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Abstract
Purpose: The feasibility of a deep learning-based markerless real-time tumor
tracking (RTTT) method was retrospectively studied with orthogonal kV X-ray
images and clinical tracking records acquired during lung cancer treatment.
Methods: Ten patients with lung cancer treated with marker-implanted RTTT
were included. The prescription dose was 50 Gy in four fractions, using seven-
to nine-port non-coplanar static beams. This corresponds to 14–18 X-ray tube
angles for an orthogonal X-ray imaging system rotating with the gantry. All
patients underwent 10 respiratory phases four-dimensional computed tomogra-
phy.After a data augmentation approach, for each X-ray tube angle of a patient,
2250 digitally reconstructed radiograph (DRR) images with gross tumor volume
(GTV) contour labeled were obtained. These images were adopted to train the
patient and X-ray tube angle-specific GTV contour prediction model. During the
testing, the model trained with DRR images predicted GTV contour on X-ray pro-
jection images acquired during treatment.The predicted three-dimensional (3D)
positions of the GTV were calculated based on the centroids of the contours
in the orthogonal images. The 3D positions of GTV determined by the marker-
implanted RTTT during the treatment were considered as the ground truth. The
3D deviations between the prediction and the ground truth were calculated to
evaluate the performance of the model.
Results: The median GTV volume and motion range were 7.42 (range, 1.18–
25.74) cm3 and 22 (range, 11–28) mm, respectively. In total, 8993 3D position
comparisons were included. The mean calculation time was 85 ms per image.
The overall median value of the 3D deviation was 2.27 (interquartile range:
1.66–2.95) mm. The probability of the 3D deviation smaller than 5 mm was
93.6%.
Conclusions: The evaluation results and calculation efficiency show the pro-
posed deep learning-based markerless RTTT method may be feasible for
patients with lung cancer.
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1 INTRODUCTION

Respiratory motion management is vital during radia-
tion therapy for patients with lung tumors.1 The internal
target volume (ITV) method is one of the most com-
monly used approaches. This method covers the range
of tumor motion by enlarging the target volume.2 But the
enlarged target volume may increase the dose to healthy
tissue,and a previous study showed that the ITV method
may not fully cover the tumor motion range during beam
delivery.3 Abdominal compression, breath-hold, and res-
piratory gating can also reduce the effects of tumor
motion.4 But these approaches may cause burdens to
the patient’s breath or prolong the treatment duration.

A more advanced approach to achieve respira-
tory motion management is real-time tumor tracking
(RTTT).5 By tracking the target position while a patient
breathes freely, the dose to healthy tissue can be con-
trolled without adding an extra burden to the patient
during treatment beam delivery.

Currently,caused by the limited soft-tissue contrast on
X-ray images, the marker-implanted approach is mainly
adopted to assist X-ray image based RTTT.Metallic fidu-
cial markers are implanted into the patient’s lung around
the tumor approximately 1 week prior to the planning
computed tomography (pCT) scan.6 By detecting the
internal markers, the position of the target can be deter-
mined using the geometric correlation of markers’ cen-
troid and target in the pCT.After years of clinical practice,
the shortcomings of the marker-implanted approach
have been realized.7 The implantation of markers is
an invasive procedure. It prolongs the total treatment
duration by approximately one week and may cause
implantation-related complications. As the markers are
implanted before the pCT scan and near the target,
metal artifacts may appear and blur the pCT image,
especially in the area around the target.8 Marker induced
error caused by inter- and intra-fractional marker migra-
tion has also been reported.9 The migration of mark-
ers may cause changes in geometric correlation and
decrease the accuracy of marker-implanted RTTT.7

To overcome the shortcomings of the marker-
implanted approach,markerless RTTT is required.Mark-
erless RTTT is defined as a real-time tumor positioning
system in which no exogenous materials are implanted
into the patient body to assist the image-guiding
process.10 Without the implantation of markers, the
total treatment duration can be shortened, and patients
will be free from potential risks. With the markerless
approach, metal artifacts in pCT and marker-induced
errors can be efficiently eliminated.

Several commercial and phantom studies on mark-
erless RTTT have recently reported the potential
advantages of this approach. These studies can be
categorized as template-based.11,12 and deep learning-
based.13,14 Template-based methods track the target by
generating target templates from digitally reconstructed

radiograph (DRR) images and matching the template
on the kV X-ray projection images during the treatment.
Template-based approaches are rigid and commonly
adopted in commercial software, such as CyberKnife’s
XSightLung (Accuray, Sunnyvale, CA).11 and Rapid-
Track (Varian Medical Systems, Palo Alto, CA).12 Both
studies reported limitations. XSightLung cannot track
lung tumors with a diameter small than 15 mm.11 For
small lung tumors, RapidTrack can only track tumor
with limited motion.12 Deep learning-based approaches
use target-labeled DRR images to train a deep learning
model. Takahashi et al. developed a deep learning
model to predict the bounding box of spherical and
ovoid target in phantom on X-ray projection images.13

Previous work used a deep learning model to predict
the contour of the pancreas tumor’s clinical target
volume on DRR images.14 The position of the target
is determined by the center of the target bounding box
or the centroid of the target contour. Although previous
deep learning-based studies provided accurate results,
the images for evaluation were from phantom studies
or synthetic images, which made it doubtful whether the
accuracy can be maintained in clinical practice with real
patients and treatment beam irradiation. Currently, for
marker-implanted RTTT for patients with lung cancer,the
margin between planning target volume and GTV was
at least 8 mm on one direction.15 Clinically, for marker-
less RTTT, a three-dimensional (3D) tracking accuracy
better than 5 mm will bring the technology a bright
future.

In the prior study, the deep learning-based method
was trained and evaluated on DRR images14; however,
the feasibility of the method is unclear if evaluated with
the real X-ray projection images acquired during treat-
ment. As far as we know, there was no published work
about deep learning-based markerless RTTT method
evaluated with X-ray projection images and clinical
tracking record acquired during patient’s treatment.
In the current study, the deep learning-based mark-
erless RTTT procedure was trained on DRR images
and tested using orthogonal X-ray projection images
acquired from real patient treatments. To the best of
our knowledge, the present study is the first to perform
dynamic gross tumor volume (GTV) contour prediction
on real X-ray projection images and evaluate the perfor-
mance of tracking with 3D target position data acquired
during treatment. The data generation and training
of the deep learning-based target contour prediction
model are patient- and kV X-ray tube angle-specific.
The data generation consists of DRR generation from
four-dimensional CT (4DCT) and data augmentation.
The data augmentation method can generate sufficient
data for model training. Thus, there is no need to accu-
mulate historical data. During testing of the procedure,
the GTV contour of the lung tumor in the real X-ray
projection image was predicted, and the 3D position
of the tumor was calculated based on the centroids of
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the orthogonal GTV contours on real X-ray projection
images.The 3D tracking accuracy of the procedure was
then evaluated and analyzed with the record acquired
during treatment, which made this feasibility study more
clinically realistic than previous phantom studies.

2 MATERIALS AND METHODS

2.1 Marker implanted real-time tumor
tracking of Vero4DRT system

The Vero4DRT system (Hitachi Ltd., Tokyo, Japan and
Brainlab AG, Feldkirchen, Germany) has a gimbaled 6
MV X-ray head and an orthogonal kV X-ray imaging
system.16 The gimbaled-head and imaging system were
installed with a compact accelerator in an O-ring gantry.
The O-ring gantry can rotate ± 60

◦

about its vertical
axis and ± 185

◦

along its O-shaped structure.The imag-
ing system rotates simultaneously with the gantry and
O-shaped structure. The orthogonal kV X-ray imaging
system consisted of two pairs of X-ray tubes and flat-
panel detectors (FPDs). The X-ray source to isocenter
distance and FPD distance were 1000 and 1836 mm,
respectively. The maximum size of the FPDs at the
isocenter level was 222 mm × 168 mm, with a spatial
resolution of 0.211 mm at the isocenter level. The FPD
pixel array size is 1024 × 768.

The imaging system works with an extended version
of the ExacTRAC system (Brainlab AG) to perform 3D
tumor tracking.17 For patients with lung cancer, 2 to 5
disposable gold markers (Olympus Medical Systems,
Tokyo, Japan) were implanted before patient’s 4DCT
scan. The system detects implanted fiducial markers
on X-ray images and calculates the centroid of the
marker polyhedron. With the marker centroids on the
orthogonal X-ray images, the 3D markers center of
mass was defined as the midpoint of the shortest
intersection vector between the vectors connecting the
orthogonal kV X-ray source and centroid of the corre-
sponding markers on the FPDs. Clinically, the detected
GTV position is continuously determined with the 3D
marker center of mass plus the relative shift between
the center of mass of markers and the GTV at the
reference phase. The reference phase was the selected
phase of the patient’s 4DCT.

2.2 Patient characteristics and
treatment planning

This retrospective study was approved by the institu-
tional review board (R1446). The phase-based 4DCT
scans of ten patients with lung cancer were included
in this study (Table 1). CT simulations were performed
using the BodyFix system (Elekta AB, Stockholm, Swe-

den) with overhead-raised arms. The 4DCT scans were
acquired using a LightSpeed RT 16-slice CT simulator
(General Electric Medical Systems, Waukesha, WI) or
SOMATOM Definition AS (Siemens Medical Systems,
Erlangen, Germany), with a real-time positioning man-
agement system (Varian Medical System). The CT slice
thickness was 2.5 mm for patients 1 to 6 and 2 mm for
others. The entire respiratory period was divided into 10
respiratory phases. The radiation oncologist contoured
the GTV for each phase.

All patients underwent seven to nine-port non-
coplanar 3D conformal radiation therapy (3DCRT) with
RTTT.Correspondingly, the clockwise and counterclock-
wise X-ray tube angles were gantry angles plus and
minus 45

◦

, respectively.The prescription dose was 50 Gy
in four fractions.

2.3 Generation of training dataset

For a deep learning model,sufficient data are required to
train the model. This section presents a data augmenta-
tion method aimed at generating sufficient labeled data
to train a patient and X-ray angle-specific deep learning
model.

The overall workflow of the training dataset genera-
tion is shown in Figure 1. The raw data was a patient
4DCT, which contained CT volumes of 10 respiratory
phases.GTV-only CT volumes were acquired by extract-
ing the GTV contour from the DICOM structure storage
file using Python. Subsequently, the open-source pro-
gram Plastimatch was applied to generate DRR images
for both the original and corresponding GTV-only CT
volumes.18 Plastimatch generates DRR images by using
Siddon ray tracing method.19 Scatters were not con-
sidered during DRR images generation. The geometric
settings for DRR generation were obtained from the
technical description of Vero4DRT system. As a result,
ten paired original DRR and GTV-only DRR images
were acquired.

The first step of data augmentation was to rotate the
X-ray beam angle around the isocenter from -3.5

◦

to
3.5

◦

in 0.5
◦

intervals in both the superior-inferior and
anterior-posterior directions for DRR image generation.
As the angle was rotated 15 times for each direction, the
data scale was augmented 225-fold after this step.Thus,
2,250 paired original DRR and GTV-only DRR images
were acquired.

The second step was to extract the mask of the GTV
from the GTV-only DRR images and overlap it with the
corresponding original DRR images to obtain the GTV
contour-labeled DRR.For each X-ray angle for a patient,
2,250 GTV contour labeled DRR images were used to
train the patient and an X-ray angle-specific deep learn-
ing model.The scale of the training data was considered
sufficient by referring to previous work.14
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TABLE 1 Patient characteristics

Patient
index Sex

Age
[y] Location Stage

GTV
volume
[cm3]

Mean HU
value of
GTV

3D motion
range
[mm]

Number
of
markers

1 M 86 Right middle lobe cT1bN0M0 7.0 –176.2 22 3

2 M 88 Right middle lobe cT1bN0M0 11.6 –260.0 28 4

3 F 90 Left lower lobe cT1aN0M0 5.1 –145.7 13 4

4 M 82 Left upper lobe cT1bN0M0 6.0 –203.9 25 3

5 F 83 Left lower lobe cT1bN0M0 15.8 –340.0 22 2

6 M 71 Right lower lobe cT1bN0M0 7.9 –329.6 26 4

7 M 81 Right upper lobe cT1bN0M0 2.8 –249.7 11 5

8 M 79 Right lower lobe cT2aN0M0 25.7 –19.8 25 4

9 M 79 Right lower lobe metastasis 1.2 –346.0 13 5

10 F 71 Right lower lobe cT1cN0M0 17.8 –37.7 17 4

Abbreviations: 3D, three-dimensional; F, female; GTV, gross tumor volume; HU, Hounsfield unit; M, male.

F IGURE 1 Overall workflow of training dataset generation

2.4 Patient and X-ray angle-specific
deep learning model for target contour
prediction

The workflow for training and testing a patient and an X-
ray angle-specific deep learning model for target contour
prediction are shown in Figure 2.The target of this study
was the GTV. In brief, this model can predict the con-
tour of the target in each region of interest (RoI).20 with
features extracted by ResNet.21 and a feature pyramid
network.22 The loss function contains loss on classifica-
tion, bounding box.23 and contour.20 The deep learning
framework was detectron2.24 and the model was pre-
trained on the COCO dataset.25 Then, the pre-trained
model was fine-tuned to predict the GTV contour with
2,250 GTV contour labeled DRR images, which were
generated in the previous step. Subsequently, a GTV
contour was used to predict the deep learning models
for each corresponding X-ray tube angle.

2.5 Performance evaluation

During the performance evaluation, the models trained
with DRR images were tested with real X-ray projec-
tion images acquired during treatment. The projection
images were processed with a Gaussian filter to sim-
ulate the same spatial resolution as the DRR images,
and then imported into the patient and X-ray angle-
specific deep learning model. Projection images were
acquired during treatment beam delivery with a colli-
mated kV beam field size to reduce the imaging dose.
The deep learning model predicted the GTV contours
in the projection images. Subsequently, the centroid of
the predicted contour is calculated. The 3D predicted
positions can be determined using centroids on the
orthogonal projection images. The method used to cal-
culate the 3D predicted GTV position was the same as
that used in the Vero4DRT system, which calculates the
position of 3D markers center of mass.
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F IGURE 2 Workflow for training and testing a patient and X-ray angle-specific deep learning model for target contour prediction

The centroids of the markers were recorded during
the treatment, and the 3D GTV positions were deter-
mined. In this study, 3D GTV positions determined by
the clinical records were considered as the ground truth.
The 3D deviation between the ground truth and the 3D
predicted GTV position was calculated to evaluate the
performance of the model for tumor positioning.Pearson
correlation coefficient (r) was calculated to evaluate 3D
deviation and prediction rate dependent on GTV volume,
GTV motion range, and fraction index.

3 RESULTS

The calculation efficiency of the deep learning model
can meet the requirement of clinical practice. The high-
performance computer (HPC) used in this study had
an Intel Core i7 9800X central processing unit (CPU),
four Quadro GV100 32 GB graphics processing units
(GPUs), and eight 16 GB RAM modules. The training
time for one GPU was 2.5 s per iteration. For 2,000
iterations, the training time for one X-ray tube angle of
a patient was approximately 1.5 h. As the HPC had four
GPUs and each patient had 14–18 X-ray tube angles,
the total training time for one patient was approximately
6 h. The calculation time for gaussian filter with CPU
was about 30 ms. The average GTV contour prediction
time with one GPU for one image was around 55 ms.
The total calculation time per image was about 85 ms.
Because the orthogonal images can be calculated
in parallel on two GPUs, the calculation efficiency is
sufficient for RTTT.

For all the patients and fractions, 15,140 pairs of
orthogonal X-ray projection images were stored. The
marker-implanted method recorded 13,244 3D positions

F IGURE 3 Cumulative percentage curve of 3D deviation
between the predicted position and ground truth

(87.5%). The proposed markerless procedure predicted
10,242 3D positions (67.6%). Finally, 8993 pairs of
images could be detected by the marker-implanted
method and predicted by the markerless procedure.
These 8993 comparisons were included in the statistical
results of performance evaluation.

The overall median value of the 3D deviation was
2.27 (interquartile range [IQR]: 1.66–2.95) mm. Figure 3
shows the cumulative percentage curve of the 3D devia-
tion. The percentage of 3D deviation smaller than 3 and
5 mm was 75.9% and 93.6%, respectively.

Tables 2 and 3 show the 3D deviation and prediction
rate of each patient, and the 3D deviation and predic-
tion rate of each fraction, respectively. Notably, patient
number 2 had much worse predication accuracy and
prediction rate than the other patients. In the calculation
of Pearson correlation coefficients, the results excluded
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TABLE 2 3D deviation and prediction rate regarding to each
patient

Patient
index

Median of 3D deviation
(IQR) [mm]

Prediction
rate [%]

1 2.45 (2.02–2.89) 78.5

2 5.65 (5.07–6.36) 24.0

3 2.48 (1.87–3.29) 68.0

4 2.48 (2.27–2.84) 96.0

5 1.81 (1.44–2.15) 98.0

6 3.17 (2.70–3.81) 61.7

7 1.75 (1.43–2.13) 46.6

8 1.56 (1.00–2.65) 72.1

9 1.94 (1.43–2.54) 42.0

10 2.39 (1.54–3.54) 98.8

Overall 2.27 (1.66–2.95) 67.6

Abbreviation: IQR, interquartile range.

TABLE 3 3D deviation and prediction rate regarding to each
fraction

Fraction
index

Median of 3D deviation
(IQR) [mm]

Prediction
rate [%]

1 2.16 (1.52–2.99) 75.5

2 2.17 (1.64–2.75) 65.2

3 2.36 (1.83–2.90) 65.7

4 2.42 (1.74–3.23) 64.2

Overall 2.27 (1.66–2.95) 67.6

Abbreviation: IQR, interquartile range.

TABLE 4 Pearson correlation coefficient calculation results

GTV
volume

3D motion
range

Fraction
index

Median 3D
deviation

–0.19 (–0.15) 0.52 (0.31) 0.95 (0.98)

Prediction rate 0.38 (0.53) 0.09 (0.51) –0.82 (–0.92)

Note: Only the values in parentheses were adapted in the discussion to prevent
bias. The values in parentheses are the r values without patient number 2.
Abbreviations: 3D, three-dimensional; GTV, gross tumor volume.

patient number 2 were also calculated to prevent poten-
tial bias. The calculation results of Pearson correlation
coefficient are shown in Table 4.

4 DISCUSSION

The calculation time was about 85 ms per image. It is
much smaller than the tolerance of the total system
latency for RTTT recommended by AAPM TG-76, which
was 500 ms.We realized that contour prediction is a part
of the total system latency.Because the stored data was
adopted,it was difficult to include other components.Fur-
ther phantom studies may include data acquisition time,

data transformation time and optimization of program to
better evaluate the total system latency of markerless
tumor tracking.

The causes of 3D deviation may lie in both the pro-
posed procedure and ground truth. For this procedure,
the target contour detection model was fine-tuned with
DRR images and tested with real X-ray projection
images. Compared to real projection images, the sharp-
ness of the DRR images was poor, and the contrast
was different. Meanwhile, because the real projection
images were recorded with the treatment beam delivery,
there was noise caused by megavoltage scatters in
the real projection images [26]. The noise and differ-
ence between the training and testing images may
decrease the accuracy of the target contour prediction
model. Regarding the ground truth, clinically before the
RTTT, the patient setup error correction was based on
the bone anatomy, not the GTV. Based on an unpub-
lished institutional discussion, by comparing planning
CT before radiation therapy and cone-beam CT after
each fraction for 145 patients who underwent lung
stereotactic body radiation therapy, a systematic shift of
approximately 2 mm in 3D between the GTV and bone
structure was observed. This may also have contributed
to the deviations.

For patient numbers 7, 8, 9, and 10, the prediction
accuracy was relatively better than other patients. One
of the possible reasons may be related to the CT slice
thickness. For these four patients, the slice thickness
was 2 mm, while it was 2.5 mm for the rest. Thinner
CT slice thickness made the DRR images more similar
to the real X-ray projection images, which enabled the
deep learning model to be better trained and provided
better results. As shown in Table 2, the 3D deviation
of patient number 2 was significantly larger while
the prediction rate was much lower than the others.
For this patient, by comparing Figure 4a,b, inconsis-
tent GTV shapes on DRR images were observed.
This was caused by severe 4DCT artifacts, as indi-
cated by yellow arrows in Figure 4c and comparing
with Figure 4d. The 4DCT artifacts caused the DRR
images and GTV contours for training to be different
from the real X-ray projection images and GTV, and
the markerless procedure provides relatively poor
results.

To prevent bias in the analyze of correlations,only the
r values without patient number 2 were discussed in this
paragraph. As shown in Table 4, the median 3D devia-
tion has no correlation with GTV volume (r = -0.15), and
weak correlation with motion range (r = 0.31). A strong
correlation between fraction index and median 3D devia-
tion (r= 0.98) was observed.The strong correlation may
be caused by the change in the GTV shape compared to
the day of the 4DCT scan as the treatment progressed.
Regarding the ground truth side, interfractional marker
migration may also cause the 3D deviation to increase
as the treatment progresses.9
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F IGURE 4 Demonstration of artifacts and inconsistent GTV
contours on DRR images and CT volume of Patient 2. (a) DRR at
end of inhalation, X-ray tube angle at 275◦; (b) DRR at end of
exhalation; X-ray tube angle at 275◦; (c) Coronal view of CT at end of
inhalation, yellow arrows indicate artifacts; (d) Coronal view of CT at
end of exhalation

The prediction rate of the proposed procedure was
67.6%. It was lower than the detection rate of the
marker-implanted method,which was 87.5%.There may
be three main reasons that limit the current prediction
rate. First was the fact that the imaging parameters
and X-ray angles were adjusted for marker detection
for each patient.27 Second was to reduce the imaging
dose to the patient.28 the field of view for the kV X-ray
tube was also narrowed by the on-site medical physicist.
These protocols resulted in the X-ray projection images
that differ from the DRR image and further reduced
the detection rate. Third was as shown in Table 4. The
correlations between prediction rate and GTV volume
(r= 0.53),and between prediction rate and motion range
(r = 0.51) were not strong. Meanwhile a strong negative
correlation with fraction index was observed (r = -0.92),
indicating that the prediction accuracy decreased with
treatment progressing. This may be also caused by
the change in the GTV shape and its surroundings
compared to the day of the 4DCT scan.

Comparing with the template-based markerless
tracking, the proposed deep learning-based procedure
showed superior performance on small targets. Bahig
et al. reported that with the XSightLung system, the
prediction rate was 66% for targets diameter larger than
15 mm.11 In the present study, the overall detection rate
was 67.6%, without a preselection based on favorable
characteristics. Remmerts de Vries et al. reported a
study using the RapidTrack system.12 In their work,

projection images were acquired without treatment
beam delivery, and preselection was conducted based
on target motion range (1–8 mm, longitudinal 4DCT
tumor motion range). The prediction rate of their work
was 71% and predicted position was within a 5 mm PTV
margin for 95.5% of the time. In the present study, the
detection rate was 67.6%, and the percentage of 3D
deviation within 5 mm of the detected GTV position was
93.6%. Considering that the present study contained
targets with a larger motion range and projection images
were acquired with MV beam delivery, the presented
deep learning-based procedure is applicable to a larger
spectrum of patients and has more prospects for clinical
application.

For comparison with deep learning-based
approaches, Takahashi et al. only used a phantom
with spherical or ovoid targets.13 On the X-ray projection
images of the phantom studies, there were no MV scat-
ters, and the shapes of the targets were spherical. Zhou
et al. only evaluated with synthetic images.14 In com-
parison to these studies, this study used data from real
patient treatments. In this study, the shape of the GTV
was manually contoured and X-ray projection images
were recorded during treatment with MV beam delivery.
Meanwhile, in phantom studies, structures other than
the target were stable, and no anatomical change with
respiration motion was simulated. In the present study,
the images were obtained from the free breathing of
real patients, which made the results of this study more
reliable, and the presented procedure was closer to the
clinical practice. The fact that the accuracy of tracking
in the previous phantom studies was better than that
in the present study was acknowledged. However, if a
comparison is made with prior research.14 which used
the same model to predict the clinical target volume of
patients with pancreatic tumors on DRR images, it can
be concluded that the present study may be superior
when treating real patients.

This study may influence the current clinical practice
in three aspects.First,as there will be no need to implant
markers into the patient body, the total treatment dura-
tion may be shortened by about 7 days, and patients
will be free from the potential risk. This may greatly
benefit patients. Second, with the deep learning-based
markerless procedure, the margin of the target can be
narrowed. For the proposed work, the GTV contour was
predicted directly, and the percentage of 3D deviation
smaller than 5 mm was 93.6%. It may be reasonable
to reduce the PTV margin because the marker-induced
error was diminished. Shrinkage of the margin may
significantly reduce the dose to healthy organs, thus
further improving the patient quality of life and avoid-
ing radiation toxicity. Third, the proposed method may
be applicable for volumetric modulated arc therapy in
the future. To achieve this, training datasets consisting
of DRR images for a designated angle step needs to
be generated. Then for each angle step, deep learning
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model is trained and then predict GTV contour on X-ray
projection images at the angle step during treatment.

Three limitations of this study were recognized. The
first limitation may be the presence of markers. A pre-
vious study done by Zhao et al. showed that for deep
learning model, the presence of markers doesn’t impact
on the performance of model.29 In this study, the diam-
eter of implanted marker was 1.5 mm. The volume of
markers was small and may not impact the performance
of the model. The second limitation was the detection
rate. Although the presented procedure will shorten the
total treatment duration, a lower detection rate may pro-
long the duration per fraction. As discussed previously,
historical X-ray projection images were acquired based
on parameters adjusted for marker detection for each
patient, while all DRR images were generated with the
same parameters.Further phantom studies may remove
the presence of markers,set consistent parameters and
protocols optimized to solve the above two limitations.
The third limitation was that the 4DCT quality and GTV
contour consistency may greatly affect the accuracy
of contour prediction, as the results of patient number
2 indicated. For the preparation of markerless RTTT
before radiation therapy, protocols for 4DCT scanning
and GTV contouring are required to ensure accurate
contour prediction during radiation therapy.

5 CONCLUSION

In this study, the feasibility of a deep learning-based
markerless RTTT with orthogonal X-ray projection
images for patients with lung tumors was presented.Ten
patients treated by seven to nine non-coplanar 3DCRT
with RTTT were included. A total of 8,993 3D positions
between the predicted position and ground truth were
compared. The overall median value of the 3D devia-
tion was 2.27 (IQR: 1.66–2.95) mm. The probability for
3D deviation smaller than 3 and 5 mm was 75.9% and
93.6%, respectively. The calculation time per image was
about 85 ms.

The evaluation results and calculation efficiency show
the deep learning-based markerless RTTT method may
be feasible for patients with lung cancer. Future studies
may focus on thorax phantom studies without markers
and with real tumor shape and motion to further refine
the markerless tracking procedure.
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