to redirect immune effec-

tor functions. Among these, chimeric antigen receptor

(CAR)-redirected T cells were crowned with success when

entering clinical exploration, becoming the first commer-

cial gene transfer therapy being approved by the U.S. Food

and Drug Administration (FDA) in August 2017. The

FDA Commissioner at that time, Scott Gottlieb, noted the

significance of the approval stating that the CAR T cells

represent a ‘‘milestone in the development of a whole

new scientific paradigm for the treatment of serious dis-

eases.’’2 While still away from being perfect, CAR T cell

therapy provides hope for patients whose cancer became

resistant to traditional therapies.

In this study, we briefly outline the major steps in the

continuous evolution of the CAR design from the per-

spective of synthetic immunology and focus on redirecting

engineered T cells against cancer. The review aims to

indicate how the progress in both the understanding of

molecular processes in T cell recognition and immune cell

engineering technologies made novel therapies possible

that are redirecting patient’s own immune cells to attack

cancer.
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THE BASIS OF ADOPTIVE CELL THERAPY:
T CELLS ARE CAPABLE TO CONTROL CANCER

Since the discovery of T cells originating from the

thymus by Miller in the early 1960s3 and the discovery

of their lytic activities, cytotoxic T lymphocytes (CTLs)

were recognized as major effectors that initiate and me-

diate an antigen-specific lytic immune response against

infected cells and cancer (Fig. 1).4 On the other hand,

natural killer (NK) cells, first described by Kiessling et al.

(Karolinska Institute, Stockholm) in 1975,5–8 were iden-

tified to kill target cells in an antigen-independent fash-

ion, which laid the basis to understand the innate immune

response in the control of cancer.

Aiming at using the lytic power of the cellular immune

response, Rosenberg and his team at the NCI (Surgical

Branch, NIH, Bethesda, MD) established technologies in

the early 1980s to generate ex vivo cytotoxic cells in the

presence of interleukin (IL)-2, so-called lymphokine-

activated killer (LAK) cells, an enriched cell product with

lytic activities.9 LAK cells attracted interest due to their

ability to kill cancer cells in vitro that are resistant to NK

cell-mediated lysis. These efforts resulted in 1985 in the

first safe administration of LAK cells together with IL-2

to patients with metastatic cancer.10 In subsequent trials,

however, the benefit of LAK cells proved small in com-

parison to IL-2 administration11,12 making research in

more antigen-specific cytotoxic immune cells necessary.

In contrast to NK cells, T cells recognize targets in an

antigen-specific fashion and, once activated, can elimi-

nate cancer cells by various means, including perforin/

granzymes, Fas ligand, and cytokines like interferon

(IFN)-c and tumor necrosis factor (TNF)-a; however, their

activation requires presentation of the respective antigen

by professional antigen-presenting cells (APCs). In this

situation, melanoma became a tumor of particular interest

to study due to its high T cell immunogenicity.13 An ad-

ditional advantage of studying melanoma at that time

was that patient-specific tumor lines could be established

from surgical specimens and infiltrating immune cells, in

particular tumor infiltrating lymphocytes (TILs), could be

isolated and propagated in vitro.14 These T cells recog-

nizing autologous cancer cells appeared to be much more

prevalent in melanoma patients for reasons not understood

at the time. Melanoma cells frequently undergo high mu-

tation rates displaying mutated peptides as altered self-

antigens on the cell surface, where they can be recognized

by T cells.15,16

Moreover, there is an intense communication network

between innate and adoptive immunity within the tumor

lesion, in that also cancer cells finally participate to escape

destruction. These observations made clear that cancer

patients’ immune system is actively experiencing tumor

cells,17,18 mostly for long periods of time, and accumu-

lating T cells within the tumor correlate with prognosis.19

By putting these observations together, tumor resident

T cells were disputed to transfer antitumor immunity. It

was until 1986, when the hypothesis was experimentally

evaluated by Rosenberg et al. (NCI, NIH) by isolating

TILs from melanoma lesions and amplifying the cells

in the presence of recombinant IL-2 for several weeks.14

Figure 1. Overview of major steps in the development of adoptive T cell therapy.
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The ex vivo amplified TILs recognize melanoma-

associated antigens and lyse autologous tumor cells in an

in vitro short-term assay.20 A milestone toward specific

T cell therapy of cancer was made in 1991 when van der

Bruggen et al. in Boon et al.’s team (Ludwig Institute for

Cancer Research, Brussels, Belgium) identified the anti-

gen recognized by a tumor-reactive T cell clone from a

melanoma patient.21 Many other tissue differentiation

antigens shared by melanomas and melanocytes were

subsequently cloned by a similar procedure.22,23

Built on these laboratory observations, amplified au-

tologous TILs were applied together with IL-2 to mela-

noma patients producing substantial tumor regression, in

some cases for several months and years. The pioneering

work first established that systemic infusion of tumor-

isolated, ex vivo amplified, and activated autologous

T cells can induce an antitumor response.24 Together with

the stepwise refinement of the clinical protocol, including

the introduction of transient nonmyeloablative lympho-

depletion before T cell transfer, called host precondition-

ing (reviewed in reference25), the Rosenberg team paved

the way for clinical application of adoptive T cell therapy

in general and specifically for the treatment of melanoma.

The TIL approach, unfortunately, was not applicable to all

melanoma patients and not to most other malignancies,

indicating the need to engraft tumor specificity to naive

T cells from patients’ peripheral blood that has the ad-

vantage that these cells can more easily be obtained and

ex vivo amplified for adoptive transfer.

Two years after Rosenberg’s report on a TIL trial, Kolb

et al. (Technische Universität München, München, Ger-

many) demonstrated therapeutic efficacy of allogeneic

donor lymphocyte infusion (DLI) in combination with

IFN-a for the treatment of recurrent chronic myeloid

leukemia26 in patients after allogeneic stem cell trans-

plantation (allo-SCT). In 1994, O’Reilly achieved by DLI

regression of Epstein-Barr virus (EBV)-associated post-

transplant lymphoproliferative disease after allo-SCT.27

The pioneering work by these groups together laid the

basis of the concept that adoptive transfer of ex vivo am-

plified T cells is capable to control cancer.

The elucidation of the heterodimeric structure of the

T cell receptor complex (TCR) for antigen recognition28–30

and the development of efficient gene transfer technolo-

gies paved the way to genetically engineer T cells with

antigen specificity. In a significant step forward toward

antigen-specific T cell therapy, human T cells were equip-

ped in vitro by gene transfer technologies with transgenic

TCR ab chains gaining human leukocyte antigen (HLA)-

restricted specificity for a cancer-associated antigen.31,32

In that time, research was much facilitated by more effi-

cient technologies in transferring vectors to peripheral

blood T cells. First applied to treat a melanoma patient,

ex vivo TCR-engineered T cells showed remarkable effi-

cacy and tumor selectivity after adoptive transfer.33

These research activities together draw the concept that

TILs harbor specificity for the cancer they are isolated

from and that the cancer specificity can be transferred

to naive T cells by engineering with the respective CAR.

Adoptive transfer of such engineered T cells conveys

profound anticancer activities. However, several hurdles

from the cancer cell site were arising, in particular the

frequent downregulation in HLA presentation and/or de-

ficiencies in antigen processing by cancer cells making

them invisible to T cells.34 Within the following two de-

cades, recombinant TCRs evolved toward synthetic im-

mune receptors by combining antibody and T cell immune

modules, which finally accelerated basic immune cell re-

search to rapidly progress to clinical exploration.

REDIRECTING T CELLS BY SYNTHETIC
IMMUNE RECEPTORS: THE FIRST
T-BODIES/IMMUNORECEPTORS/CARS

The T cell specificity is defined by the TCR ab chains,

however, the activation is initiated by associated signaling

domains, in particular the CD3f chain. The molecular

cloning of the individual chains of the CD3 complex35 was

a major milestone in the stepwise evolution of synthetic

immune receptors. Three teams, the Weiss, Seed, and

Klausner team, independently drew the concept to cova-

lently link the signaling CD3f chain with the extracellular

part of CD8, CD4, or the IL-2 receptor CD25, respectively,

to obtain a chimeric receptor with both a targeting extra-

cellular part and a signaling intracellular moiety. Ex-

pressed by engineered Jurkat T leukemic cells or cytotoxic

T cells,36–38 crosslinking the synthetic receptors by target

engagement induced T cell activation indicated by indu-

ced Ca2+ influx and other activation markers. This was a

pioneering step since their work established that antigen-

driven crosslinking of CD3f is sufficient to initiate a

functional response in T cells.

On the other hand, it remained unresolved how to engraft

predefined antigen specificity to a T cell activating complex.

Since antibodies are prototypes par excellence to provide

antigen specificity, the concept was drawn to covalently link

antibody-derived binding domains to the TCR constant re-

gions as first reported by Kuwana et al. (Fig. 2).39 This was a

significant step forward in redirecting T cells toward defined

targets since the major histocompatibility complex (MHC)

restriction of the TCR was overcome by an antibody.

It was in the late 1980s when the Eshhar’s group (Weiz-

mann Institute of Science, Rehovot, Israel) coupled a single-

chain fragment of variable region (scFv) antibody specific for

the hapten anti-trinitrophenyl to the a- or b-chain of a TCR

(Fig. 2).40 Such hybrid molecules formed heterodimers with

the TCR chains to recruit the T cell activation signaling

machinery. To form a functional antibody, the variable re-

gion of the immunoglobulin heavy chain was covalently

linked by a short flexible peptide to the variable region of the
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light chain; the scFv antibody format is still commonly used

as antigen-sensing domain of recombinant immune recep-

tors. The Eshhar’s group also linked the scFv to the extra-

cellular end of the CD3f chain or the high-affinity

immunoglobulin E receptor c chain (FceRIc) to produce T

cell activation. Indeed, such antibody/TCR chimera induced

IL-2 release and cytolytic activity toward target cells in an

MHC-independent fashion.41,42 The same research team

redirected CTL hybridoma cells to cancer cells by a re-

combinant receptor that binds by the linked scFv antibody

to the epidermal growth factor receptor (Her2/neu, ErbB2)

overexpressed by a variety of cancers.43

Simultaneously, Brocker et al. presented a chimeric re-

ceptor composed of a single-chain antibody-binding site that

was connected over a short spacer to CD3f.44 Following the

same construction scheme Moritz et al. reported in 1994 a

chimeric receptor ErbB2 and composed of a scFv, a hinge

region as a spacer, and the CD3f.45 All these examples

demonstrated that antigen specificity can be redirected toward

a defined antigen by a chimeric receptor consisting of an

antibody for targeting and the TCR invariant chain CD3f or

the c-chain of the IgE receptor for intracellular activation.

Redirected recognition of target cells could not only be

achieved in T cell hybridomas but also in peripheral blood T

cells of humans and mice.46–48 These chimeric receptors were

named by the Eshhar’s group ‘‘T-body’’ as a hybrid of an

antibody and a TCR, subsequently by our and other groups

‘‘immunoreceptors’’ and are now known as ‘‘chimeric anti-

gen receptors’’, precisely nowadays CARs of first generation.

The fundamental advantage of the strategy is that engi-

neering with a synthetic receptor ex vivo creates expandable

antigen-specific human T cells circumventing the limita-

tions of active immunization to prime T cells in vivo. An-

other crucial property is that the CAR not only provides

MHC-independent targeting but also initiates T cell acti-

vation. This is based on the discovery of the CD4 and CD8-

p56(lck) complexes and leads to the understanding how

receptors that lack intrinsic signaling control the T cell re-

sponse to antigens by association to nonreceptor kinases

(reviewed by reference49). Taken together, the concept of a

Figure 2. A brief summary of some major steps in the development of CARs. CAR, chimeric antigen receptor.

1014 ABKEN



downstream protein tyrosine phosphorylation cascade

initiated by the TCR f-chain or the immunoglobulin re-

ceptor c-chain was applied to design the first hybrid re-

ceptors that convert binding to defined target into cellular

activation.

Because such chimeric receptors bind their cognate

target independently of MHC presentation, these scFv-

containing receptors can basically also recognize non-

classical T cell targets like carbohydrates and lipids. As

early as in 1997, our group demonstrated CAR-redirected

T cell targeting toward the carbohydrate TAG72,50 a

cancer-associated antigen highly expressed by gastroin-

testinal carcinoma cells; other examples of nonprotein

targeting followed with time.51

A major step toward exploring applicability of CAR

T cells for therapeutic application was made in 1999

by Sadelain’s group (Memorial Sloan Kettering Cancer

Center [MSKCC], New York, NY) by redirecting pa-

tients’ T cells toward cancer cells through such chimeric

receptor in vitro.52 These CAR T cells mediated substantial

cytotoxicity, however, showed only poor capacities to ex-

pand upon repetitive antigen engagement. Subsequently,

our group at Cologne University (Cologne, Germany)

demonstrated that patient’s T cells engineered with an anti-

CD30 CAR can recognize and eliminate autologous T

lymphoma cells isolated from patient’s biopsy.53

One of the first demonstrations of in vivo efficacy of

engineered CAR T cells was provided by Haynes et al.54

who showed that adoptive transfer of genetically retar-

geted mouse T cells eradicated transplanted colon carci-

nomas in mice. However, early transgenic mouse models

also revealed that such f-chain CARs could not suffici-

ently activate resting T cells44,55 and CAR T cells could

only modestly control tumor growth, produced low amounts

of IFN-c, and rapidly entered anergy.55,56

In summary, the first prototype CARs of ‘‘first gener-

ation’’ evolved in three substantial stages,

(i) the CD3f chain, which lacks extracellular do-

main, was linked to CD8, CD4, or CD25 to allow

signal transmission and T cell activation upon

crosslinking36–38;

(ii) linking an scFv in the extracellular part to CD3f
or FceRI c41,44 made redirecting engineered cells

with any predefined specificity possible;

(iii) by retroviral transduction procedures, the fusion

receptors were engrafted on the surface of human

naive blood T cells paving the way to adoptive

cell therapy.57,58

The short-lived CAR-driven T cell activation and in-

sufficient antitumor activity stimulated research toward

the next step in the evolution of CARs, the ‘‘second gen-

eration’’ CAR, to provide sufficient and lasting activation

to the engineered T cell.

A MAJOR STEP TOWARD CLINICAL EFFICACY:
COMBINING COSTIMULATION WITH THE
PRIMARY TCR SIGNAL IN ONE CHIMERIC
RECEPTOR IMPROVES CAR T CELL
ANTITUMOR RESPONSE

TCR signaling controls T cell differentiation59 and is

physiologically amplified and modulated by a series of

concomitant costimulatory signals. TCR engagement of

MHC-loaded antigen presented by dendritic cells along

with a costimulatory signal induces clonal expansion

and differentiation into effector and memory T cells.

According to the ‘‘two-signal’’ hypothesis,60 the pri-

mary TCR signal (signal-1) together with costimulation

(signal-2) is required for full activation of naive T cells,

to drive amplification, to prevent unresponsiveness

(‘‘anergy’’), some forms of activation-induced cell death

(AICD), and exhaustion. While signal-1 and signal-2 are

sufficient for inducing CD8+ T cells to proliferate und to

produce cytokines, a third signal, signal-3 according to

Lafferty’s concept,61 is required to execute cytotoxic

effector functions.62

Upon engagement of antigen through the TCR ab
chains, the prototype costimulatory receptor CD28 is re-

cruited to the immunological synapse to stabilize the TCR

microcluster and enhance TCR signaling. This process re-

sults in increased cytokine production, cell cycle progres-

sion and amplification, differentiation and survival, and

in altered epigenetic structure and cellular metabolism.

Other costimulatory receptors, such as 4-1BB (CD137),

CD27, OX40, and ICOS, are also involved, each addres-

sing a different, however overlapping panel of func-

tions.63 Based on the understanding of the relevance of

costimulation in mediating sufficient T cell activation, it

was disputed how to provide signal-2 in addition to pri-

mary T cell signaling in the absence of APCs. The pro-

totype CD3f CAR, as it was in use in the late 1990s, was

by itself not capable to provide costimulatory help.

From the historical perspective, cytokine gene trans-

fer was one of the first strategies to enhance T cell function

by providing additional help. In particular, engineering

with the IL-2 cDNA allowed robust amplification of

T cells in the long term.64,65 The development was drop-

ped, however, since IL-2- or TNF-a-modified TILs did not

show clinical benefit over nonmodified TILs.66 Evidence

reported by the Sadelain group52 indicated that IFN-c and

IL-2 release upon redirected activation of patients’ T cells

was increased when the targeted cancer cells express

CD80, the ligand for CD28 on T cells. To provide a co-

stimulatory signal for robust signaling, Alvarez-Vallina

and Hawkins67 and subsequently the Sadelain group51

linked an extracellular scFv for antigen engagement to the

transmembrane and signaling domain of CD28 resulting in

a scFv-CD28 receptor (Fig. 2). Such chimeric costimula-

tory receptor induced IL-2 release and prevented AICD in
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engineered T cells. In summary, the scFv-CD28 receptor

demonstrated that costimulation can be provided to en-

gineered T cells in an antigen-triggered fashion in the ab-

sence of CD80 on the tumor cell and in the absence of APCs.

Consequently, several groups tried to combine antigen-

dependent CD3f signaling by the CAR and concomitant

CD28 costimulation within one receptor molecule to

augment T cell activation.

It was Finney et al.68 who demonstrated that integrating

the CD28 endodomain into the signaling chain of the pro-

totype f-chain CAR in a membrane proximal position re-

sulted in a CD28-CD3f dual signaling receptor capable of

inducing IL-2 release in engineered Jurkat cells. Our group

first demonstrated in 2001 that human blood T cells can

fully be activated by a CD28-f CAR independently of

CD80/CD86 on cancer cells indicating CAR-autonomous

signaling through both CD3f and CD28.69,70 The demon-

strated full CAR-driven activation of primary blood T cells

was a crucial step toward clinical application; T cell hy-

bridoma or leukemic cells used before are not adequate in

this respect due to their neoplastic transformation.

Both CD28 and CD3f signaling were simultaneously re-

quired to provide a receptor-triggered, MHC-independent

fashion in human T cells,69,70 once more sustaining the

concept to integrate CD28 and TCR CD3f-chain into one

dual-signaling receptor. Shortly afterward, the Sadelain

group also showed the benefit of integrating CD28 signaling

domain into the CD3f receptor to provide full T cell acti-

vation.51,71 This dual-signaling CAR was capable of re-

directing patient’s blood T cells toward autologous cancer

cells as shown by our group using carcinoembryonic antigen-

specific CAR T cells redirected against autologous colon

cancer cells isolated from a biopsy72; other examples for

leukemia and solid cancer followed from other groups.73,74

The CAR with integrated costimulatory and primary

signaling domain is now defined as CAR of ‘‘second gen-

eration’’ (Fig. 2); any other costimulatory domain, each

with some different impact on T cell function, can be added

to the primary signaling domain, including 4-1BB (CD137)

as reported in 2004,75 CD27, OX40, or ICOS.76–79 Basi-

cally, the second-generation CARs provide the T cell the

adequate signals required to bypass anergy and apoptosis,

thereby extending CAR T cell function toward more potent

antitumor activities, increased cytokine production, and

improved amplification and persistence compared with

first-generation CARs.75,76,80,81 The benefit in extending

T cell performance became obvious when metastases in

mice were more efficiently reduced by CD28-f CAR

T cells compared with the previously used f CAR T cells

of first generation.81 In a parallel development based on

the rationale that lymphocyte-specific protein tyrosine

kinase (Lck) promotes CD3f immunoreceptor tyrosine-

based activation motif phosphorylation, the src-family

kinase Lck signaling domain was integrated into the f-

chain CAR, also resulting in augmented T cell activa-

tion.82 This type of CAR has not been studied intensively

in the following years, however, nicely demonstrates the

modularity and flexibility of CAR design.

Given the biological differences in costimulation by the

various receptors, comparative analyses of the CD28-f
CAR versus 4-1BB-f CAR expectedly confirmed that the

individual costimulatory domains differently impact a

number of functional properties, including the metabo-

lism,83 T cell memory development,83,84 and antigen-

independent tonic signaling.85 CD28-f CARs induce a

strong and rapid T cell activation while 4-1BB-f CARs

gradually induce the T cell response that persists over a

longer period. Moreover, the activation-induced cytokine

profile of CAR T cells depends on CAR-provided costi-

mulation; for example, IL-2 and IL-10 are released pre-

dominantly upon CD28-f and less by 4-1BB-f CAR

signaling.86 Debulking larger tumor mass is more rapidly

performed by CD28-f CAR T cells than 4-1BB-f CAR

T cells, however, the latter compensate the lower cytolytic

activity by prolonged activities in time.87,88 It is also be-

coming clear that the sensitivity to tumor-driven repres-

sion is different between the second-generation CARs;

CD28-f CAR T cells are resistant to transforming growth

factor (TGF)-b repression while 4-1BB-f CAR T cells are

efficiently repressed, which is crucial when targeting solid

cancer lesions with high TGF-b load.89

While each costimulatory signal triggers a distinct, al-

though overlapping pattern of T cell responses, for adoptive

cell therapy the combination of two costimulatory signals

was hypothesized to be beneficial.90,91 First, the group by

Carl H. June (University of Pennsylvania, Philadelphia, PA)

showed in 2009 that CAR T cells with both CD28 and 4-

1BB costimulation successfully controlled large established

tumors, which was not the case for CARs providing one

costimulatory signal only.92 The observations were con-

firmed by the Sadelain group91 demonstrating a combined

activation of the phosphoinositide 3-kinase/protein kinase

B (PKB, AKT) pathway through combined CD28-4-1BB-f
CAR signaling. Engineered CAR T cells showed increased

Bcl-xL, decreased apoptosis in vitro, and augmented tumor

elimination in a mouse tumor model. The CAR takes benefit

of the cooperativity of CD28 and 4-1BB in augmenting

antitumor activity by inducing lytic effector molecules and

polarizing toward a type-1 cytokine response. This type

of CARs with two costimulatory domains in any com-

bination was established as ‘‘third generation’’ CARs

(Fig. 2).

Later, other combinations of costimulatory signals

came to interest in specific situations, including the

combination CD28-OX4093 which showed superior activity

in T cells in advanced stages of development.94 The CD28-

OX40 CAR was shown to repress CD28-induced IL-10

release that compromises T cell activity.95 ICOS together

with CD28 or 4-1BB costimulation increased the CAR

T cell persistence in vivo; MyD88/CD40 costimulation
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improved in vivo amplification.96 Expanding research in

third-generation CARs over the following years, however,

revealed that the combination of two costimuli is not in

every cell type potent to augment the antitumor efficacy95;

current research is focusing back on second-generation

CAR T cells, particularly since, in the meantime, these

CARs have produced spectacular success in the treatment

of hematologic malignancies.

CARS OF SECOND GENERATION ARE
TAKING THE FRONT SEAT IN CLINICAL
EXPLORATION

Primarily developed to understand TCR-mediated ac-

tivation, chimeric receptor-redirected T cells rapidly de-

veloped toward clinical application bringing hope to

control tumors in the long term. First-generation CARs

were explored in the early trials targeting ovarian carci-

noma in 2006,97 metastatic renal cell carcinoma,98 and

neuroblastoma99; however, CAR T cells insufficiently

persisted in a functional state to mediate lasting antitu-

mor efficacy.97,100 It is rather the loss of function than

the lack of persistence of first-generation CAR T cells that

basically contributes to the treatment failure since even a

decade after application CAR T cells could be molecularly

detected in patients treated for HIV infection.101

For further clinical exploration, CARs of second gener-

ation targeting CD19 came into focus to treat B cell ma-

lignancies. Using CD19 as target has several advantages;

first, CD19 is a B lineage-associated antigen expressed by

most B cell leukemia and lymphoma, second, hematologic

malignancies are more easily accessible than solid cancer

cells, and third, CD19 CAR T cell-induced aplasia of

healthy B cells can be clinically managed.

The first successful treatment of a patient with chronic

lymphocytic leukemia with CD19-specific CAR T cells was

reported in 2011 by June’s team at the Abramson Family

Cancer Research Institute at the University of Pennsylva-

nia.102 In trials simultaneously performed at the National

Cancer Institute (NIH/NCI) and Memorial Sloan-Kettering

Cancer Center (MSKCC), both using CD28-f CAR T cells,

and at the Abramson Center/University of Pennsylvania,

using 4-1BB-f CAR T cells, all achieved spectacular

treatment results of relapsed/refractory B cell malignancies.

At the Abramson Center/UPenn and MSKCC, anti-CD19

CAR T cells produced complete remissions in 60–93% of B

cell acute lymphocytic leukemia (B-ALL) and 50–93%

overall responses in the treatment of B cell non-Hodgkin’s

lymphoma.103–108 In contrast to first-generation CARs,

second-generation CAR T cells amplified in vivo and per-

sisted for prolonged time in the peripheral blood upon ap-

plication to lymphoma patients.109 While the first treatment

responses were very similar, the respective CARs differ in

their costimulatory domains with some differences in the

response kinetics and pharmacology.110

All trials followed the same clinical regimen primarily

developed in the late 1980s by the Rosenberg team at the

NCI, comprising leukapheresis to obtain patient’s T cells,

ex vivo engineering of T cells with a CAR-encoding retro-

or lentivirus, amplification of T cells to clinically relevant

numbers, and patient ‘‘preconditioning’’ by nonmyelo-

ablative lymphodepletion before CAR T cell infusion.

However, due to a number of variables during the entire

process on the clinical as well as on the manufacturing

side, there is currently no consensus protocol available,

which makes comparisons between clinical trial data dif-

ficult. Apart thereof, all trials achieved dramatic complete

remissions of the targeted disease, some are long lasting.

Based on these and more upcoming spectacular results, the

journal ‘‘Science’’ proclaimed the CAR T cell therapy

together with the checkpoint blockade as ‘‘breakthrough

of the year 2013.’’111

As early as in 2014, several CAR T cell products tar-

geting CD19 received U.S. FDA ‘‘breakthrough designa-

tion’’ like Memorial Sloan Kettering Cancer Center

CD28-f CAR for adult B-ALL,112–114 University of Penn-

sylvania 4-1BB-f CAR for pediatric ALL,115 and National

Cancer Institute/Kite CD28-f CAR for diffuse large B cell

lymphoma (DLBCL)116 (NCT00924326). In 2015 Kite’s

CD28-f CAR (NCT02348216) and in 2016 Juno’s 4-

1BB-f CAR (NCT02631044) followed for the treatment

of DLBCL.117

Based on this and other data, in August 2017 U.S. FDA

approved Novartis’ 4-1BB-f CAR-based product tisa-

genlecleucel (CTL-019; Kymriah�) for pediatric

B-ALL118–121 and in May 2018 for DLBLCL. CD28-f
CAR-based Kite Pharma/Gilead axicabtagene ciloleucel

(axi-cel; Yescarta�) was approved in October 2017,122–124

followed by CD28-f CAR-based brexucabtagene auto-

leucel (KTE-X19; Tecartus�)125–127 in 2020, and in

February 2021 Juno Therapeutics’ 4-1BB-f CAR-based

lisocabtagene maraleucel (liso-cel; Breyanzi�).128 These

CAR T cell products are the best clinically studied CARs

to date and are being applied for the treatment of B cell

malignancies in the standard-of-care setting. In March

2021, U.S. FDA approved Celgene/BMs’ anti-BCMA

CAR Abecma� (idecabtagene vicleucel) for the treat-

ment of multiple myeloma. Taken together, the emerging

field of CAR T cells targeting CD19 has become a

paradigm for evaluating CAR T cell therapy (reviewed

by reference76).

With the first trials, it also became clear that CAR T

cell administration is often associated with severe sys-

temic toxicities that require intensive care, including the

cytokine release syndrome (CRS) or the poorly under-

stood immune effector cell-associated neurotoxicity

syndrome (ICANS), which are both usually transient and

reversible. Nowadays, clinical scoring and handling

protocols of side effects are becoming more estab-

lished making clinical management more standardized.
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Research is currently aiming to improve safety in this

respect by fine-tuning the CAR or T cell function to re-

duce the risk for CRS, for instance by disrupting the

granulocyte/macrophage colony-stimulating factor lo-

cus129 and by cytokine sequestering by a nonsignaling

IL-6 receptor.130

The numbers of active trials are steadily increasing in

the United States, China,131 Europe,132 and other countries

establishing CAR T cell therapy in the forefront of treat-

ment modalities. However, evaluating clinical data in a

comparative fashion is complex since a broad diversity

in the manufacturing processes and in clinical protocols

exists. To address the situation, the CARAMBA consor-

tium set up a first consensus procedure for a trial with 10

partners from 6 EU countries targeting SLAMF7-specific

CAR T cells, manufactured by transposon-mediated gene

transfer, to treat patients with multiple myeloma (NCT

04499339).

Manufacturing the respective cell products for clinical

application was first performed at academic centers, and

then taken by commercial suppliers; however, CAR T cell

manufacturing for clinical trials remains a bottleneck.

Technically, T cells are engineered from the patient’s

leukapheresis product by a viral vector and amplified in

a local or centralized good manufacturing procedure

(GMP)-certified facility before given back to the pa-

tient.133 While c-retroviral and lentiviral vectors are used

from the beginning, now nonviral vector systems like

sleeping beauty transposon and, first in 2017, CRISPR/Cas

genome editing134 are also used. The alternatives to viral

gene transfer technologies are steadily increasing, includ-

ing extrachromosomal nonintegrating S/MART vectors,

as recently reported for CAR T cell engineering in vitro.135

The manufacturing process was initially, and still is in

the majority of trials, done by a manual process136; the

entire procedure currently requires 12–15 days; modifi-

cations to shorten the process down to 10 days and less

are explored in pilot trials.

In parallel to the stepwise optimization of CARs, bio-

tech companies started to develop automated, supervised,

and closed manufacturing systems aiming for local use

in the hospital to produce the cell product in the near vi-

cinity of the patient. Such decentralized manufacturing

spots, however, still require tremendous efforts in invest-

ments with respect to the clean room facility, training the

manufacturing team, setup of quality control, and other

mechanisms to allow GMP-compliant manufacturing of

the CAR T cell product.137 Despite these hurdles, the

number of decentralized manufacturing spots is continu-

ously growing establishing a new biotech infrastructure

on the hospital campus. This is a fundamentally new de-

velopment beyond the classical hospital pharmacy with

respect to producing an individualized living drug for a

specific patient by genetic engineering and biotechnolog-

ical manufacturing.

There are a number of variables that affect the quality

of the final CAR T cell product, and not all are identified

yet. Among these variables are the ratio of CD4+/CD8+

T cells, the expression level of the respective CAR, the

exhaustion and terminal differentiation level of the en-

gineered T cells, and others.138 Research on the pre-

clinical as well as clinical side is aiming to identify and

standardize crucial parameters to deliver a potent cell

product in a robust process and in due time. It is currently

under investigation whether a specific T cell subset such

as memory stem cells, a specific polarization of T cells

before and/or after genetic engineering, and during ex-

pansion will provide clinical benefit. The complexity of

CAR design becomes exemplarily obvious by the fact

that different anti-BCMA CARs with similar affinity

drive T cell activation differently139; targeting the same

epitope of CD19 with similar affinity, however, by a

structurally different CAR, results in different degrees of

T cell activation.140

Along with the success of the first clinical trials in the

first decade, established companies as well as a number

of young companies started to develop their own CAR

products. Companies are running target discovery plat-

forms to identify new and more suitable targets for CAR

T cell therapies of particular malignancies; the field is now

more than rapidly growing worldwide. While successful

in the treatment of hematologic malignancies, the devel-

opment of CAR T cell therapies for treating solid tumors

is recognized to require more sophisticated strategies to

overcome the broad panel of tumor-defense mechanisms,

including the physical barrier to enter the tumor tissue, the

immunosuppressive stroma, the antigen loss or down-

regulation, and others.141,142

TRUCKS: CAR T CELLS BECOME
‘‘LIVING FACTORIES’’

While B cell malignancies are being successfully

treated, solid tumors so far resisted CAR T cell treatment

that is thought to be due to the specific tumor stroma,

including physical barriers in penetrating the tumor tissue,

active immune repression, and hostile environment within

the tumor and others.143 To address the situation, re-

searchers are aiming to use the CAR T cells not only as

targeted ‘‘living drugs’’ but also to produce a transgenic

therapeutic protein to sustain the CAR T cell attack. Such

‘‘fourth-generation’’ CAR T cells, or TRUCKs (‘‘T cells

redirected for universal cytokine-mediated killing’’) as

described by our group, produce a therapeutic protein,

mostly a cytokine, under control of a CAR-inducible

promoter (Fig. 2). The protein is only produced and re-

leased when the CAR T cell is engaging the cognate target,

thereby delivering the ‘‘payload’’ at the targeted tumor site

and only there.144,145 In tissues without CAR-recognized

target, no payload protein is released. CAR engagement of
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antigen triggers a downstream signaling cascade that

drives by binding to a nuclear factor of activated T cells

responsible enhancer element a minimal promoter for

synthesis of the transgenic protein, going far beyond

cancer cell targeting. The concept is universal, a number of

proteins can basically be delivered; for instance, the

proinflammatory IL-12, induced and constitutively

expressed,146–148 acts in trans for attracting and activating

innate cells in the targeted tumor lesion, repolarizes

tumor-resident macrophages and resist inhibitory ele-

ments in the tumor tissue, including Treg cells and

myeloid-derived suppressor cells.149

Combining the CAR T cell attack with an innate im-

mune response may represent a strategy to prevent tumor

relapse by remaining cancer cells that downregulated the

target antigen and are invisible to CAR T cells. CAR T

cells targeting vascular endothelial growth factor receptor-

2 and releasing inducible transgenic IL-12 produce

augmented tumor regression.150 TRUCKs with inducible

IL-12 and targeting Epstein/Barr nuclear antigen (EBNA)-

3C responded even more effectively; released IL-12 re-

cruited additional immune cells, which are generally

missing in proximity of lymphoproliferation in immuno-

compromised posttransplantation lymphoproliferative

disorder patients demonstrating a strategy how healthy

immune cells can be mobilized to control EBV-associated

lymphoproliferation.151 These and other examples show a

further development of CAR T cells from ‘‘living drugs’’

toward ‘‘living factories’’ that produce therapeutic pro-

teins with several advantages: (i) the therapeutic protein is

deposited in the CAR-targeted lesion, which is otherwise

not accessible, (ii) inducible release avoids systemic tox-

icity of the therapeutic protein while accumulating in the

targeted tissue, and (iii) the protein is continuously re-

leased achieving locally high levels as long as the TRUCK

cell is activated.

In a first-in-man trial, researchers modified TILs, which

are thought to be tumor specific without the need to be

redirected by a CAR, with inducible IL-12; such IL-12

TILs were highly efficacious in the treatment of melanoma

since a therapeutic dose was achieved with 50- to 100-fold

fewer cell numbers than commonly with unmodified

TILs.152 However, IL-12 TIL therapy was accompanied

by severe systemic toxicity, most likely to leakage of the

vector in highly activated TILs.

Like cytokines, TRUCK cells were engineered releas-

ing an antibody to block PD1,153 a proteolytic enzyme to

degrade the tumor matrix,154 or the costimulatory ligand

CD40L to prolong T cell activation,155,156 or the combi-

nation of CCL19 and IL-7 to recruit endogenous immune

cells and antitumor memory157; the list of transgenic

payloads is continuously growing.158,159

A significant further development was made by en-

hancing T cell intrinsic functions by the inducible

release of an immune response modifier. We first dem-

onstrated the feasibility of the strategy by engineering a

TRUCK with inducible release of IL-18 that alters the

expression of two key transcription factors, T-bet

(Tbx21) and forkhead box protein-O1 (FoxO1), in CAR

T cells. IL-18 was identified to tip the balance toward

improved granzyme-mediated killing capacities.160,161

IL-18 augmented IFN-c secretion and proliferation of

T cells activated by the endogenous TCR159 and

CAR.160,161 TRUCKs with inducible IL-18 reinforce

their own killing capacity when engaging their cognate

target, thereby capable to control larger tumors than the

corresponding CAR T cells.162 Another example of an

action in cis is the release of IL-15 to polarize CAR

T cell function.163 The path for using ‘‘living factories’’

for therapeutic purposes is opened; other possible ap-

plications for cancer therapy and beyond will likely be

envisaged in the near future.

During three decades of development, CAR T cell en-

gineering has steadily followed an evolution to improve

T cell potency and sustainability after adoptive transfer

producing an increasing number of CAR generations and

strategies to use engineered cells as factories. The evolu-

tion is clearly driven by the modularity of the major

components of a CAR; the impact of each individual do-

main on CAR T cell performance is nowadays recognized

more important than previously anticipated. Research in

this field is becoming much diverse and produced differ-

ent CAR candidates with different advantages; for de-

tails, I refer to a recent review.164 Two developments are

currently triggering the next steps in CAR evolution:

spiking a ‘‘universal’’ CAR with different targeting do-

mains and engineering logic gating CARs as discussed

below.

CARS EVOLVE TOWARD UNIVERSAL
ADAPTOR RECEPTORS AND LOGIC GATING
DEVICES CONTROLLING CELLULAR
FUNCTIONS IN SPACE AND TIME

Multiple receptors with different binding partners can

be used to transmit activating or inhibiting signals to dif-

ferentially program T cell activation or inhibition.165

While the approach shows the power of synthetic receptor

combinations, however, there is an increasing complexity

in the multicomponent systems that require optimization

of each component with respect to multiple parameters

questioning a robust therapeutic use. To address the shift

of targetable antigens within a progressing tumor, CARs

are understood as transmembrane signaling molecules

with tunable specificity by noncovalently spiking with

an adaptor protein that confers the targeting specificity;

adding different adaptor proteins allows targeting multiple

antigens by the same CAR. The strategy has the advantage

of flexibility in specificity to address the risk of antigen

escape by administering different targeting antibodies to
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the patient. In addition, the concepts allow an ON/OFF

switch by adding or withdrawing the biotinylated anti-

body mitigating toxicity. As a proof-of-concept, Urbanska

et al.166 designed a CAR with a biotin-binding domain

to allow binding of any biotinylated antibody for tar-

get recognition. Based thereon, several other adapter-

protein-spiked CARs were developed in the following

years.167–174 Some of these ‘‘uniCARs’’ are in clinical

trials175 to explore the benefits in targeting antigen-

heterogeneous tumors.

Recent developments understand conventional CARs

to produce single-input, single-output signaling, which is

thought not to be sufficient to address the complexity of

antigen pattern for specific cancer cell targeting. To solve

the situation, ‘‘AND’’ and ‘‘OR’’ Boolean logic gating is

currently discussed and translated into a CAR design.

‘‘OR’’ gating CARs harbor two binding domains, for

example, an anti-CD19 and anti-CD20 scFv, both cova-

lently linked together in a specific order.176 Binding of ei-

ther cognate antigen is sufficient to induce CAR-redirected

T cell activation. Such CD20-CD19 or CD19-CD22 dual

specific CAR T cells and other combinations are currently

in clinical exploration177 with the aim to prevent tumor

relapse by cancer cell variants that lost one of the targeted

antigens.

In comparison, ‘‘AND’’ gating CARs turned out to be

technically more challenging.178 The primary CD3f signal

was separated from the costimulatory signal, each CAR

providing only one signal and each CAR recognizing a

different antigen on cancer cells; full T cell activation is

only provided upon simultaneous engagement of both

targets.179,180 Some leakage in signaling of the CAR with

signal-1, however, weakens logic gating of such dual CAR

T cells. In a further development, Ho et al.181 proposed to

deliver upon engagement of one antigen, a conditionally

active molecule that becomes cytotoxic only upon recog-

nition of the second antigen.

As an alternative strategy, two groups simultaneously

proposed to take advantage of the synthetic Notch receptor

(synNotch) system to achieve combinatorial antigen rec-

ognition and to control T cell recognition of complex

targets.182,183 The CAR-like synNotch receptor induces

the transcriptional activation of an authentic CAR through

proteolysis mediated by the transmembrane core domain;

the authentic CAR recognizes a second antigen on the

cancer cell for driving T cell activation. The strategy has

the advantage to cause less off-tumor toxicities compared

with a conventional CAR.184 The synNotch receptor har-

bors an scFv for target recognition, as well as Gal4-VP64

or TetR-VP64, which are transcriptional effector domains

required to induce CAR expression. This allows T cell

activation only when both the synNotch CAR and the

authentic CAR engage their respective targets. The syn-

Notch system is a strategy to integrate multiple cellular

inputs into predefined signaling cascades to trigger

specific cellular functions in space and time. This will

open new fields how to control cellular functions depen-

dent on the environmental tissue. As a result of this

development, the discussion arises how to make CAR T

cells not only targeting defined tissues but also sensitiz-

ing and modulating the tissue they are penetrating.

TOWARD ENVIRONMENT SENSING CAR
T CELLS

During the last years, identification of the hallmarks of

the tumor microenvironment (reviewed by references185,186)

have driven research toward a CAR design that allows

modulating the tumor stroma. The strategies include (i)

enabling CAR T cells to home to and to infiltrate the tumor

tissue, (ii) disrupting the suppressive signaling axes in the

tumor, (iii) inducing autocrine stimulation to augment

CAR T cell amplification and persistence, and (iv) in-

ducing an endogenous immune response.

To home to the tumor site, CAR T cells were guided

by chemokine receptors, like CCR8, CXCR6, and oth-

ers.187–189 It has not only improved homing to the tumor

tissue but also attacking the tumor stroma that augments

antitumor efficacy. As a result of these analyses, the

concept is drawn that successful eradication of advanced

tumors requires CAR T cells that target the stroma in ad-

dition to targeting the specific cancer cells.190,191 The is-

sue is still underestimated and requires to envision tumors

not only as accumulated cancer cells but as an organ or-

chestrating cancer cells within a connective and immu-

nosuppressive tissue.

Once infiltrated into the tumor tissue, CAR T cells need

to stay activated in the hostile environment facing a num-

ber of inhibitory molecules, including TGF-b, B7H1,

mucin, and prostaglandin E2 (PGE2), a bioactive lipid of-

ten upregulated in tumors that activates protein kinase A

(PKA).192 To counteract repression, several new CAR

strategies are being exploited during the last years pointing

to a more advanced functional remodeling the T cell re-

sponse. To counteract PGE2, CAR T cells were engineered

to express a peptide inhibitor of PKA translocation to the

immune synapse that improves CAR T cell activation and

augments the antitumor attack.193 CAR T cells that ex-

press catalase are capable of metabolizing suppressive

H2O2 in the tumor, thereby also augmenting the efficacy of

their antitumor attack.194

Antibody mediated blockade of immune checkpoints

PD1, PD-L1, CTLA-4 and others have revolutionized

treatment modalities in the last years195 and are currently

translated to CAR T cell therapy by combined treatment in

trials, for example, CD19-CD22 CAR T cells together with

pembrolizumab (anti-PD1 antibody) (NCT03287817),

and CD19 CAR T cells together with utomimulab (anti-

CD137 antibody) (NCT03704298) are currently ex-

plored. Alternatively, the so-called switch receptors are
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coexpressed that comprise a suppressive factor-binding

domain and an intracellular activating domain, thereby

converting engagement of a negative factor into positive

T cell activation. A first example is a chimeric receptor

binding IL-4 through an IL-4 receptor-a chain and trans-

mitting a positive signal through the IL-7 receptor a-chain

or the IL-2 receptor b-chain, thereby augmenting the T cell

antitumor activity.196,197 Others are engaging CTLA-4 or

PD-1 while transmitting CD28 costimulation.198–201 A

switch receptor composed of a binding domain for T cell

immunoreceptor with Ig and ITIM domain (TIGIT) pro-

tein and a CD28 signaling domain augments cytokine

release and T cell activation.202 To modify CAR T cell

activity, ‘‘armored’’ CARs with transgenic expression

of an additional costimulatory protein, for example, 4-

1BB-L, were designed by Stephan et al.90; the CD19 CAR

with 4-1BB-L is now explored in a clinical trial

(NCT03085173).

Addressing the crucial role of inhibitory receptors,

several groups are currently following the strategy to

genetically edit the inhibitory receptors in engineered

T cells. CRISPR-Cas9-mediated disruption of PD-1 aug-

ments killing efficacy of CD19 CAR T cells toward PD-L1

tumors in a mouse model.203 As a proof of concept, a

recent trial demonstrated feasibility and safety of CRISPR-

depleted PD-1 and the endogenous TCR ab in NY-ESO-1

TCR-engineered T cells.204 This is a step forward toward

genetically edited T cells that are fine tuned for redirec-

ted targeting. One application is making allogeneic CAR

T cells clinically applicable by targeting the TCR a-locus

and the b2 microglobulin locus and to make them resistant

to repression by targeting PD-1 or Fas locus.205–207 In

continuation of the technology, a pooled knockin screen

using CRISPR-Cas9 integration into the TCR a-locus was

applied to test for transgenes improving performance of

CAR T cells against solid cancer; a newly identified pro-

totype that addresses the issue was a TGF-b engaging

4-1BB signaling switch receptor.208

Given the central role in T cell repression, attempts to

counteract TGF-b were early undertaken during CAR

development; application of TGF-b blocking antibodies

augment antitumor activity.209,210 T cells equipped with a

mutant TGF-b receptor gained superior activity and sur-

vival in the presence of TGF-b.211–213 Coexpressed with

the CAR, a recombinant dominant-negative (DN) receptor

sequesters TGF-b from the environment to protect the

CAR T cell from repression.214 A clinical trial currently

explores the benefit of TGF-b DN receptor while targeting

prostate cancer (NCT 03089203). In a further develop-

ment, TGF-b-targeting CARs and TGF-b switch recep-

tors215,216 provide a stimulatory signal to the CAR T cell in

contrast to the DN-TGF-b receptor. Costimulation through

CD28 counteracts suppression by TGF-b,217 whereas 4-

1BB costimulation does not. TGF-b resistance upon CD28

CAR T cell stimulation is due to released IL-2 and IL-2

receptor signaling. To provide IL-2 receptor signaling in

the absence of IL-2, a synthetic receptor was designed that

binds IL-7 and provides IL-2 receptor signaling to over-

come TGF-b repression.89

There are also examples for an emerging concept to

sensitize the tumor tissue before a T cell attack. Early

studies interfered with the apoptotic pathway of lym-

phoma or melanoma cells to make them susceptible to

CAR T cells.218,219 A recent strategy is based on pre-

treating tumors with senescence-inducing drugs prior ap-

plication of CAR T cells that recognize urokinase-type

plasminogen activator receptor broadly expressed during

senescence to target and ablate cancer cells that were

turned into senescence.220

TCR-LIKE CARS AND CAR-LIKE TCRS:
THE SAME IMMUNE RECEPTOR AT THE END?

There are two challenges when redirecting T cells by a

transgenic TCR, the mispairing with the endogenous TCR

and the rate-limiting competition with the CD3 signaling

complex and downstream kinases. While the latter also

apply to CARs, modifications of the TCR chains prevented

mispairing of the transgenic with the endogenous TCR;

adding a signaling domain to the intracellular chains of

the TCR could overcome both limitations to a certain

extent,221 ending up in a hybrid receptor similar to first-

generation CARs.

In contrast to TCRs, the weakness of prototype CARs is

still that intracellular proteins cannot be targeted. How-

ever, some groups demonstrated that intracellular pro-

teins presented by HLA/peptide complexes can basically

be targeted by CAR T cells using a peptide/MHC-specific

antibody for binding; this was as exemplarily shown

for targeting NY-ESO1.222 To specifically target EBV-

infected B cells, a TCR-like CAR was recently reported

that recognizes an EBNA-3C-derived peptide in HLA-

B*35 in a TCR-like fashion.151 Such TCR-like CAR

T cells may have extended capacities compared with

classical CARs or TCRs in that intracellular targets can

be recognized without major competition with the native

TCR or CD3. This may become of major interest in the

near future when targeting HLA-presented proteins with

tumor-specific mutations being explored on a more sys-

tematic and broader basis.

WE JUST STARTED TO LEARN

Looking at the history of cancer therapy, it is rare that a

single agent achieves remission of advanced tumors in the

long term. Although extraordinarily efficacious in the

treatment of hematologic malignancies, CAR T cell ther-

apy will become one pillar in the orchestra of treatment

modalities in oncology. During the last three decades,

much research has been done on the CAR design to im-

prove antitumor efficacy leading to a growing family of

HISTORY OF CARS 1021



CAR generations. By multilayered approaches, the critical

needs of T cells as ‘‘living drugs’’ are being identified and

stepwise addressed. Basic research has followed a clear

line of improvements in vitro, in mouse models and sub-

sequently translated the CAR T cell strategy in clinical

exploration. The success of the second-generation CAR in

clinical trials justifies to continue our efforts in making

CAR T cell therapy efficacious in targeting solid cancer

and in exploring CAR T cells for the treatment of various

other diseases.

Currently, much effort is invested to optimize the in-

dividual CAR domains on a case-to-case basis with the

aim to obtain clinically efficacious CAR T cell products. A

growing number of factors are being identified that affect

CAR activity, including the targeted antigen, its epitope,

its density, and mobility on the cell membrane, the CAR-

binding affinity and CAR spacer length, the clustering on

T cell surface, and the cell interacting avidity, among

others. Consensus on a ‘‘one-for-all’’ prototype CAR de-

sign is not in sight, and probably will not be achievable;

currently thorough optimization still needs to be per-

formed for each CAR on an empiric basis to obtain a

synergistically complemented, modularly calibrated, and

clinically efficacious CAR T cell product. Despite exten-

sive safety measures and ongoing optimization in the

molecular design, CAR T cell therapy remains experi-

mental with the risk of unpredictable side effects; careful

clinical exploration is and will be needed to make such

powerful immunotherapy robust and safe.

There was a long way from early recombinant TCR and

T-body engineering toward the first commercial approval

of a form of gene transfer therapy by the U.S. FDA and

European EMA. The success of the anti-CD19 CAR T cell

therapy so far clearly indicates the power of immune cell

therapy to control leukemia/lymphoma transforming the

clinical management of these diseases. CAR T cell ther-

apy demonstrates greater incremental effectiveness and

similar cost-effectiveness compared with prior U.S. FDA-

approved pharmacological innovations.223 However, great

challenges in translating CAR T cell therapy to clinical

application remain, including the paucity of preclinical

models to evaluate safety and efficacy.

Adoptive cell therapy is now becoming a pillar in

immuno-oncology: TILs with or without checkpoint

blockers for the therapy of tumors with high mutational

burden, TCR, or CAR engineered T cells for tumors with

low mutational burden or targetable tumor-related antigen.

Efforts are made to engineer T cells, NK cells, and TILs

with CARs with greater precision. The field is rapidly

moving forward; multiple novel receptors are making pre-

clinical impact, and many biotech and pharma companies

are preparing for the next generation of clinical trials.

There are still many nonunderstood hurdles that hamper

translating the therapy in particular to solid cancer. There

is consensus that CAR T cells require more fine tuning

and the immune and tissue environment needs additionally

to be addressed. With respect to engineering, recent ad-

vancements in genetic editing and in designing novel

functional circuits enable us to augment T cell fitness and

to design ‘‘intelligent’’ CAR T cells. Recognizing re-

directed T cells as ‘‘living factories,’’ we can produce a

therapeutic protein on demand and in a predefined tis-

sue, which opens new concepts to fight cancer. Technical

considerations remain with respect to manufacturing prac-

ticability, clinical trial approaches, cell quality and per-

sistence, and patient management. Recent advances also

fuel hope that synthetic immunology, genetic engineering

and editing, and cell manufacturing will broaden CAR-

redirected cell therapy to the relevant T cell subset and to

other immune cell types, and to develop new applications

beyond oncology, including autoimmunity and infectious

diseases.
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