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Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and patho-
logical implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. 
Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the met-
alloprotease ADAM10 in a process termed ‘shedding’. The latter aspect is the focus of this review, which aims to provide 
a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently 
described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer’s disease), (iii) 
shed PrP’s expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, 
cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic 
insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future 
therapeutic approaches in diseases of the brain and beyond.
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Introducing the proteolytic processing 
of the prion protein: a brief overview 
on a protein’s enzymatic fragmentation

Since its discovery in the context of unravelling a mysterious 
group of fatal and transmissible neurodegenerative disease 
in humans and animals (now collectively termed prion dis-
eases) (Colby and Prusiner 2011; Prusiner 1993), a variety 
of biological functions and diverse (patho)physiological 
implications (reviewed in (Aguzzi et al. 2008; Hirsch et al. 
2017; Manni et al. 2020; Watts et al. 2018; Wulf et al. 2017)) 

have been attributed to the evolutionary conserved cellular 
prion protein (PrP) (Basler et al. 1986; Oesch et al. 1985; 
Westaway and Prusiner 1986). In prion diseases (includ-
ing Creutzfeldt-Jakob disease [CJD] in humans or bovine 
spongiform encephalopathy [BSE] in cattle), PrP undergoes 
progressive, templated three-dimensional misfolding (into its 
pathological ‘scrapie’ isoform  PrPSc) and aggregation, and 
its expression is thus prerequisite and driving force of these 
ultimately fatal neurodegenerative conditions (Bockman et al. 
1985; Prusiner 1982). Another pathological implication was 
found roughly a decade ago, when it was first shown (Gimbel 
et al. 2010; Laurén et al. 2009) and subsequently firmly estab-
lished (Beraldo et al. 2016; Chen et al. 2010; Chung et al. 
2010; Dohler et al. 2014; Freir et al. 2011; Gomes et al. 2019; 
Hu et al. 2014; Klyubin et al. 2014; Larson et al. 2012; Nicoll 
et al. 2013; Resenberger et al. 2011; Salazar et al. 2017; Um 
et al. 2013, 2012) that harmful protein conformers associated 
with more common neurodegenerative proteinopathies bind 
to PrP at the neuronal cell surface and thereby initiate neuro-
toxic signalling cascades. To date, this detrimental interac-
tion with PrP has been shown for oligomers of Amyloid-β 
(Aβ), tau, and α-synuclein, which are critically associated 
with Alzheimer’s disease (AD), frontotemporal dementia 
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and other tauopathies, or Parkinson’s disease, respectively 
(Corbett et al. 2020; Ferreira et al. 2017; Hu et al. 2018; 
Ondrejcak et al. 2018).

But what about the multitude of suggested physiological 
functions? A rather small glycoprotein at the cell surface 
acting like a ‘Jack-of-all-trades’? Even though some sug-
gested roles are clearly controversial, have been challenged, 
or did not withstand experimental verification (e.g., upon 
developing improved knockout mice lacking genetic con-
founding effects (Nuvolone et al. 2016)),  PrPC most certainly 
can be regarded as a ‘multifunctional protein’. However, 
this multifunctional character might not solely be restricted 
and immanent to the — so far — primarily studied mature, 
membrane-anchored and full-length form of PrP (fl-PrP). 
Likewise, it might not be limited to the nervous system, the 
area where most prion research of the past has focused on. 
Increasing evidence reveals that both, transient functional 
interactions with diverse binding partners (Aguzzi et al. 
2008; Béland and Roucou 2012; Linden 2017) and endoge-
nously produced forms or fragments of PrP holding intrinsic 
biological properties (Collins et al. 2018; Guillot-Sestier and 
Checler 2012; Linsenmeier et al. 2017), critically contrib-
ute to the protein’s apparent versatility. The latter aspect of 
enzymatically generated fragments constitutes the focus of 
this review. In particular, the release of nearly full-length 
PrP upon membrane-proximate cleavage by a metallopro-
tease, the so-called ‘shedding’ event, and current knowledge 
and perspectives in that regard will be discussed in detail. 
For the sake of completeness, however, we will start with a 
brief introduction of additional cleavage events occurring on 
PrP and their relevance in physiological and/or pathological 
conditions. For a more comprehensive view of these cleav-
ages, we refer to earlier review articles (Altmeppen et al. 
2013, 2012; Dexter and Kong 2021a,  b; Liang and Kong 
2012; Linsenmeier et al. 2017).

A process termed α-cleavage in the middle of the protein 
sequence separates the two structurally different parts of PrP (Chen 
et al. 1995; Haigh et al. 2009b; Harris et al. 1993; Linsenmeier 
et al. 2017): The intrinsically disordered N-terminal half or ‘flex-
ible tail’, an important hub for interactions with diverse physiologi-
cal and pathological ligands within fl-PrP (Béland and Roucou 
2012; Carulla et al. 2015; Resenberger et al. 2011; Trevitt et al. 
2014; Turnbaugh et al. 2012, 2011), is released into the extracel-
lular space as a soluble (and rather instable (Mohammadi et al. 
2020)) N1 fragment. N1 is a ligand linked with (neuro)protective 
and apparently myelin-maintaining activities as well as regulatory 
roles in diverse cellular processes and cell-to-cell communica-
tion (Carroll et al. 2020; Collins et al. 2018; Guillot-Sestier et al. 
2012, 2009; Küffer et al. 2016; Mohammadi et al. 2021, 2020). 
The counterpart of N1, a globularly structured, N-glycosylated and 
stable C1 fragment, remains attached to the cell surface via PrP’s 
C-terminal GPI-anchor (Chen et al. 1995; Harris et al. 1993; Shyng 

et al. 1993). Upon α-cleavage, PrP’s central hydrophobic domain 
gets exposed as C1’s new N-terminus, which may have functional 
consequences, for instance, in cell-to-cell interactions or binding  
of certain ligands (Altmeppen et al. 2012; Bremer et al. 2010; 
Brenna et al. 2020; Harris et al. 1993; Linsenmeier et al. 2017). 
Since the N-terminal tail is critical for binding toxic protein assem-
blies mentioned above, α-cleavage can be regarded as a protective 
event rendering PrP unresponsive to these conformers. Moreover, 
the C1 fragment is resistant to misfolding in prion diseases and 
can even impair this process (Lewis et al. 2009; Westergard et al. 
2011). Although α-cleavage represents the major physiological 
cleavage event of PrP in many cell types and its resulting frag-
ments may hold relevant functions, there is enduring controversy 
on the responsible protease(s) (Altmeppen et al. 2011; Béland et al. 
2012; Haigh et al. 2009b; Laffont-Proust et al. 2005; Liang et al. 
2012; Mays et al. 2014; McDonald et al. 2014; Oliveira-Martins 
et al. 2010; Pietri et al. 2013; Taylor et al. 2009; Vincent et al. 2001;  
Wik et al. 2012), and it may well be that more than just one pro-
teolytic entity ensures this important cleavage. Independent of 
the identification of the relevant protease(s), recent reports have 
shown that dimerization of PrP (Béland et al. 2012) or binding of  
PrP-directed peptide aptamers (Corda et al. 2018) causes increased 
α-cleavage, which may hold therapeutic relevance.

Around amino acid 90 and, thus, slightly N-terminally 
shifted from the α-cleavage site, the so-called β-cleavage 
by proteases or reactive oxygen species (with the latter 
causing a Fenton reaction) may occur, which is increased 
under pathological conditions and/or in response to oxi-
dative stress (Castle et al. 2019; Chen et al. 1995; Mangé 
et al. 2004; Mays et al. 2014; McMahon et al. 2001). In 
consequence of this cleavage, a shorter N2 fragment is 
released while a longer C2 fragment stays attached to 
the membrane. Both fragments have been suggested to 
hold intrinsic functions and pathological roles (Haigh 
et al. 2015, 2009a, b; Lau et al. 2015; Sunyach et al. 
2007).

The γ-cleavage represents the most recently described 
cleavage event (Lewis et al. 2016), preferentially occurs on 
unglycosylated PrP and separates a long N-terminal (N3 
of ~ 20 kDa) from a short C-terminal fragment (C3 of ~ 6 kDa). 
Knowledge of its (patho)physiological implications is limited, 
yet it appears to be upregulated in prion disease.

Additional proteolytic fragmentation of synthetic PrP 
peptides by certain metalloproteases has been shown 
in vitro (Kojima et al. 2014), yet whether all cleavages 
found with recombinant protease-substrate mixtures in the 
test tube also hold in vivo-relevance is currently unsolved 
(Linsenmeier et al. 2017; McDonald et al. 2014).

Following this overview, we will now concentrate on 
another relevant cleavage event, termed shedding, occur-
ring in the far C-terminal part of PrP and increasingly raising 
scientific attention.
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Difficulties detecting shed PrP: new research 
tools enabling novel insights

The presence of extracellular PrP molecules with nearly full-
length protein sequence has been described roughly three dec-
ades ago (Borchelt et al. 1993; Harris et al. 1993; Tagliavini 
et al. 1992), and although their physiological production by the 
endogenous metalloproteinase ADAM10 (in a process referred 
to as ‘proteolytic shedding’) is known for more than a decade 
by now (Altmeppen et al. 2011; Taylor et al. 2009), only little 
insight into the biological relevance of this shed PrP (sPrP) has 
been gained until recently. Difficulties in reliable identification 
of sPrP in experimental models and complex biological tissues 
certainly represent the main reason for this lack of knowledge. 
In contrast to truncated released or cell-associated fragments 
resulting from the α- or β-cleavage, which differ remarkably 
from fl-PrP in size/molecular weight and may be easily dis-
criminated by western blot analyses of conditioned media/
body fluids or cell/tissue lysates, respectively, sPrP is usually 
masked by levels of fl-PrP present in vast excess and, thus, 
simply ‘overlooked’ when using common (pan-) PrP anti-
bodies for detection (Fig. 1). To solve this problem, we have 
recently generated a cleavage-site specific antibody for sensi-
tive and reliable detection of sPrP (Linsenmeier et al. 2018), 
based on sequence and cleavage-site information for murine 

PrP published earlier (Taylor et al. 2009). The glycosylation 
state of PrP critically influences PrP’s biology and pathophysi-
ological roles (DeArmond et al. 1997; Makarava et al. 2020; 
Nishina et al. 2006; Priola and Lawson 2001; Puig et al. 2011). 
Our new sPrP antibody revealed that PrP is mostly shed in a 
diglycosylated state, which likely represents the physiological 
status-quo at the cell surface, where shedding by ADAM10 is 
thought to occur. Moreover, we have subsequently identified 
the shedding process as a relevant part of a posttranslationally 
active regulatory network controlling cellular PrP homeostasis 
(Linsenmeier et al. 2018). This compensatory network also  
involves cellular uptake and degradation, as well as release of PrP  
via extracellular vesicles (Brenna et al. 2020; D’Arrigo et al. 
2021; Falker et al. 2016; Fevrier et al. 2004; Guo et al. 2016; 
Ritchie et al. 2013; Wik et al. 2012). Hence, PrP release via  
EVs (Heisler et al. 2018) or the ADAM10-mediated shedding are 
increased upon lysosomal inhibition (Linsenmeier et al. 2018)  
and in mice lacking intracellular regulators of retrograde sort-
ing and vesicular transport to lysosomes (Heisler et al. 2018; 
Linsenmeier et al. 2018; Uchiyama et al. 2017). Vice versa, 
pharmacological inhibition of proteolytic PrP shedding is com-
pensated by an elevated release of EVs with increased PrP load 
(Linsenmeier et al. 2018). We also found evidence for ‘cleav-
age cascades’ occurring on PrP, as the truncated C1 fragment  
resulting from the α-cleavage can subsequently be shed by  

Fig. 1  Challenging assessment of sPrP and the advantage of site-spe-
cific antibodies. Besides membrane-attached forms of PrP (green) in/
on cells or on extracellular vesicles (EV), plenty of different cleaved 
fragments (not all depicted here) are present in biological samples. 
Due to the similar size of sPrP (released by ADAM10; orange) and  
fl-PrP and the usually vast excess of the latter, pan-PrP antibodies do 
not discriminate between these forms (e.g., in immunoblots), and sPrP  
is therefore masked (as indicated by the schematic immunoblot in the 
middle (red striped box). The three bands typical for PrP are caused 
by its glycosylation state (with di-, mono- , and unglycosylated forms; 
N-glycans are  not depicted here to simplify matters). Generation of 

cleavage site-specific antibodies (blue) allows for reliable detection of 
sPrP (right lane in the blot; note the slightly lower molecular weight 
due to the lack of the GPI-anchor, and the strong predominance of 
diglycosylated sPrP (Linsenmeier et  al. 2018)). Such fragment-spe-
cific antibodies allow for a reliable assessment of specific PrP deriva-
tives (in this case sPrP) in standard research and routine diagnostic 
methods, such as western blot, histological approaches, or ELISA. 
This enables studies on the (patho)physiological relevance as well 
as on the therapeutic and/or diagnostic potential of certain PrP frag-
ments
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ADAM10 and thus be detected with a sPrP-specific anti-
body, for instance, in conditioned media (Linsenmeier et al. 
2018). The same seems plausible for the β-cleavage product  
C2 (Perini et al. 1996). This further complicates the variety 
of released PrP fragments and investigations on their particu-
lar functions or pathological relevance. Therefore, improved 
assays, such as capillary western analysis (Castle et al. 2019), 
in combination with powerful site-specific antibodies will lead 
to better discrimination, reliable quantifications, and eventu-
ally biological insight (Fig. 1). For sPrP, this has already been 
achieved in parts and will certainly continue to reveal novel  
(patho)physiological implications, as discussed in the follow-
ing paragraphs.

Biological roles and assessment of sPrP 
in neurodegenerative proteinopathies

Prion diseases

In stark contrast to the aforementioned harmful roles in 
neurodegenerative diseases played by fl-PrP at the cell 
surface, diffusible extracellular forms or derivatives of 
PrP have been shown to protect from prion misfolding 
and act against toxic protein assemblies. Expression of a 
soluble dimerized PrP in prion-infected mice interfered 
with  PrPSc formation and disease progression (Meier et al. 
2003). Similar ‘anti-prion’ effects were also observed for 
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recombinant PrP (Priola et al. 1994; Yuan et al. 2013) 
and for PrP being released upon treatment with lipid-raft 
disturbing drugs (Bate et al. 2009; Marella et al. 2002; 
Taraboulos et al. 1995) or overexpression of a sorting fac-
tor (SNX33) in prion-infected cell cultures (Heiseke et al. 
2008). In the latter study, release of PrP was likely accom-
plished by phospholipases cleaving within the GPI-anchor 
structure (Caughey et al. 1989; Harris et al. 1993; Stahl 
et al. 1987). Soon after that study, the zinc-dependent 

metalloprotease ADAM10 was shown to mediate the 
proteolytic shedding of PrP just a few amino acids away 
from the GPI-anchor in vitro (Taylor et al. 2009). Sub-
sequent studies in transgenic mice not only confirmed 
ADAM10 as the major PrP sheddase in vivo (Altmeppen 
et al. 2011), but also revealed its protective and disease-
modifying effects upon prion infection (Altmeppen 
et  al. 2015; Endres et  al. 2009) (Fig.  2a). Until now, 
ADAM10 even seems to be the only relevant sheddase 
of PrP (Altmeppen et al. 2011; Linsenmeier et al. 2018; 
McDonald et al. 2014; Taylor et al. 2009). Shed PrP, the 
physiological correlate of soluble PrP forms mentioned 
above, seems to bind and block critical  PrPSc assemblies 
(‘seeds’) in the extracellular space and thereby interfere 
with the conversion process, as indicated by an inverse 
correlation of sPrP and  PrPSc levels shown in a recent 
study (Linsenmeier et al. 2021) and reflected in Fig. 2b, c. 
In addition to this blocking effect, sPrP may also act as a 
ligand (similar to PrP’s N1 fragment) inducing neuropro-
tective signalling cascades or rescuing PrP functions in 
transgenic mice expressing toxic PrP mutants (Race et al. 
2009). Accordingly, lack of protective sPrP in transgenic 
mice expressing PrP with a C-terminal deletion (Δ214-
229 (Puig et al. 2016)) and reduced PrP shedding in cells 
and mice expressing PrP with an altered GPI-anchor and, 
hence, shifted membrane localization (Puig et al. 2019, 
2011) may contribute to the respective pathological phe-
notypes observed in these models.

A (seemingly) opposing finding, however, challenges 
the view of soluble PrP forms being protective: Anchor-
less PrP expressed in transgenic mice is a potent substrate 
for prion conversion and aggregate formation (Chesebro 
et al. 2010, 2005; Rangel et al. 2013; Rogers et al. 1993; 
Stöhr et al. 2011). Anchorless forms of PrP are also associ-
ated with some genetic forms of prion diseases in humans 
(Choi et al. 2016; Jansen et al. 2010; Zanusso et al. 2014). 
However, a key difference that may resolve this contradic-
tion is the different N-glycosylation pattern between trans-
genically expressed or mutation-derived anchorless PrP on 
the one hand, and physiological sPrP on the other hand 
(Fig. 3): while the latter is predominantly diglycosylated 
(due to its transport through the secretory pathway as a 
GPI-anchored protein and subsequent cleavage after reach-
ing the cell surface (Linsenmeier et al. 2018)), anchorless 
PrP is secreted in an underglycosylated state. This may 
have a profound impact on how these PrP forms encoun-
ter and affect extracellular  PrPSc assemblies. In fact, an 
influence of the N-glycans on PrP’s susceptibility to prion 
conversion (depending on the respective prion strains) has 
been firmly established (DeArmond et al. 1997; Makarava 
et al. 2020; Nishina et al. 2006; Priola and Lawson 2001; 
Sevillano et al. 2020). In many experimental paradigms, 
underglycosylated PrP was efficiently converted, whereas 

Fig. 2  Consequences of the ADAM10-mediated shedding of PrP in 
neurodegenerative diseases. (a) Kaplan–Meier survival curves sum-
marizing two in vivo studies that assessed the role of ADAM10 in 
prion diseases (with both studies using the Rocky Mountain Labora-
tory (RML) prion strain). While moderate overexpression of bovine 
ADAM10 in mice (bADAM10↑; blue line) in the study of Endres 
et  al. (2009) resulted in prolonged survival (blue arrow; wild-type 
controls represented by dotted blue line), lack of ADAM10 in fore-
brain neurons (in ADAM10 cKO mice; red line) caused shortened 
incubation times (red arrow) compared to controls (dotted red line) 
(Altmeppen et al. 2015). For comparison, the diagram also schemati-
cally presents prion protein knockout mice (e.g., Prnp0/0 [(Büeler 
et  al. 1993)] or  PrP−/− [(Manson et  al. 1994)]), which are resistant 
to prion infection, as well as PrP-overexpressing mice (e.g., tga20 
[(Fischer et al. 1996)]), which succumb to disease very early. *Note 
that the curves for these models reflect typical study outcome rather 
than exact datasets. Taken together, all models/genotypes depicted 
here fit the view that levels of (cell-associated)  PrPC critically deter-
mine survival times in prion diseases (Manson et al. 1994; Sandberg 
et al. 2011) (see grey ‘correlation bar’ below). (b) Western blot data 
reproduced from Fig.  6A in Altmeppen et  al. (2015) eLife ((Alt-
meppen et  al. 2015); https:// elife scien ces. org/ artic les/ 04260) pub-
lished under a CC BY 4.0 license (https:// creat iveco mmons. org/ licen 
ses/ by/4. 0/). In non-PK digested samples, highest levels in total PrP 
(i.e.,  PrPC and  PrPSc) were found in terminally diseased tga20 mice 
(at 65  days post-inoculation, dpi), followed by ADAM10 cKO and 
wild-type control mice (both at 95 dpi). In contrast, prion conversion 
(judged by  PrPSc amounts detectable after PK digestion) was high-
est in ADAM10 cKO while barely detectable in tga20 mouse brains. 
(c) Re-analysis of aforementioned samples in a replica blot probed 
with a new sPrP-specific antibody demonstrates lack of detectable 
sPrP in ADAM10 cKO and efficient sPrP production in tga20 mice. 
In connection with (b) this may indicate an inverse correlation (see 
red/green ‘correlation bars’) between PrP shedding and pathogenic 
prion conversion (though deeper insight is clearly required). (d, d″) 
Amyloid plaques composed of human Aβ (left) in brain sections of 
8  months-old APP23 mice heterozygous for PrP (Prnp + / −). Note 
that endogenous sPrP (stained for in serial sections shown on the 
right; d′, d‴) is enriched in the plaques (showing multiple foci in 
the lower panel; d‴). (e, e′, e″, e‴) In APP23 mice with normal PrP 
expression (Prnp + / +) colocalization of sPrP with diffuse (left panel) 
and dense amyloid plaques (right panel) is already detectable at 
5 months of age. (f, f′, f″) Plaque-like appearance of sPrP (detected 
with alkaline phosphatase, hence the pink signal) in brain sections of 
another AD mouse model (5xFAD mouse, 5 months old). (g) Immu-
nofluorescence analysis showing a brain section of a 5xFAD mouse 
stained for Aβ plaques (red), sPrP (green), and endosomal/lysosomal 
marker LAMP1 (bright blue; mostly representing dystrophic neurites 
around plaques). Note that sPrP is enriched in the centre of this amy-
loid plaque (merged channels; g). Scale bar in the magnified merge 
picture is 30 µm. Inlay shows a model of the conceivable Aβ (red) 
sequestrating and plaque-promoting action of sPrP (green). Respec-
tive non-coloured single channels are shown on the left (g′, g″, g‴)

◂

https://elifesciences.org/articles/04260
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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diglycosylated PrP was a rather poor substrate for the tem-
plated misfolding (Camacho et al. 2019; Cheng et al. 2017; 
DeMarco and Daggett 2009; Kang et al. 2020; Priola and 
Lawson 2001; Xiao et al. 2013). This may well translate 
into sPrP’s blocking activity against the amplification of 
certain prion strains.

The situation, however, might be more complicated, as one 
in vitro study showed that ADAM10, in principal, is also able to 
shed misfolded  PrPSc (Taylor et al. 2009). This could -to some 
degree- contribute to the spread of anchorless  PrPSc assemblies 
and pathology within the brain (Altmeppen et al. 2015). Surpris-
ingly, in contrast to the peptide bond hydrolysis by ADAM10, 
experimentally applied phospholipase C is incapable of cleav-
ing the GPI-anchor of  PrPSc (Caughey et al. 1990; Stahl et al. 
1990). It remains to be studied whether ‘proteolytic shedding’ 
by ADAM10 and release of putative shed  PrPSc seeds into body 
fluids also plays a role in the ‘environmental shedding’ of pri-
ons resulting in the high contagiosity observed in chronic wast-
ing disease (CWD), a prion disease affecting deer, moose, and 
elk (Bessen et al. 2010; Denkers et al. 2020; Moore et al. 2016; 
Moreno and Telling 2018; Tennant et al. 2020). Expression of 
PrP with a single amino acid variation (found in cervid PrP) in 
mice affected prion strain selection upon infection with CWD 

prions (Bian et al. 2021). Though not investigated in that study, 
it would be interesting to assess whether this variation in close 
proximity to the cleavage site and GPI-anchor affects the shed-
ding, with possible consequences for strain and disease features. 
Notably, a recent study investigating the role of the extracellular 
matrix component heparan sulfate as a cofactor in prion diseases 
revealed that prion deposits in brains of transgenic mice infected 
with CWD prions largely consisted of heparan sulfate-associated 
ADAM10-cleaved  PrPSc (Aguilar-Calvo et al. 2020). Subsequent 
studies, however, provided evidence that ADAM10-cleaved  PrPSc 
was mostly associated with large perivascular and possibly inert 
plaques, whereas diffusible oligomeric or sub-fibrillar (and 
presumably more neurotoxic)  PrPSc assemblies dominating in 
many prion diseases mostly result from the conversion of GPI-
anchored PrP (Aguilar-Calvo et al. 2020; Callender et al. 2020; 
Sevillano et al. 2020). In conclusion, the ADAM10-mediated 
shedding might play a dual role in prion diseases, and whether it 
is protective or rather disease-supporting might depend on criti-
cal molecular stoichiometries, cofactors, and currently unknown 
cellular modalities as well as species and prion strains. Regarding 
 PrPSc formation and survival times of prion-infected mice, recent 
studies suggest that protective effects may dominate (Altmeppen 
et al. 2015; Endres et al. 2009; Linsenmeier et al. 2021).

Fig. 3  Structural differences between experimentally employed 
‘anchorless’ PrP or recombinant PrP and physiological sPrP may 
affect biological functions and study outcome. Several studies on 
diverse topics covered in this review used transgenically expressed 
anchorless PrP (on the left) or recombinant PrP (on the upper right) 
as soluble PrP forms in assumed analogy to physiologically generated 
sPrP (middle). However, sPrP likely differs from these forms: recPrP 

is unglycosylated and anchorless PrP typically underglycosylated (no 
or one N-glycan), whereas sPrP is mainly diglycosylated (pink/pur-
ple structures). Moreover, the C-terminus is altered and the overall 
structure may be different. In sum, these features could feasibly affect 
critical ligand-to-receptor interactions and downstream effects (box 
on the lower right) and other biological implications. This should be 
considered and controlled for in experimental paradigms
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Alzheimer’s disease and other neurodegenerative 
proteinopathies

Considering cell surface PrP’s role as a receptor and tox-
icity mediator of harmful protein assemblies (introduced 
in paragraph 1), it is not surprising that released forms of 
PrP harbouring the relevant binding sites (Chen et al. 2010; 
Laurén et al. 2009) instead have the ability to bind and 
sequester oligomeric assemblies in the extracellular space 
and interfere with their neurotoxicity in respective model 
systems. This has most convincingly been shown for Aβ 
oligomers and their ‘neutralization’ by the N1 fragment 
resulting from the α-cleavage (Béland et al. 2014; Fluharty 
et al. 2013; Guillot-Sestier et al. 2012; Nieznanski et al. 
2012; Resenberger et al. 2011; Scott-McKean et al. 2016). 
Several studies also employed anchorless or recombinant 
PrP (mimicking physiological sPrP) and found similar bind-
ing affinities for and protective effects against Aβ oligomers 
(Calella et al. 2010; Fluharty et al. 2013; König et al. 2021; 
Nieznanski et al. 2012; Scott-McKean et al. 2016). In fact, 
an additional binding site targeting the ends of Aβ fibrils 
has recently been located in PrP’s C-terminal half, which 
is therefore preserved in sPrP yet absent in N1 (Amin and 
Harris 2021; Bove-Fenderson et al. 2017). Some reports also 
indicated increased α-cleavage and shedding of PrP in AD 
models and brains, possibly reflecting a protective feedback 
loop (Béland et al. 2014; Ostapchenko et al. 2013). Simi-
lar to prion diseases discussed above, existing data for Aβ 
(possibly holding true for other harmful conformers alike) 
supports the view of a two-level protection conferred by the 
ADAM10-mediated shedding: First, this process reduces 
amounts of PrP as the toxicity receptor at the neuronal sur-
face (Jarosz-Griffiths et al. 2019). Second, sPrP blocks toxic 
conformers and may support their sequestration into less 
toxic plaques. In fact, a plaque-promoting effect and pres-
ence of PrP in amyloid deposits have been demonstrated 
earlier (Boon et al. 2020; Ferrer et al. 2001; Schwarze-Eicker 
et al. 2005; Takahashi et al. 2021). These studies, however, 
used pan-PrP antibodies for detection. Most recently, using 
our site-specific antibody, we provided further insight that 
sPrP is enriched in the centre of amyloid plaques in mouse 
models for AD-associated amyloidosis (Linsenmeier et al. 
2021) (Fig. 2d–g). Although doubtlessly many proteins 
are found (enriched) in plaques (among them rather spe-
cific interactors of Aβ or its precursor protein (APP), but 
also others just being trapped by these ‘sticky’ extracellular 
structures), many of the aforementioned studies speak in 
favour for sPrP playing an Aβ-sequestrating and plaque-
promoting role. Given that large deposits, such as plaques, 
are currently considered less harmful than diffusible, toxic 
oligomeric species of neurodegeneration-associated mis-
folded proteins, this would indicate a protective role of sPrP. 
However, deeper mechanistic insight is certainly required.

The ability of PrP to bind toxic conformers has also 
been linked with a role in mediating their cellular uptake 
(De Cecco et al. 2020; Foley et al. 2020; Legname and 
Scialò 2020). Though not studied to date, in that scenario, 
ADAM10-mediated shedding of surface PrP could regulate 
these phagocytic activities. Moreover, sPrP bound to harm-
ful extracellular oligomers could represent a signal trigger-
ing the binding to a given cell surface receptor (with homo-
philic interactions with membrane-anchored PrP being one 
conceivable possibility) and subsequent uptake.

Therapeutic and biomarker potential of sPrP 
in neurodegeneration

Based on the above, stimulation of the ADAM10-mediated 
PrP shedding could represent a therapeutic option in prion and 
other neurodegenerative diseases (Jarosz-Griffiths et al. 2019). 
ADAM10 is already pharmacologically targeted in certain 
skin disease treatments and, in a recent trial in AD patients, 
its activity has already been stimulated using the vitamin A 
analog acitretin (Endres et al. 2014). However, in view of the 
multitude of critical roles and substrates of this protease in 
the brain and throughout the body (mentioned in part in the 
following sections), unwanted side effects to be expected with 
this rather systematic treatment may pose major challenges 
(Kuhn et al. 2016; Saftig and Lichtenthaler 2015; Wetzel et al. 
2017). We may now have overcome this hurdle by identify-
ing a substrate-specific approach (Linsenmeier et al. 2021), 
in which binding of certain ligands (e.g., antibodies) to PrP 
causes increased sPrP levels in the absence of overt toxicity. 
This may — at least in part — explain the protective effects of 
PrP-directed antibodies found in diverse cellular and animal 
models of prion diseases and AD (Chung et al. 2010; Enari 
et al. 2001; Féraudet et al. 2005; Freir et al. 2011; Gilch et al. 
2003; Heppner et al. 2001; Laurén et al. 2009; Peretz et al. 
2001).

A promising therapeutic approach currently pursued 
against prion diseases (that could likewise be beneficial in 
other neurodegenerative diseases) is to reduce the overall 
expression of PrP via antisense oligonucleotides (Minikel 
et al. 2020; Raymond et al. 2019; Vallabh et al. 2019). A pos-
sible combination therapy, i.e., reducing total PrP expression 
and stimulating the release of remaining PrP molecules, may 
even increase the benefit while preserving putative physi-
ological functions of soluble extracellular PrP fragments.

Both, verification and implementation of any PrP-mod-
ifying therapy in pre-clinical and clinical trials (Minikel 
et al. 2019) as well as urgently required improved (and ear-
lier) diagnosis of specific neurodegenerative diseases, will 
critically depend on the assessment of reliable biomarkers. 
Detection of alterations in a defined subset of PrP mole-
cules will most certainly be superior to detection of bulk 
PrP with its diverse forms and fragments found in biological 
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samples (Vallabh et al. 2019). This highlights the relevance 
of fragment-specific antibodies and warrants the need for 
future studies on the potential of sPrP as a meaningful bio-
marker (Fig. 1) (Linsenmeier et al. 2018). A recent report of 
increased levels of ADAM10 in the brains of patients with 
CJD further supports this notion (Diaz-Lucena et al. 2021).

Although not directly assessed to date and therefore 
rather hypothesized below, it is conceivable that sPrP is 
mechanistically involved or could at least represent a rel-
evant biomarker in several other pathological processes, as 
will be discussed in the next paragraph.

Potential relevance of PrP shedding in other 
pathological processes

Both, the prion protein (Rubenstein et al. 2017; Sekar et al. 
2019) and its sheddase ADAM10 (Appel et al. 2021; Sun 
et al. 2017; Warren et al. 2012; Zohar et al. 2011) have — 
so far independently — been implicated in pathological and 
recovery-associated processes following traumatic brain 
injury (TBI). Moreover, levels of soluble PrP were found 
elevated in blood plasma where they may serve as a diag-
nostic marker for TBI and sport-related concussion (Persad 
et al. 2021; Pham et al. 2015a,  b). Also, ADAM10 levels 
correlated with clinical grade (Persad et al. 2021). Although 
it seems likely that soluble PrP assessed in these studies cor-
relates with sPrP, final proof needs to be obtained in system-
atic studies using specific antibodies to discriminate from 
other PrP fragments or from PrP released via extracellular 
vesicles. This will also help to investigate potential protec-
tive or regenerative processes conferred by sPrP. However, 
as inhibition of ADAM10 in a mouse model for TBI reduced 
tissue injury and inflammatory responses, it appears ques-
tionable if sPrP would act beneficially in this context (Appel 
et al. 2021).

PrP and its released fragments also seem to play ben-
eficial roles in hypoxic conditions affecting the CNS, 
such as stroke (Doeppner et al. 2015; Guillot-Sestier et al. 
2009; McLennan et al. 2004; Shyu et al. 2005; Spudich 
et al. 2005; Weise et al. 2006, 2004). While signalling and 
downstream effects mediated via cell surface PrP most 
certainly underlies some of the protective roles (reviewed 
in (Puig et al. 2020)), release of PrP fragments, such as 
sPrP and PrP, on extracellular vesicles may be relevant for 
intercellular communication with nearby or distant brain 
regions, neuron-glia interactions, or recruitment/activation 
of cell types required for the induction of regenerative pro-
cesses, such as angiogenesis (Brenna et al. 2020; D’Arrigo 
et al. 2021; Guitart et al. 2016; Mitsios et al. 2007; Turu 
et al. 2008). Again, clarification of specific roles of sPrP in 
these aspects seems reasonable, as they could be employed 
therapeutically.

While all previously discussed (potential) roles of sPrP 
were exclusively focussed on the CNS, sPrP may reveal itself 
as a relevant molecule beyond this organ system. Moreover, 
in contrast to the aforementioned beneficial implications, 
sPrP may also carry out negative roles as discussed first for 
the aspect of tumorigenesis and cancer.

Why cancer? Increased PrP expression has been found 
in various types of malignant tumours ranging from brain 
tumours to breast, gastric, skin, and colorectal cancer. In 
these and other tumour entities, PrP was shown to support 
tumorigenesis and metastasis by engaging in a variety of 
pathogenic processes, including anti-apoptotic signalling 
cascades, cancer stem cell survival, angiogenesis, and even 
resistance towards chemotherapy and radiation (Atkinson 
et al. 2019; Barbieri et al. 2011; Bernardino-Sgherri et al. 
2021; Corsaro et al. 2016; de Lacerda et al. 2016; Du et al. 
2013; Ghazi et al. 2021; Le Corre et al. 2019; Li et al. 2009; 
Liang et al. 2007; Lopes et al. 2015; Luo et al. 2017; Pan 
et al. 2006; Roucou et al. 2005; Thellung et al. 2019; Wang 
et al. 2016; Yap and Say 2012). As such, elevated PrP levels 
may correlate with malignancy and are considered a sign 
for poor prognosis.

Strikingly, a huge amount of published evidence also 
implicates ADAM10 in various aspects of cancer develop-
ment and progression. Previous studies mostly focussed 
on ADAM10’s role in extracellular matrix degradation for 
angiogenesis and metastasis or on its processing of cellular 
substrates regulating differentiation and cancer cell survival, 
yet did not consider or reveal any link to PrP (Crawford et al. 
2009; Dempsey 2017; Ostalecki et al. 2017; Smith et al. 
2020). However, this may now change given that a recent 
report found both, PrP and its sheddase, to be associated in 
the pathogenic process of breast cancer progression (Cheng 
et al. 2021). From the combination of elevated PrP levels 
and increased ADAM10 expression/activity found in various 
cancer types, one can anticipate that sPrP, the product likely 
generated by this molecular encounter, may be mechanisti-
cally involved in certain oncogenic processes. Considering 
the well-established role of PrP in signalling (Chiarini et al. 
2002; Mattei et al. 2020; Mouillet-Richard et al. 2000) and 
the growing evidence for sPrP acting as a ligand or trophic 
factor in intercellular communication (discussed herein), 
further studies are warranted to check for a mechanistic rel-
evance in cancer biology. But even if sPrP turns out to be not 
much more than a bystander, the combination of upregulated 
ADAM10 and PrP independently described in various can-
cer types and models could well point towards a diagnostic 
biomarker potential of sPrP assessable in body fluids.

Notably, two recent reports specifically linked released 
PrP with development of certain CNS tumours (Provenzano 
et al. 2017) and with chemotherapy resistance in breast cancer 
(Wiegmans et al. 2019). However, these studies did not strictly 
discriminate between PrP on extracellular vesicles or sPrP, 
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which supports the need for further studies using differentiat-
ing antibodies and protocols.

In recent years, protective functions have also been attrib-
uted to PrP in the kidney (Han et al. 2020; Yoon et al. 2021; 
Zhang et al. 2015), and PrP is ‘secreted’ into the urine in 
response to chronic kidney disease and ER stress in kidney 
injury (Bignon et al. 2020). However, before assessment of PrP 
in plasma can be used as a reliable biomarker, differentiation 
between sPrP and other PrP forms again seems appropriate.

Lastly, shedding of PrP might be relevant in immune regu-
lation, the immune privilege of certain organs, and inflamma-
tory responses during (viral) infections. In fact, PrP is highly 
expressed in lymphoid tissues and has long been discussed 
to be important in the communication between immune cells 
(Bakkebø et al. 2015). It is tempting to speculate that sPrP 
(and other released PrP fragments) act similar to chemokines 
or interleukins and mediate intercellular crosstalk between 
diverse cell types as well as between different tissues and organ 
systems, such as neuro-immune interactions (Salvesen et al. 
2019). These processes might be diverted and hence become 
harmful in tumorigenesis or CNS infections as mentioned 
earlier. Platelets (Perini et al. 1996), primary lymphoid cells 
(Parizek et al. 2001), and mast cells were shown to release 
PrP (Haddon et al. 2009), the latter especially upon activa-
tion, thus indicating functional relevance. It seems likely that 
this release is mediated by ADAM10 at the cell surface. After 
finding increased levels of soluble PrP in the CSF (Roberts 
et al. 2010) of patients with HIV-associated neurological 
impairment (Price et al. 1988) and suggesting soluble PrP as 
a respective biomarker (Megra et al. 2013), one group recently 
proposed a disease-accelerating role for shed PrP in HIV neu-
ropathogenesis (Megra et al. 2017). In that scenario, active 
ADAM10 and PrP shedding are upregulated on astrocytes in 
response to certain inflammatory mediators. This, in turn, trig-
gers a cascade of events eventually leading to increased mono-
cyte recruitment to the brain and worsening of brain damage. 
Again, since pan-PrP antibodies were used in that study and 
no ultracentrifugation was performed (to exclude extracellular 
vesicles), a clear demonstration that bona-fide sPrP caused this 
effect is still pending.

Further biological roles influenced 
by shedding or played by ‘sPrP’: a few facts 
and some fiction

An outstanding aspect common to many of the aforemen-
tioned putative implications of sPrP is its supposed role 
as a diffusible ligand in intercellular communication. 
In this regard, it appears likely that sPrP and/or the N1 
fragment are the physiologically relevant ligands for a 
G-protein coupled receptor on Schwann cells, ensuring 

myelin maintenance in the peripheral nervous system 
(Henzi et al. 2020; Küffer et al. 2016).

Further support for the view that sPrP acts as a ligand 
in various processes also comes from several studies using 
recombinant PrP. Treatment of neurons with the latter, for 
instance, causes neuronal polarization, increased axon 
length and dendritic differentiation as well as synapse 
formation. Notably, C- or N-terminal PrP fragments were 
not sufficient to elicit this effect (Kanaani et al. 2005). 
Moreover, axons grow towards a source of recPrP, and cell 
surface PrP itself seems to act as ‘its own’ neuronal recep-
tor in this process (Amin et al. 2016). This suggests that 
physiological sPrP may hold properties as both, a growth 
factor-like and chemoattractant molecule in neuronal dif-
ferentiation, neuritogenesis, and synaptic homeostasis. 
Fittingly, ADAM10 holds key roles in brain development, 
axon targeting and functioning of synapses (Jorissen et al. 
2010; Kuhn et al. 2016; Malinverno et al. 2010; Prox et al. 
2013), although its substrate PrP was not specifically 
assessed in these studies.

One way by which PrP modulates signalling cascades 
is via interaction with different transmembrane partners. 
An inhibitory effect on excitotoxicity is mediated by 
binding of PrP to the NMDA receptor (Huang et al. 2021; 
Khosravani et al. 2008; Meneghetti et al. 2019; Petit-Pai-
tel et al. 2012), whereas its interaction with this recep-
tor and metabotropic glutamate receptor mGluR5 medi-
ates toxicity upon binding of harmful protein oligomers 
(Hamilton et al. 2015; Hu et al. 2014; Resenberger et al. 
2011; Um et al. 2013; You et al. 2012). Binding of PrP 
to the 37 kDa/67 kDa laminin receptor precursor (LRP/
LR) (Gauczynski et al. 2001; Hundt et al. 2001; Simo-
neau et al. 2003) or the low-density lipoprotein receptor-
related protein 1 (LRP1) (Parkyn et al. 2008; Taylor and 
Hooper 2007) (note the similar nomenclature!) regulates 
PrP’s cellular trafficking and homeostasis and may affect 
PrP-related signalling and prion conversion (Leucht et al. 
2003; Mattei et al. 2020; Pinnock et al. 2016; Rushworth 
et al. 2013). Interaction of PrP with the neural cell adhe-
sion protein (NCAM) at the cell surface is involved in cell 
adhesion and morphogenesis, neuronal differentiation, and 
neurite branching (Brethour et al. 2017; Prodromidou et al. 
2014; Santuccione et al. 2005; Schmitt-Ulms et al. 2001; 
Slapšak et al. 2016). Like PrP and ADAM10 (discussed in 
Sect. 4), many of these PrP interactors are also associated 
with different processes during cancerogenesis (reviewed 
in (Colombo and Meldolesi 2015; Gonias and Campana 
2014; Vania et al. 2019)). Since all relevant binding sites 
for interactions with these and other receptors are pre-
served in sPrP, this calls for detailed studies investigat-
ing whether sPrP may act as an antagonistic, agonistic 
or regulatory ligand of the diverse processes mentioned 
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above. In fact, functional interaction with NCAM in trans 
was shown for recPrP (Chen et  al. 2003; Santuccione 
et al. 2005). Intriguingly, a recent report demonstrated 
that experimentally administered recPrP induced MAP 
kinase Erk1/2 signalling via engagement of both, LRP1 
and NMDA receptor (Mantuano et al. 2020). This caused 
neurite outgrowth in a neuronal cell line and migration 
of Schwann cells, thus indicating relevance in the cen-
tral and peripheral nervous system, respectively. Another 
report showed that recPrP induced phosphorylation of 
Erk1/2 and additional signalling causing neuronal differ-
entiation of stem cells (Martellucci et al. 2019a, b). As in 
other conditions mentioned earlier (Amin et al. 2016), this 
required expression of PrP at the cell surface suggesting an 
underlying homophilic encounter between sPrP as ligand 
and PrP as (co-)receptor. In sum, interaction of PrP with 
diverse partners is key to its established roles in regulating 
(stem) cell proliferation, maintenance, and viability as well 
as morphological and functional differentiation (such as 
epithelial-to-mesenchymal transition) in the central nerv-
ous system and beyond (Brethour et al. 2017; Lee and 
Baskakov 2013; Mehrabian et al. 2015; Prodromidou et al. 

2014; Steele et al. 2006; Zhang et al. 2006). These fine-
tuned processes are relevant during development and for 
regenerative processes yet may be corrupted in pathogenic 
conditions such as cancer. The role played by sPrP in these 
regards is out for debate and investigation.

Although it seems at least possible, if not likely, that sPrP 
is the physiological correlate in many of the pathophysi-
ological processes covered in this review, detailed studies 
on this are lacking to date. All of the aforementioned studies 
using recPrP or transgenically expressed anchorless PrP as 
a ‘proxy’ for physiological sPrP are -without doubt- very 
interesting and may help to unravel sPrP’s real functions. 
However, pending further direct proof and considering 
the possibly relevant structural differences of these forms 
compared to physiologically shed PrP (Fig. 3), one should, 
at least at the present state, be careful with generalizing 
experimental findings. In this consideration, we would rather 
disagree with recent statements that these PrP versions are 
‘basically the same as’ shed PrP (Dexter and Kong 2021b).

Apart from the focus on released PrP fragments, proteo-
lytic processing may also have implications from the per-
spective of membrane-bound PrP. In many of the biological  

Fig. 4  Overview of potential (patho)physiological implications of 
sPrP. A plethora of studies suggest that released fragments of PrP are 
linked with intrinsic functions, which may partially explain the mul-
titude of roles attributed to this evolutionary conserved protein. Puta-
tive roles of sPrP addressed in this review may be beneficial (e.g., in 
neurodegeneration, development/differentiation) or detrimental (e.g., 
in cancer progression or immune response aggravation). It should 

be noted, however, that many of the roles discussed herein are, thus 
far, rather speculative and based on the combination of described 
PrP participation on the one hand, and documented involvement of 
(increased) ADAM10 expression/activity on the other hand. Clear 
experimental proof in these and other conditions is mostly pending 
and will eventually require use of research tools able to discriminate 
between different PrP derivatives
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implications discussed herein, a gradual engagement of pro-
teolytic cleavages is conceivable: by releasing the N-terminal  
half of PrP, α-cleavage may inhibit certain interactions, 
while simultaneous production of the C1 fragment with 
its exposed hydrophobic sequence likely enables others. In 
this scenario, the PrP shedding by ADAM10 might be a 
mechanism to regulate or terminate all PrP interactions and 
downstream effects. This assumption could be particularly 
important for two partially connected aspects, namely the 
established involvement of cell surface PrP in both, diverse 
cellular signalling cascades (Chiarini et al. 2002; Mattei 
et al. 2020; Mouillet-Richard et al. 2000) and cell adhesion 
(Kaiser et al. 2012; Málaga-Trillo et al. 2009; Mangé et al. 
2002; Petit et al. 2013; Solis et al. 2013). Moreover, PrP 
and its C1 fragment are highly enriched on EVs and may 
serve important regulatory functions regarding the fate of 
EVs upon interaction with recipient cells and delivery of 
cargo and information (Brenna et al. 2020; D’Arrigo et al. 
2021; Falker et al. 2016; Guo et al. 2015; Linsenmeier et al. 
2018; Vella et al. 2008). EVs are considered as rather stable 
extracellular structures able to cross tissue borders, includ-
ing the blood–brain barrier, whereas half-life of sPrP as a 
soluble factor in tissue environment or body fluids might 
be rather short. Strikingly, EVs also carry the active form 
of ADAM10 and, though not reported yet, it is conceivable 
that PrP shedding continues on EVs, as has been shown for 
other ADAM10 substrates (Folkesson et al. 2015; Padro 
et al. 2013; Pérez-González et al. 2020; Stoeck et al. 2006). 
It appears tempting to speculate (and investigate) whether 
EVs could function as a ‘carrier rocket’ enabling transport 
to distant target organs, followed by subsequent local release 
of sPrP to exhibit its functions.

Conclusion and outlook

As it stands now, clear conclusions on whether PrP shed-
ding and sPrP play harmful (e.g., in cancer) or beneficial 
roles (e.g., in neurodegeneration) cannot be easily drawn 
— it all rather seems to be a matter of perspective (and 
pathophysiological context). Plenty of biological impli-
cations may arise for the ADAM10-mediated shedding 
and its product sPrP (summarized in Fig. 4). And even 
though shedding may not be of mechanistic relevance 
in certain processes mentioned herein, considering the 
broad expression pattern of both, PrP and its sheddase 
ADAM10, alterations in sPrP levels in body fluids may 
qualify as diagnostic tool in some pathological conditions. 
Also, PrP shedding may well affect processes in organs/
tissues not covered in this review. However, all of this 
requires detailed analyses and new research tools able to 

reliably differentiate between sPrP and other PrP deriva-
tives. While sPrP-specific antibodies for murine models 
are available, identification of the shedding site and gen-
eration of respective antibodies for the human system and 
other species will fuel further studies and provide insight 
into both, biological effects and biomarker potential of 
sPrP. Moreover, given that PrP appears to be exclusively 
shed by ADAM10 (with no contribution by other pro-
teases, such as the closely related and often redundantly 
working ADAM17), detection of sPrP as a surrogate 
read-out could become a convenient way to investigate 
the efficacy of any pharmacological approaches aiming to 
manipulate ADAM10 activity in general. With regard to 
PrP, we recently presented a substrate-specific approach 
that, depending on the applied PrP-directed ligand, enables 
stimulated shedding as well as (transient) downregulation 
of total PrP (Linsenmeier et al. 2021). Future studies into 
this direction, but also on endogenous regulators (e.g., cer-
tain tetraspanin molecules (Matthews et al. 2017; Saint-
Pol et al. 2017; Seipold et al. 2018)) or pharmacological 
modulators of ADAM10 trafficking, maturation and activ-
ity, could pave the way for future therapeutic avenues in 
neurodegeneration and beyond.
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