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Background: It is well-established that vitamins have many beneficial roles and protect humans against
inflammatory diseases. Vitamin D, a lipid-soluble vitamin, plays a crucial role in viral infections.
Therefore, this study aimed to investigate if serum 25(OH)D levels affect morbidity, mortality, and levels
of inflammatory parameters in COVID-19 patients.

Keywords: Methods: 140 COVID-19 patients participated in this study (65 outpatients and 75 inpatients). Their
S,%\rs—va—Z blood samples were collected to determine TNFa, IL-6, D-dimer, zinc, Ca“, and 25(0OH)D levels. Patients
}S\;;Em b with O, saturation <93% were admitted and hospitalized in the infectious disease ward (inpatient group).
-6 Patients with O, saturation >93% received routine treatment and were discharged (Outpatient group).
D-dimer Results: The serum levels of 25(0OH)D in the inpatient group were significantly lower than those in the
COVID-19 outpatient group (p < 0.001). Serum TNF-o, IL-6, and D-dimer levels in the inpatient group were

significantly higher than those in the outpatient group (p < 0.001). Serum TNF-a, IL-6, and D-dimer levels
were inversely correlated with 25(OH)D levels. No significant differences were observed in the serum
levels of zinc and Ca®* between the studied groups (p = 0.96, p = 0.41 respectively). Ten out of 75
patients in the inpatient group were admitted to ICU (intubated). Nine out of them lost their lives (the
mortality rate in ICU-admitted patients was 90%).

Conclusions: The lower mortality and severity of COVID-19 patients with higher 25(OH)D levels repre-
sented that this vitamin alleviates the severity of COVID-19.

© 2023 Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and Metabolism.

1. Introduction

The first detection of SARS-CoV-2 in Iran was reported in
February 2020 [1]. Respiratory droplets and direct contact are the
main routes for the transmission of Sars-CoV-2 [2]. The severity of
the symptomatic disease can vary from mild respiratory and
gastrointestinal symptoms to lung damage and multi-organ failure
[3]. Factors such as smoking, congestive heart failure, old age,
elevated creatinine, B-blocker use, presence of bilateral lung in-
filtrates, and severe vitamin D deficiency seem to be notable pre-
dictors of tragic outcomes [4].

* Corresponding author.
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The virus replication can cause overstimulation of the immune
system, which finally leads to cytokine storm and progression to
ARDS [5,6]. Many studies have shown that vitamins and minerals
such as vitamin D and zinc may prevent the progression of ARDS,
which might be related to antioxidant properties and the ability of
these factors to strengthen the immune system [7]. Because of the
pro-inflammatory state in ARDS, it is believed that increasing the
antioxidant nutrients in the patient's body may have a beneficial
effect [8]. For example, vitamin D upregulates the expression of
some antioxidant genes, such as glutathione reductase, reducing
free radicals resulting from inflammation which are believed to
contribute to the progression of ARDS [9]. The beneficial effects of
zinc include the regulation of the immune system, mucociliary
clearance of the airways, reducing lung damage (therefore sec-
ondary infections), reducing inflammation, and even viral
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replication [10]. Vitamin D decreases Th17 lymphocytes and TNF-a.
and increases anti-inflammatory cytokines [11,12].

Studies on the efficacy of vitamin D in COVID-19 are controversial.
Some studies claim vitamin D deficiency increases the risk of Sars-
CoV-2 infection significantly [13,14], while others have shown the
opposite [15]. Therefore, more studies are needed to clarify if vitamin
D levels are associated with the severity of COVID-19 [16—19].

In immune cells, such as T and B lymphocytes, calcium signaling
pathways control: mitosis, apoptosis, differentiation, and tran-
scriptional processes [20—22]. T cells' function and developing
immunity against the infection are affected by the entry of calcium
ions [23]. Studies suggested that COVID-19 patients with lower
calcium levels in serum experience worse clinical conditions
[24,25]. Therefore, calcium levels may act as a biomarker for the
severity of COVID-19 [26].

One of the leading causes of deterioration in COVID-19 patients
is cytokine storm, mainly due to the overproduction of pro-
inflammatory cytokines such as IL-1p, IL-6, IL-15, and TNF-« [27].
Overproduction of these cytokines is associated with clinical
symptoms of the disease. For example, the overproduction of TNF-a.
is associated with flu-like symptoms [28]. Studies have shown that
in severe inflammatory disease induced by SARS-CoV-2, pro-in-
flammatory biomarkers levels such as D-dimer are elevated [19,29].

Antioxidants have the ability to decrease reactive oxygen spe-
cies (markers of oxidative stress), mitigate the storm of cytokines,
and activate several mechanisms to prevent viral inflammation
[30]. The other beneficial effect of antioxidants is to alleviate the
severity of diseases by reducing pro-inflammatory cytokines and
preventing hyper-inflammation. Vitamins have been shown to
inhibit or mitigate viral inflammation by impairing the replication
of viruses, blocking spike proteins, and modulating the expression
of the angiotensin-converting-enzyme-2 receptor [30]. Vitamin D
plays crucial immunomodulatory roles by inducing the mRNA
expression of antiviral peptides, which potentiate inborn immunity
[31,32]. Many clinical reports have shown that acute respiratory
tract diseases with low 25(0OH)D levels in serum are associated
[33-36].

Therefore, this study aimed to investigate if serum 25(OH)D
levels are related to levels of inflammatory parameters, morbidity,
and mortality in patients with COVID-19.

2. Material and methods
2.1. Study design and participants

In this study, 140 COVID-19 patients participated (65 outpatients
and 75 inpatients). Patients with COVID-19 symptoms referred to
the infectious diseases clinic of Razi educational hospital in Ahvaz
were screened for infection of Sars-Cov-2 in June and July 2021.
Upon admission, their oro-nasopharyngeal swabs were collected
and tested for Sars-Cov-2 using real-time PCR. In addition, their
blood samples (in plain and EDTA tubes) were collected to deter-
mine the other studied variables. Patients with O, saturation <93%
were admitted and hospitalized in the infectious disease ward
(considered inpatient group) and, according to national therapeutic
protocol, received remdesivir (First day 200 mg/intravenously (IV),
second to fifth days 100 mg/IV). Patients with O, saturation >93%
got conservative treatment and were discharged (considered
outpatient group). The common morbidity in inpatients admitted
to the ward was hypertension (7%) and diabetes mellitus (6%).

2.2. Ethical approval

Written informed consent forms were taken from patients, and
all stages of the study were approved by the Iranian National
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Committee for Ethics in Biomedical Research (IR.AJUMS.REC.1399.
948).

2.3. Laboratory data acquisition

In order to determine Sars-Cov-2 infection, total RNA was
extracted from 200 pl oro-nasopharyngeal swab samples using
Sinaclon RNA extraction Kit (Iran) as described in the manufac-
turer's instruction. The probe and primer mixture of the real-time
PCR COVID-19 kit (Pishtaz Teb, Iran) was designed by the dual-
target gene method and targeted the protected sequences of the
RdRp and N region simultaneously. The kit also contained an in-
ternal control probe and primer for RNase P. FAM, HEX, and ROX
channels selected for detecting the RdRp region, N region, and
RNase P gene, respectively. Real-time PCR amplification was done
under the following settings: an initial 20min reverse transcription
step at 50 °C, a 3min cDNA initial denaturation step at 95 °C, fol-
lowed by 45 amplification cycles, with each cycle including a 10 s
denaturation step at 94 °C, and a 40s annealing, extension, and
fluorescence measurement step at 55 °C.

In order to measure the levels of zinc, 25(0OH)D, Ca®*, and D-
dimer, blood samples were centrifuged, and the serum was isolated
and kept at —80 °C until the start of subsequent procedures. Serum
zinc and Ca®* levels were measured using the biochemical analyzer
(Mindray BS-600 and Biotecnica BT-3000, respectively). The limit of
detection was 5 pg/ml. The serum 25-hydroxy vitamin D3 levels
were measured by the ELISA method (Monobind, Iran).

In order to determine the TNF-o. mRNA expression, Using a ficoll
solution (DNA Bioteck, France), peripheral blood mononuclear cells
(PBMCs) were separated from blood (containing EDTA). According
to the manufacturer's instructions commercial RNA extraction kit
(Annacell, Tehran, Iran) was used to extract the total RNAs from
PBMCs. The purity and concentration of extracted RNAs were
determined using nanodrop (Thermo Scientific, USA). Then, cDNA
was synthesized using the Sinaclon ¢cDNA Synthesis Kit (Sinaclon,
Tehran, Iran). Semi-quantitative real-time PCR was performed us-
ing SYBR green PCR Master Mix (Ampliqon, Denmark) according to
the protocol. The primer sequences of GAPDH (Glyceraldehyde-3-
Phosphate Dehydrogenase), TNF-o, and the timing of real-time
PCR reactions are listed in Tables S1 and S2. The relative TNF-a
mRNA expression was analyzed using the 27AAC method and
normalized to internal control (GAPDH).

In order to determine the serum TNF-a and IL-6 levels, blood
(containing EDTA) was centrifuged (5 min, 3000g), then serum was
separated and kept at —80 °C. Frozen samples melted at laboratory
temperature, and then ELISA kits (Karmania Pars Gene Company,
Iran) were used to determine serum TNF-o and IL-6 levels ac-
cording to the manufacturer's instructions.

2.4. Statistical analysis

IBM SPSS Statistics 26 was used for statistical analysis, including
the Independent Samples T-Test (normal distribution),
Mann—Whitney U Test (non-normal distribution), Correlation test
(Spearman's rank correlation coefficient), and descriptive statistical
tests. The p-value <0.05 was considered statistically significant.
Data are expressed as mean + SEM. The displayr tool was used to
create the correlation matrix.

3. Results
3.1. Baseline characteristics

One hundred forty COVID-19 patients participated in this study
(65 outpatients and 75 inpatients). Ten out of 75 patients in the
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inpatient group were admitted to ICU (intubated). Nine out of them
lost their lives (the mortality rate in ICU-admitted patients was
90%).

3.2. Serum levels of 25(0H)D, IL-6, D-dimer, Ca**, and zinc

Figure 1 shows that the serum 25(OH)D levels in the inpatient
group were significantly lower than those in the outpatient group
(p < 0.001). Serum IL-6 and D-dimer levels in the inpatient group
were significantly higher than the outpatient group (p < 0.001 in
both cases, Fig. 2, A and B). As shown in Fig. 3 (A and B), no sig-
nificant differences in serum zinc and Ca®* levels were observed
between the studied groups.

3.3. mRNA expression and serum levels of TNF-a

As illustrated in Figure S1 (A and B), both mRNA and serum
levels of TNF-« in the inpatient group were significantly higher than
those in the outpatient group (p < 0.001 in both cases).

3.4. Serum levels of pro-inflammatory biomarkers, zinc, and
calcium in inpatient group (ICU-admitted and hospitalized non ICU
patients)

As Table 2 shows, the serum levels of IL-6, D-dimer, and TNF-a in
patients admitted to ICU were significantly higher than those in
hospitalized non-ICU patients (p < 0.05, p < 0.05, and p < 0.002,
respectively). The serum calcium levels in ICU-admitted patients
were significantly lower than those in hospitalized non-ICU pa-
tients (p < 0.05). Zinc levels were not different between ICU-
admitted and hospitalized non-ICU patients.

3.5. Correlation analysis

As illustrated in Fig. 4, 25(OH)D levels were inversely correlated
with TNFa, TNFe. mRNA, IL-6, and D-dimer levels. There was a
correlation between serum TNFa levels and IL-6, D-dimer, and
TNFa, mRNA levels. IL-6 levels were correlated with D-dimer levels,
and TNFa mRNA levels were significantly correlated with IL-6 and
D-dimer levels.
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Fig. 2. Serum IL-6 and D-dimer levels in inpatient and outpatient groups. A: The levels
of interleukine-6 in the inpatient group were significantly higher than in the outpa-
tient group. S.E.M for inpatients and outpatients were 0.42 and 0.32, respectively. B:
The D-dimer levels in the inpatient group were significantly higher than in the
outpatient group. S.E.M for inpatients and outpatients were 342.38 and 3.39, respec-
tively. Data expressed as mean =+ S.E.M. Independent sample statistical T-test was used
to analyze the data. ***p < 0.001.
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Fig. 1. Serum 25(0H)D levels in inpatient and outpatient groups. The 25(0OH)D levels in the inpatient group were significantly lower than those in the outpatient group. S.E.M for
inpatients and outpatients were 4.68 and 6.02, respectively. Data expressed as mean + S.E.M. Independent sample statistical T-test was used to analyze the data. ****p < 0.001.
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Serum Ca2*
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Fig. 3. The serum Ca®" and zinc levels in the inpatient and outpatient groups. The Ca®*
and zinc levels were not different between the studied groups. Ca>* and zinc S.EM for
inpatients and outpatients were 0.11 and 0.08, and 1.52 and 1.26, respectively. Data
expressed as mean + S.E.M. Independent sample statistical T-test was used to analyze
the data.
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Fig. 4. Correlation matrix for studied laboratory parameters (Blue color indicates
positive correlation coefficient).

4. Discussion

This study illustrated that the morbidity and mortality rates in
COVID-19 patients with higher serum 25(OH)D levels were signif-
icantly lower than those in patients with low levels of this vitamin.
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All patients with high 25(OH)D levels were discharged without
needing hospitalization, which was considered the outpatient
group. 10 out of 75 patients in the inpatient group were admitted to
ICU and intubated (9 lost their lives). The common morbidities in
inpatients admitted to ICU were hypertension (70%) and diabetes
mellitus (30%). The serum levels of inflammatory cytokines, IL-6
and TNF-a, D-dimer, and mRNA expression of TNF-a in the inpa-
tient group were significantly higher than those in the outpatient
group. The serum Ca®* and zinc levels were not different between
the studied groups.

According to the used methodology, values of 25(OH)D less than
30 are sub-optimal, values between 30 and 50 are normal, and
values between 70 and 150 ng/ml are high but not toxic [37]. The
serum 25(0OH)D levels in inpatient and outpatient groups were
29.5 + 1.53 and 115.5 + 6 ng/ml, respectively. Therefore, the current
results indicated that the level of 25(OH)D in the inpatient group
was already at lower (normal/borderline) or sub-optimal levels.
This finding also represented that this level in the outpatient group
was high. According to clinical studies, low 25(OH)D levels are
associated with acute respiratory diseases such as influenza
[33,34].

Platelets are crucial in the formation of thrombi, and platelet-
activating factor (PAF) is their most potent trigger. Cells involved
in host defense produce PAF, which bears similarities in biological
actions with COVID-19 disease manifestations. Perivascular mast
cell activation can be stimulated with PAF, leading to inflammation
implicated in SARS. There are many mast cells in the lungs which
are a rich source of inflammatory cytokines, such as IL-6 and IL-18,
and PAF which may contribute to COVID-19 disease [38]. In vitro
data indicate that vitamin D reduces the secretion of the catabolic
enzyme PAF-AH from placenta macrophages [39], which shows an
interrelation between PAF and this vitamin [40]. The association
between PAF and vitamin D is further substantiated by the known
anti-thrombotic effects of this vitamin [41]. Hence, PAF inhibitors,
such as vitamin D, may target inflammation and thrombosis and
prevent the deleterious consequences of COVID-19 [40].

Additionally, a meta-analysis review reported that 25(OH)D
levels <20 ng/ml increase the risk of pneumonia by more than 60%
[42]. Recent hypotheses and studies suggest that vitamin D insuf-
ficiency and deficiency increase the severity and mortality of
COVID-19 but not the chance of Sars-CoV-2 infection [43—45],
while in some studies, it has been exhibited that 25(0OH)D levels in
covid-19 patients are lower than those in the control group [46].
Therefore, it can be concluded that 25(OH)D levels in the serum of
the inpatient group were not enough to alleviate the severity of
COVID-19.

An experimental animal study showed that co-administration of
L-cysteine and vitamin D in mice with vitamin D deficiency
increased circulating levels of 25(0OH)D and glutathione but low-
ered oxidative stress and TNF-a levels [47]. According to studies,
oral 5000 IU vitamin D supplementation for two weeks reduces the
recovery time of cough and gustatory sensory loss in covid-19 pa-
tients with insufficient 25(OH)D levels and decreases serum IL-6
levels [48]. Present results indicatedd that serum TNF-o levels
were inversely correlated with 25(OH)D levels (r = -0.33;
p < 0.001). So it's possible that high serum 25(OH)D levels in the
outpatient group protected them and mitigated the severity of
COVID-19 illness by inhibiting cytokine release. In other words,
cytokine storm as one of the leading causes of respiratory failure
did not occur in patients with high enough serum levels of
25(0OH)D.

As evidenced by in vitro studies, directly and indirectly, the
protective roles of vitamin D on the homeostasis of the respiratory
system were respectively exerted by inhibition of virus replication
and induction of antiviral peptides production [49]. Moreover, it
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has been reported that heart failure and acute respiratory distress
syndrome, which worsen the condition of the disease, were com-
mon in COVID-19 patients with vitamin D insufficiency [43].
Therefore, vitamin D deficiency by promoting the renin-
angiotensin system (RAS) leads to chronic cardiovascular disease
(CVD) and reduced lung function [50].

Serum levels of Ca>* and zinc were not different. Shai et al. re-
ported that hypocalcemia was common in COVID-19 patients,
despite the significant difference in vitamin D levels between the
studied groups (inpatient and outpatient groups) [51]. Similarly,
Bara El Cardi et al. exhibited that keeping calcium levels high may
prevent severe illness [52]. Therefore, hypocalcemia in patients
with COVID-19 may worsen the severity of the disease. However,
this study showed that calcium levels were not different between
inpatient and outpatient groups, but this level in inpatients
admitted to ICU was significantly lower than in non-ICU hospital-
ized inpatients (p < 0.05). Low serum calcium levels have been
exhibited to worsen the severity of COVID-19 [24,25]. Therefore,
poor prognosis, high mortality rate, and the need for ICU admission
in inpatients with low calcium levels would be expected. These
findings are in line with each other and emphasize that high cal-
cium levels may mitigate the COVID-19 severity. However, the in-
formation mentioned in Table 1 demonstrated that lower calcium
levels were not the main reason for mortality in ICU-admitted
patients. In other words, comorbidities such as hypertension and
diabetes mellitus in ICU-admitted patients increase the severity of
illness and a higher rate of mortality as occurred in these patients.
Therefore, further studies are needed to test the effectiveness of
increasing serum calcium levels in the initial days of patients'
hospitalization in preventing severe Covid-19.

As mentioned earlier, vitamin D has a wide range of inhibitory
effects on viruses. Determination of serum levels of antiviral pep-
tides was beyond the scope of this study, but as evidenced by
Gombart et al.,, mRNA expression of antiviral peptides is increased
by vitamin D [31,32]. Therefore, these results indicated that vitamin
D protected patients against COVID-19 and possibly decreased the
severity of the disease by increasing the production rate of antiviral
peptides.

As demonstrated in the current findings, the serum levels of IL-6
and TNF-o in the inpatient group were significantly higher than
those in the outpatient group. Additionally, their concentrations
were inversely correlated with 25(OH)D serum levels. A report
indicated that the overproduction of pro-inflammatory cytokines
(IL-6 and TNF-a) is associated with disease symptoms [28]. These
findings together suggested that vitamin D may decrease the rate of
morbidity by exerting anti-inflammatory effects [11]. Current re-
sults illustrated that both mRNA expression and serum levels of
TNF-o. were lower in the outpatient group, which may imply

Table 1
Demographic data and Comorbidities of COVID-19 patients.

Outpatients Inpatients  ICU-admitted

Number of patients 65 75 10
Demographics

Age (years) 4475 + 3.9 52.69 +4.1 59.5 + 2.81

Male (n, %) 36 (55%) 42 (56%) 7 (70%)
Comorbidities

Hypertension (n, %) — 5(7%) 7 (70%)

Diabetes mellitus (n, %) - 4 (6%) 3 (30%)

Hyperlipidemia (n, %) — 2 (3%) 1 (10%)

Chronic pulmonary disease (n, %) — — 1(10%)

Chronic ischemic heart - - 1(10%)

disease (n, %)

Arthritis rheumatoid (n, %) — — 1 (10%)

Hypothyroidism (n, %) - 1(1.5%) —

Mortality rate (n, %) - - 9 (90%)
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Table 2
The serum levels of 25(0OH)D, IL-6, D-dimer, TNF-g, calcium, and zinc in the inpatient
group (ICU-admitted and hospitalized non ICU patients).

hospitalized non ICU-admitted p. Value
ICU patients patients
Inpatients 65 10
Male (n) 35 7
Female (n) 30 3
25(0OH)D (nm/1) 46.72 + 5.16 52.52 + 10.75 0.63
TNFa (pg/ml) 4424 + 1.22 55.32 + 3.46 0.001
IL-6 (pg/ml) 16.45 + 0.43 1949 + 1.18 0.001
D-Dimer (ng/ml) 3485.93 + 345 6126.3 + 1023 0.001
Zinc (mcg/dl) 8733+ 1.6 84 +42 0.5
Calcium (mg/dl) 8.97 + 0.1 824 +0.33 0.021
Age (y) 51.63 + 14.51 59.5 + 8.9 0.1

genomic and non-genomic protective roles of vitamin D against
COVID-19.

Studies have shown that in severe inflammatory disease
induced by SARS-CoV-2, the levels of the pro-inflammatory bio-
markers, such as D-dimer, are elevated [29,53]. The current results
showed that levels of D-dimer and IL-6 in the inpatient group were
significantly higher than in the outpatient group (p < 0.0001 and
p < 0.001, respectively). Studies on inflammation biomarkers
showed that elevated CRP, ESR, D-dimer, and IL-6 levels are
involved in severe COVID-19 outcomes [54,55]. They indicate that
patients receiving anti-TNF treatment were significantly less likely
to develop severe illnesses requiring ICU admission [56]. Therefore,
these reports suggest that vitamin D may play an anti-TNF role
against COVID-19 by decreasing the serum levels of D-dimer, TNF-,
and IL-6 and mitigating the severity of COVID-19 complications.

The current results exhibited that 10 out of 75 patients in the
inpatient group were admitted to ICU. Nine of them lost their lives.
A study by Herold et al. showed that patients with IL-6 levels above
80 pg/ml suffered from respiratory failure and required intubation
[57]. Consistent with Herold et al. report, the serum levels of D-
dimer, TNF-o, and IL-6 in inpatients admitted to the ICU were
significantly higher than those in hospitalized non-ICU patients
(p < 0.05, p < 0.05, and p < 0.002, respectively; Table 2). Therefore,
the level of IL-6 can be one of the determinant factors which cause
respiratory distress and indicate the progression of the disease.

The present results displayed that serum IL-6 and D-dimer
levels were inversely correlated with 25(0OH)D levels (r = —0.53,
p < 0.001; and r = —0.58, p < 0.001; respectively). Therefore, high
serum levels of 25(0OH)D in the outpatient group protected them
against COVID-19 and reduced the disease severity by inhibiting
cytokine release.

5. Conclusion

The present study showed that high serum 25(OH)D levels could
be protective against COVID-19. The limitations of our study were
the relatively small number of samples and the lack of examination
of clinical symptoms to assess their association with each of the
measured serum parameters. Our study suggested that vitamin D
was related to reduction in the rate of mortality and morbidity by
decreasing the levels of D-dimer, TNFo, and IL-6. These results
strengthened the likelihood of requiring calcium supplementation
early in the disease to prevent the patient's condition from wors-
ening, as evidenced by lower calcium levels in ICU patients.
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