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Abstract

Accurate intraoperative diagnosis is essential for providing safe and effective care during brain 

tumor surgery. Our standard-of-care diagnostic methods are time, resource, and labor intensive, 

which restricts access to optimal surgical treatments. To address these limitations, we propose an 

alternative workflow that combines stimulated Raman histology (SRH), a rapid optical imaging 

method, with deep learning-based automated interpretation of SRH images for intraoperative brain 

tumor diagnosis and real-time surgical decision support. Here, we present OpenSRH, the first 

public dataset of clinical SRH images from 300+ brain tumors patients and 1300+ unique whole 

slide optical images. OpenSRH contains data from the most common brain tumors diagnoses, 

full pathologic annotations, whole slide tumor segmentations, raw and processed optical imaging 

data for end-to-end model development and validation. We provide a framework for patch-based 

whole slide SRH classification and inference using weak (i.e. patient-level) diagnostic labels. 

Finally, we benchmark two computer vision tasks: multiclass histologic brain tumor classification 

and patch-based contrastive representation learning. We hope OpenSRH will facilitate the clinical 

translation of rapid optical imaging and real-time ML-based surgical decision support in order to 

improve the access, safety, and efficacy of cancer surgery in the era of precision medicine. Dataset 

access, code, and benchmarks are available at https://opensrh.mlins.org.

1 Introduction

The optimal surgical management of brain tumors varies widely depending on the 

underlying pathologic diagnosis [1]. Surgical goals range from needle biopsies (e.g. primary 

central nervous system lymphoma [2]) to supramaximal resections (e.g. diffuse gliomas 

[3]). A major obstacle to the precision care of brain tumor patients is that the pathologic 

diagnosis is usually unknown at the time of surgery. For other tumor types, such as breast 
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or lung cancer, diagnostic biopsies are obtained prior to definitive surgical management, 

which provides essential clinical information used to inform the goals of surgery. Routine 

diagnostic biopsies in neuro-oncology are not feasible due to high surgical morbidity and the 

potential for permanent neurologic injury. Consequently, the importance of intraoperative 

pathologic diagnosis in brain tumor surgery has been recognized for nearly a century[4].

Unfortunately, our current intraoperative pathologic techniques are time, resource, and 

labor intensive [7, 8]. Conventional diagnostic methods, including frozen sectioning and 

cytologic preparations, require an extensive pathology infrastructure for tissue processing 

and specimen analysis by a board-certified neuropathologist [9]. While the conventional 

pathology workflow with board certified neuropathologist interpretation has a diagnostic 

accuracy between 86 – 96% [5], the pathologist workforce in the US declined in 

absolute and population-adjusted numbers by nearly 20% between 2007–2017 [10]. This 

decline has unevenly affected neuropathology, with a 40% fellowship vacancy rate and 

it is projected to worsen [11]. The number of medical centers performing brain tumor 

surgery outnumbers board-certified neuropathologists, reducing patient access to expert 

intraoperative consultation and, consequently, optimal surgical management.

An ideal system for surgical specimen analysis and intraoperative tumor diagnosis would 

be accessible, fast, standardized, and accurate. An intraoperative pathology system requires, 

at minimum, (1) a data/image acquisition modality and (2) a diagnostic interpretation. 

Conventional intraoperative pathology uses light microscopy interpreted by a neuro-

pathologist (>20–30 minutes). We propose an innovative diagnosis system that uses a rapid 

(2–3 minutes, >10× speedup), label-free optical histology method, called stimulated Raman 

histology (SRH), combined with deep learning-based interpretation of fresh, unprocessed 

surgical specimens. We have previously demonstrated the feasibility of large-scale clinical 

SRH imaging [5] and the use of deep neural networks for SRH image classification of 

brain tumor patients [6, 12, 13]. These studies demonstrate the potential for AI-based 

diagnosis and interpretation of SRH images to better inform brain tumor surgery and provide 

personalized surgical goals in the era of precision medicine.

Here, we seek to facilitate this area of active research by releasing OpenSRH, a collection of 

intraoperative SRH data, including raw SRH acquisition data, processed high-resolution 

image patches for model development, virtually-stained whole slide images, semantic 

segmentation of tumor regions, and full intraoperative diagnostic annotations. OpenSRH 

is the first and only publicly available dataset of any human cancer imaged using optical 

histology. We release the OpenSRH dataset with the intention to foster translational AI 

research within the field of precision oncology. The main contributions of this work are:

1. OpenSRH dataset: We curate and open-source the largest dataset of 

intraoperative SRH images with pathologic annotations to facilitate the 

development of innovative machine learning solutions to improve brain tumor 

surgery.

2. Classification benchmarks: We benchmark performance for patch-based 

histologic brain tumor classification across multiple tumor types, computer 

vision architectures, and transfer learning methods.
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3. Contrastive representation learning benchmarks: We evaluate both self-

supervised and weakly supervised patch contrastive learning methods for SRH 

representation learning. Contrastive learning methods are evaluated using linear 

evaluation protocols and benchmarked as a model pretraining strategy.

2 Background

Stimulated Raman Histology

SRH is based on Raman scattering. Raman scattering occurs when incident photons on 

a media either gain or lose energy when scattered (i.e. inelastic scattering), shifting 

the frequency/wavenumber of the scattered photons. This Raman shift can be measured 

to characterize the biochemical composition of both inorganic and organic materials 

using narrow-band laser excitation and a spectrometer [14]. A major limitation of using 

spontaneous Raman scattering for biochemical analysis is that the Raman effect is weak 

compared to elastic scattering. Therefore, long acquisition times (> 30 minutes) and 

spectral averaging are required to obtain representative biochemical spectra. Stimulated 

Raman scattering (SRS) microscopy was discovered in 2008 as a highly sensitive, label-

free biomedical imaging method [15]. Rather than acquiring broad-band spectra, SRS 

microscopy uses a second laser excitation source to achieve non-linear amplification of 

narrow-band Raman spectral regions that correspond to specific molecular vibrational 

modes (see Figure 1). SRS images can then be generated at specific narrow-band Raman 

wavenumbers. Translational research led to the development of a fiber-laser-based SRS 

imaging system that could be used at the patient’s bedside to generate rapid histologic 

images of fresh surgical specimens, called SRH [5, 16, 17]. A major advantage of SRH 

over other histologic imaging methods is that image contrast is generated by the intrinsic 

biochemical properties of the tissue only and does not require any tissue processing, 

staining, dyeing, or labelling (i.e. label-free).

ML applications for SRH

Unlike conventional intraoperative histology with light microscopy, SRH provides high-

resolution digital images that can be used directly for downstream ML tasks. Whole slide 

image digitization of frozen or paraffin-embedded tissue is slow and memory intensive, 

presenting a major bottleneck for its routine use in intraoperative histology, and clinical 

medicine in general [18]. Previous studies showed that SRH plus shallow ML models can be 

used to detect and quantify tumor infiltration in adult and pediatric fresh surgical specimens 

[5, 19, 20, 21]. We subsequently demonstrated that SRH combined with convolutional neural 

network architectures can be used for intraoperative diagnostic decision support [6, 12, 13]. 

These preliminary studies, while demonstrating the feasibility of applying deep architectures 

to SRH, did not include rigorous hyperparameter tuning, explicit representation learning, 

or ablation studies to optimize model performance. Moreover, all previous studies required 

manual annotations, including dense patch-level annotations [6], for model training.
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3 Related Work

To date, no SRH datasets are publicly available. The work most directly related to OpenSRH 

comes from digital and computational pathology research. The Cancer Genome Atlas 

(TCGA) and The Cancer Imaging Atlas (TCIA) include a large repository of digitized 

histopathology slides processed using hematoxylin and eosin (H&E) staining. Many studies 

have used this dataset for image classification tasks across several cancer types, including, 

but not limited to, lung [22], gastrointestinal [23], prostate [24, 25], brain [26], and 

pan-cancer studies [23, 27, 28]. Another related histopathology dataset comes from the 

CAMELYON16 research challenge [29]. The challenge is to detect lymph node metastases 

in women with breast cancer. Digital pathology remains an active area of research in 

precision oncology. However, ML applications in digital pathology are mainly applied to 

postoperative tissue assessment and do not play a major role in informing cancer surgery.

One application of SRH is the detection of tumor infiltration in real-time to improve the 

extent of tumor resection and reduce residual tumor burden. Real-time SRH-based tumor 

delineation has been studied in sinonasal/skull base cancers [13, 30, 31] and diffuse gliomas 

[20, 32]. OpenSRH provides the necessary dataset to explore this topic for multiple brain 

tumor types, including metastatic tumors and extra-axial tumors, such as meningiomas 

(Figure 1).

Overall Need

High-quality, public, biomedical datasets with expert annotations are rare. Moreover, the 

clinical significance of some existing datasets is unclear due to the lack of a roadmap for 

clinical translation [33]. We believe that OpenSRH has the potential to address a currently 

unmet clinical need of improving cancer surgery in order to advance precision oncology, 

both in the US and globally [7]. OpenSRH can address a pressing and significant clinical 

problem, while having high translational potential because, as previously mentioned, an 

ideal system for intraoperative tumor specimen evaluation should be:

1. Accessible: SRH imaging systems are FDA-approved and commercially 

available for intraoperative imaging

2. Fast: imaging acquisition time and time-to-diagnosis is 10× faster than the 

current standard-of-care H&E histology

3. Standardized: SRH image acquisition is invariant to patient demographic 

features, clinical workforce, and geographic location

4. Accurate: preliminary results [6, 13] and diagnostic performance benchmarks 

(see Figure 4) are on par with the pathologist-based interpretation of H&E 

histology

4 Data Description

Patient population

Patients were consecutively and prospectively enrolled for intraoperative SRH imaging. This 

study was approved by Institutional Review Board (HUM00083059). Informed consent was 

Jiang et al. Page 4

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2023 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



obtained for each patient prior to SRH imaging and approved the use of tumor specimens 

for research and development. All patient health information (PHI) are removed from all 

OpenSRH data. The inclusion criteria are (1) patients with planned brain tumor or epilepsy 

surgery at Michigan Medicine (UM), (2) subjects or durable power of attorney able to give 

informed consent, and (3) subjects in whom there was additional specimen beyond what was 

needed for routine clinical diagnosis.

SRH imaging

Intraoperative SRH imaging and data processing workflow can be found in Figure 1. A 

small tumor specimen (3×3 mm3) is placed into a premade microscope slide, which is then 

loaded into the commercially available NIO Imaging System (Invenio Imaging, Inc.) for 

SRH imaging. The tissue is then excited with a dual-wavelength fiber laser source, which 

provides spectral access to Raman shifts in the range of 2800 cm−1 to 3130 cm−1. SRH 

images are acquired at two Raman shifts: 2845 cm−1 highlights lipid-rich regions and 2930 

cm−1 highlights DNA and protein-rich regions [6]. The images are acquired sequentially 

as 0.5 mm wide strips, stitched together and the two image channels are co-registered to 

generate the final whole slide image. The co-registration between the two image channels is 

performed using discrete Fourier transform. A virtual H&E colorscheme [5] can be applied 

to SRH images for clinician review, but is not used for model development.

Image preprocessing

Image processing starts by applying a sliding window over the two-channel image to 

generate 300×300 pixel non-overlapping patches. A third channel is obtained by performing 

a pixel-wise subtraction from the two registered channels (2930cm−1 − 2845cm−1), which 

highlights the nuclear contrast and cellular density of the tissue [19]. The third channel 

is concatenated depth-wise to generate a final three-channel patch for model training and 

inference. Each patch then undergoes a feedforward pass through a pretrained segmentation 

model to classify the patch into tumor, normal brain, or non-diagnostic tissue [12]. The 

model was trained using manually labelled patches. The segmentation prediction for each 

patch is released as part of the OpenSRH dataset.

Dataset breakdown

OpenSRH consists of 307 patients. A total of 304 patients underwent intraoperative SRH 

imaging and three patients had postmortem specimen collection. We strategically selected 

the most common brain tumor types to be included in OpenSRH. The included brain 

tumor diagnoses cover more than 90% of all newly diagnosed brain tumors in the US 

[34]. OpenSRH includes a diversity of brain tumor types, including primary brain tumors 

(high-grade gliomas, low-grade gliomas), secondary brain tumors (metastases), and extra-

axial tumors (meningiomas, schwannomas, pituitary adenomas). A panel of patch samples 

is included in Figure 1. The dataset is randomly divided into training (247 patients) and 

validation set (60 patients, about 20%). Figure 2 shows a histogram of the number of patches 

and slides per patient, and Figure 3 shows the distribution of the number of patients, slides, 

and patches per class in the training and validation set. Technical details of the data release 

and companion source code are in Appendix A.
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5 Histologic brain tumor classification benchmarks

In this section, we present the results of the baseline multiclass brain tumor classification 

task. We aim to benchmark the results for common training strategies. We investigate the 

value of transfer learning/pretraining from natural image datasets, specifically ImageNet 

[35], for improving classification performance. The value of transfer learning for SRH [6] 

and medical imaging, in general [36], remains an active area of research. We selected 

representative models from the two most competitive computer vision architectures: 

convolutional neural networks (ResNet50 [37]) and vision transformers (ViT-S[38, 39]). 

These architectures were selected because they contain a similar number of parameters 

(~23.5 million for ResNet50, ~21.7 million for ViT-S).

5.1 Training protocol

ResNet50—In the ResNet50 architecture, we changed the output dimension of the last 

layer to 7 for our experiments. We used a batch size 96 and trained on 300×300 images with 

horizontal and vertical flipping of probability 0.5 as augmentations. We used categorical 

cross-entropy loss and AdamW optimizer [40] with β1 =0.9, β2 =0.999, and a weight decay 

of 0.001. The initial learning rate was 0.001, with a step scheduler with a decay rate γ = 0.5 

every epoch. We trained for 20 epochs with two Nvidia RTX 2080Ti GPUs. Training wall 

time was ~9.5 hours for each experiment.

ViT-S—ViT training protocol was adjusted based on previously published results[38, 39]. 

In addition to the augmentations in the ResNet50 protocol, we also resized the image to 

224×224 to fit the standard ViT-S model and ImageNet pretrained weights [41]. We used 

AdamW as the optimizer, with the same parameters in ResNet50. The initial learning rate 

was 1E-4, with a cosine learning rate scheduler. First 20% of training steps were set as 

the linear warm-up stage to increase training stability. We trained 20 epochs with a batch 

size of 256 for 9 hours using the same GPU resources mentioned above. Detailed training 

parameters are included in Appendix C.

5.2 Prediction aggregation and benchmark metrics

Patch-level predictions from the same whole slide or patient need to be aggregated to 

generate a slide- or patient-level prediction. We aggregated patch-level logits after softmax 

using average pooling to compute slide and patient-level prediction. We preferred using 

average pooling over hard patch voting to retain the full patch-level model predictions 

during slide- or patient-level inference. Model performance evaluation metrics include top-1 

accuracy, mean class accuracy (MCA), and mean average precision (MAP). Additional 

classification metrics including top-2 accuracy and false negative rate (tumor vs. normal) can 

be found in Appendix D.

5.3 Experimental results

Patch- and patient-level results can be found in Table 1. Patient-level metrics are generally 

higher than patch-level metrics. Patch-level prediction errors can be mitigated through the 

average pooling aggregation function. In our preliminary benchmark, ResNet50 achieved 

overall better performance than ViT-S (e.g., by 7.2 patch accuracy and 5.6 patient accuracy). 
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A potential reason is due to ViT requiring large-scale image datasets on the scale of 

ImageNet21K or JFT300M [38] to overcome low inductive bias. Insufficient pretraining is 

known to result in worse performance compared to convolutional neural networks (CNNs). 

We did observe improved patch-level performance when using ImageNet pretraining (2.1 

for ResNet50 and 6.5 for ViT-S at patch accuracy). In general, pretraining was more 

beneficial to ViT than ResNet50. We believe vision transformers may outperform CNNs 

with data efficient pretraining. Figure 4 summarizes the patient-level confusion matrix. Both 

models had similar diagnostic errors differentiating HGG and LGG, a known challenging 

diagnostic task for pathologists and computer vision models [5]. Metastatic tumors have 

diverse histologic features (see Figure 1) that can result in diagnostic errors across multiple 

classes [6]. From the confusion matrices in figure 4, it is important to note that we can also 

observe some false negatives in the model prediction (tumor vs. normal). Additional metrics 

on false negative rate for these experiments are also included in appendix D.

6 Contrastive representation learning benchmark

Our previous studies demonstrate that contrastive representation learning is well suited for 

patch-based representation learning [42]. The focus for this section is to investigate the 

effectiveness of contrastive learning strategies for OpenSRH. We used both unsupervised 

contrastive learning (SimCLR [43]) and supervised contrastive learning (SupCon [44]) on 

ResNet50 and ViT-S architectures. The contrastive loss for SimCLR aims to solve the 

pretext task of instance discrimination. The model is trained to identify two augmented 

positive pairs of the same image from other images in a minibatch. SupCon loss has the 

similar training objective but aims at optimizing class discrimination. All images from 

the same class are treated as positive instances and other images are negative instances. 

Our general contrastive learning workflow uses SimCLR and SupCon as a representation 

learning strategy on our dataset followed with a linear evaluation protocol. We compared 

contrastive representation learning methods with ImageNet pretraining.

6.1 Training and evaluation protocol

Training protocol For both SimCLR and SupCon methods, we use the same protocol 

except for the loss function. We applied ResNet50 and ViT-S with a linear projection head 

to project the image representation to a low dimensional hypersphere (128 for ResNet50, 24 

for ViT-S) to compute the contrastive loss. The data augmentation strategy followed [43]: 

a composition of multiple augmentations including flipping, color jittering, and Gaussian 

blur (for details, see Appendix C). We use AdamW optimizer for both models and same 

parameters as in Section 5.1. Different learning rates (1E-3 for ResNet50 and 5E-4 for 

ViT-S) were adopted for each model. We trained using a batch size 224 for ResNet50 and 

512 for ViT-S for 40 epochs. We use linear warmup for the first 10% epochs and cosine 

decay scheduler for ViT only. Detailed protocols are included in Appendix C.

Evaluation protocol To evaluate the learned image representations, we followed a 

standard linear evaluation protocol [43, 45, 46, 47], where a linear classifier is trained 

on top of the frozen pretrained backbone. We consider the same evaluation metrics and 

aggregation function as in Section 5.2. Apart from the classification metrics, we performed 
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qualitative evaluation of our learned representations through t-distributed stochastic neighbor 

embedding (tSNE) [48] in Figure 5. Additional fine-tuning protocols and results are 

included in Appendix F.

6.2 Experimental results

Results of linear evaluations could be found in Table 2. Self-supervised representation 

learning with SimCLR was able to achieve a patient-level accuracy of 85.6 for ResNet50 and 

78.3 for ViT-S. These results demonstrate improvement over our previous self-supervised 

classification performance [49]. Self-supervised contrastive representation learning using 

OpenSRH outperforms ImageNet transfer learning for patch-based metrics (e.g., by 3.2 for 

ResNet50 and 2.3 for ViT-S). These results emphasize the large domain gap between natural 

images and SRH optical images [50, 36]. Similar to other computer vision tasks, optimal 

representation learning can be achieved with additional supervision. SupCon outperforms 

both ImageNet pretraining and SimCLR in patch-based metrics. Linear evaluation showed 

an overall increase of 4.4 and 8.4 in patient-level accuracy between SupCon and SimCLR 

for ResNet50 and Vit-S, respectively. Interestingly, the patient-level metrics for pretrained 

ViT-S were prominently high, while the patch-level metrics were comparatively worse. 

We believe these results may be due to a simple soft voting aggregation of patch-level 

predictions. This opens the question for better (learnable) aggregation functions for SRH 

images. The tSNE plot in Figure 5 was consistent with our patch-based evaluation metrics 

for both models, where SupCon showed more discrete image representations.

7 Limitations, Open Questions, and Ethical Consequences

OpenSRH contains data collected from a single institution. While SRH imagers have 

standardized settings, different operating room workflows, tumor sampling strategies, and 

surgeons may produce SRH data distribution shifts. Moreover, while our OpenSRH does 

contain the most common brain tumor types, rare tumor classes are not included. This is a 

limitation because rare tumor diagnosis is one of the contexts in which ML-based diagnostic 

decision support can be most beneficial to clinicians. We intend to include multicenter data 

with additional tumor rare classes in future releases of OpenSRH.

There are many open questions for the machine learning community that can be explored 

through OpenSRH. The most important questions are given below:

• Domain adaptation. Many domain adaptation literature uses datasets that have 

very small domain gaps such as MNIST [51], SVHN[52], Office 31[53], or 

datasets that are artificially crafted or generated, such as Adaptiope [54] or 

DomainNet [55]. OpenSRH can be combined with existing H&E dataset such as 

TCGA, to create a large-scale benchmark for domain adaptation, with intrinsic 

pathologic features captured using different imaging modalities.

• Multiple instance learning. Besides our patch-based classification workflow, 

multiple instance learning may be a good strategy for histopathology analysis 

[56]. By removing patch labels in OpenSRH, histologic classification becomes a 

generic multiple instance learning task. A model can learn to select the important 

patches with only slide-level labels. Our current patch-level annotation can be 
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used as a ground truth to interpret instance-level predictions from multiple 

instance learning paradigms.

• Aggregation of patch-level predictions. We have relied on individual patch-

level predictions and average pooling as a general method for whole slide 

inference. However, this strategy is limited because it does not account 

for discriminative heterogeneity within whole slide images. Expectation 

maximization [57], clustering [58, 28], attention [56, 59], and other multiple 

instance learning strategies [60] have been proposed as learnable aggregation 

functions, but questions related to scalability, training efficiency, and data 

domain differences remain open.

• Self-supervised learning. Self-supervised learning and contrastive learning 

methods have been explored using histology images, but the effectiveness 

of different augmentation strategies has not been studied. Our preliminary 

experiments indicate that augmentations used for natural image self-supervised 

representation learning are sub-optimal. It remains an open question 

whether domain specific augmentation would improve self-supervised learning 

performance.

• Data efficient training. It is known that ViTs require large image datasets 

on the scale of ImageNet21K or JFT300M, and insufficient pretraining can 

result in inferior performance [38]. Acquiring these large supervised datasets 

is currently infeasible in medical imaging. In addition to low inductive bias, 

ViTs demonstrate better interpretability compared to CNNs, and their clinical 

adoption can improve reliability and physician’s trust in AI-assisted diagnosis. 

By demonstrating a performance gap between CNNs and ViTs, our OpenSRH 

benchmarks encourage research in data efficient training of ViTs suited for 

medical imaging.

Lastly, we have ensured that all patients consented to release a portion of their tumor for 

research. There is minimal additional risk for patients because samples are collected from 

tumors removed as part of the standard patient care, and their personal health information 

is protected in OpenSRH. OpenSRH is released to promote translational AI research. The 

dataset, algorithms and benchmarks discussed in the paper are for research purposes only.

8 Conclusion

In this work, we introduce OpenSRH, an intraoperative brain tumor dataset of SRH, a 

rapid, label-free, optical imaging method. OpenSRH contains both raw SRH acquisition 

data and processed high-resolution image patches for model development using diagnostic 

annotations from expert neuropathologists. OpenSRH is the first and only publicly available 

dataset of human cancers imaged using optical histology. We benchmark classification 

performance for histologic brain diagnosis across the most common brain tumor types. 

We also provide benchmarks for self-supervised and weakly supervised contrastive 

representation learning. We release the OpenSRH dataset with the intention to promote 

translational AI research within the field of precision oncology and optimize the surgical 

management of human cancers.
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Refer to Web version on PubMed Central for supplementary material.
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Checklist

1. For all authors...

a. Do the main claims made in the abstract and introduction accurately 

reflect the paper’s contributions and scope? [Yes]

b. Did you describe the limitations of your work? [Yes] The limitations 

of OpenSRH are described in section 7.

c. Did you discuss any potential negative societal impacts of your 

work? [Yes] Potential negative societal impacts are described in 

section 7.

d. Have you read the ethics review guidelines and ensured that your 

paper conforms to them? [Yes]

2. If you are including theoretical results...

a. Did you state the full set of assumptions of all theoretical results? 

[N/A]

b. Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

a. Did you include the code, data, and instructions needed to reproduce 

the main experimental results (either in the supplemental material or 

as a URL)? [Yes] All code, data, and instructions are available on 

https://opensrh.mlins.org.

b. Did you specify all the training details (e.g., data splits, 

hyperparameters, how they were chosen)? [Yes] Detailed training 

protocol is listed in appendix C, and data split information is 

described in section 4 and appendix A.

c. Did you report error bars (e.g., with respect to the random seed 

after running experiments multiple times)? [Yes] All experiments 

are repeated with 3 random seeds and error bars are reported in all 

tables.

d. Did you include the total amount of compute and the type of 

resources used (e.g., type of GPUs, internal cluster, or cloud 

provider)? [Yes] Details of the compute resources and time to 

produce the OpenSRH benchmarks are described in appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing 

new assets...

a. If your work uses existing assets, did you cite the creators? 

[Yes] Our benchmark implementation uses existing open source 

framework. More details are described in appendices A and C.
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b. Did you mention the license of the assets? [Yes] All licenses of these 

frameworks are included in the THIRD_PARTY file in the root level 

of our repository.

c. Did you include any new assets either in the supplemental material 

or as a URL? [Yes] The OpenSRH dataset and benchmark source 

code can be accessed on https://opensrh.mlins.org.

d. Did you discuss whether and how consent was obtained from 

people whose data you’re using/curating? [Yes] Informed consent 

was obtained for each patient in OpenSRH. Details are described in 

section 4.

e. Did you discuss whether the data you are using/curating contains 

personally identifiable information or offensive content? [Yes] All 

personally identifiable information are removed before data release 

and benchmark training. Details are described in section 4.

5. If you used crowdsourcing or conducted research with human subjects...

a. Did you include the full text of instructions given to participants and 

screenshots, if applicable? [N/A]

b. Did you describe any potential participant risks, with links 

to Institutional Review Board (IRB) approvals, if applicable? 

[Yes] This study was approved by Institutional Review Board 

(HUM00083059), and more details are described in section 4. 

Potential participant risk is minimal, and described in section 7.

c. Did you include the estimated hourly wage paid to participants and 

the total amount spent on participant compensation? [N/A]
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Figure 1: 
Left, A patient with a newly diagnosed brain lesion undergoes a surgery for tissue diagnosis 

and/or tumor resection. The tumor specimen is sampled from the patient’s tumor and 

directly loaded into a premade, disposable microscope slide. The specimen is placed into the 

SRH imager for rapid optical imaging. SRH images are acquired sequentially as strips at two 

Raman shifts, 2845 cm−1, and 2930 cm−1. The size and number of strips to be acquired are 

set by the operator who defines the desired image size. Standard image sizes range from 1–

5mm2 and image acquisition time ranges from 30 seconds to 3 minutes. The strips are edge 

clipped, field flattened and co-registered to generate whole slide SRH images. Images can 

be colored using a custom virtual H&E colorscheme for pathologic review [5]. The whole 

slide image is divided into non-overlapping 300×300 pixel patches and each patch undergoes 

a feedforward pass through a previously trained tumor segmentation model [6] to segment 

the patches into tumor regions, normal brain, and nondiagnostic regions. The tumor patches 

are then used for both training and inference to predict the patient’s brain tumor diagnosis. 

Right, Examples of virtually-colored SRH images from brain tumor diagnoses included in 

OpenSRH. We include a diversity of tumor diagnoses that cover the most common brain 

tumor subtypes.
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Figure 2: 
Histogram for the number of patches and slides per patient. a shows the total number of 

patches varies across the patients and, b shows most patients have 5 slides. The difference 

between these two distributions may be caused by specimen size, non-diagnostic regions, 

surgeon preference, etc. HGG, high grade glioma; LGG, low grade glioma.
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Figure 3: 
Bar chart for the number of patients, slides and patches for each diagnostic class. Validation 

set was randomly selected and contains approximately 20% of patients in OpenSRH (60/307 

patients). Training and validation sets have approximately equivalent class distributions.
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Figure 4: 
Patient-level confusion matrices for the four different training strategies on the validation 

set. Most of the errors occurred in the HGG, LGG, and metastasis classes. Only seed 

1 is shown here, other seeds are included in Appendix D. Mening, meningioma; Mets, 

metastasis; Pit, pituitary adenoma; Schwan, schwannoma.
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Figure 5: 
Patch-level SRH representations of validation images. Latent feature vectors are colored 

by tumor class labels. ImageNet pretraining fails to represent discriminative SRH image 

features. SimCLR shows discernable SRH feature learning capabilities, while improved 

class separation can be learned with SupCon. Tumor classes with similar SRH histologic 

features tend to show similar feature representations, such as HGG/LGG and HGG/

Metastasis. A single seed is shown here. Figure best viewed in color.
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Table 1:

Classification benchmarks for ResNet50 and ViT-S. Pretrain refers to the pretraining strategy. Each experiment 

included three random initial seeds. Mean value and standard deviation (in parentheses) for each metric are 

reported here. The full table including false negative rates and slide-level metrics can be found in the 

Appendix D.

Backbone Pretrain
Patch Patient

Accuracy MCA MAP Accuracy MCA MAP

ResNet50 Random 84.4 (0.4) 83.8 (0.5) 89.5 (0.5) 90.0 (0.0) 91.4 (0.0) 92.8 (0.2)

ResNet50 ImageNet 86.5 (0.4) 85.6 (0.3) 91.2 (0.3) 88.9 (0.8) 90.5 (0.6) 94.0 (0.1)

ViT-S Random 77.2 (0.5) 76.8 (0.8) 82.3 (0.5) 85.0 (1.4) 87.2 (1.1) 93.2 (0.4)

ViT-S ImageNet 83.7 (0.5) 82.7 (0.9) 88.8 (0.1) 88.9 (0.8) 90.5 (0.6) 93.9 (0.4)
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Table 2:

Linear evaluation protocol results for contrastive representation learning. Each experiment included three 

random initial seeds. Mean value and standard deviation (in parentheses) for each metric are reported here. 

The full table including false negative rates and slide-level metrics can be found in the Appendix E.

Backbone Methods
Patch Patient

Accuracy MCA MAP Accuracy MCA MAP

ResNet50 ImageNet 68.3 (0.0) 67.9 (0.0) 72.9 (0.1) 80.0 (0.0) 82.9 (0.0) 88.8 (0.1)

ResNet50 SimCLR 79.1 (0.4) 78.9 (0.4) 84.2 (0.6) 83.9 (1.0) 86.1 (0.9) 92.4 (0.1)

ResNet50 SupCon 87.5 (0.3) 86.8 (0.3) 91.5 (0.5) 90.0 (0.0) 91.4 (0.1) 94.6 (0.5)

ViT-S ImageNet 71.8 (0.1) 71.1 (0.1) 77.1 (0.1) 88.3 (0.0) 89.8 (0.0) 93.9 (0.0)

ViT-S SimCLR 76.8 (0.5) 76.3 (0.5) 82.5 (0.3) 80.0 (1.7) 83.0 (1.3) 92.3 (0.0)

ViT-S SupCon 81.4 (0.2) 80.2 (0.3) 85.6 (0.5) 87.8 (1.0) 89.4 (0.7) 94.0 (0.4)
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