
RESEARCH ARTICLE

Antibody responses against heterologous H5N1 strains for an MF59-adjuvanted cell 
culture–derived H5N1 (aH5n1c) influenza vaccine in adults and older adults
Sharon S. Freya, Eve Versageb, Esther Van Twuijverc, and Matthew Hohenbokenb

aSchool of Medicine, Saint Louis University, St. Louis, MO, USA; bClinical Development, CSL Seqirus, Cambridge, MA, USA; cClinical Development, CSL 
Seqirus, Amsterdam, Netherlands

ABSTRACT
MF59-adjuvanted H5N1, cell culture-derived inactivated influenza vaccine (aH5N1c, AUDENZ®, Seqirus) is 
available for persons 6 months of age and older. During a pandemic, lack of preexisting immunity to 
novel influenza strains increases morbidity and mortality. This study examined the potential for an 
adjuvanted vaccine to provide cross-protection to novel viruses. Two similarly designed studies involving 
separate cohorts aged 18–64 and ≥65 y assessed immune responses to five heterologous H5N1 influenza 
strains elicited by two 7.5 μg doses of aH5N1c given 3 weeks apart. Geometric mean titers (GMT) on Days 
1 and 43 and Day 43/Day 1 geometric mean ratios (GMRs) were determined with hemagglutination 
inhibition (HI) and microneutralization (MN). Rates of seroconversion (SC) and percentages of subjects 
with HI and MN ≥ 1:40 were determined. Significant increases in GMTs were observed on Day 43 after 
vaccination for all 5 heterologous strains in all ages tested. SC rates were 28–55% and 17–46% among 
those aged 18–64 and ≥65 y, respectively. MN ≥ 1:40 was observed in 38–100% of younger and 37–97% 
of older subjects, and HI ≥ 1:40 was achieved by 28–64% of subjects aged 18–64 y and by 17–57% of 
subjects aged ≥65 y. A SC rate ≥40% (97.5% CI) was met for two heterologous strains tested in adults 
aged 18–64 y. In adults aged 18–64 and ≥65 y, two 7.5 μg doses of aH5N1c demonstrated increased 
immunogenicity from baseline against five heterologous H5N1 strains, illustrating the potential for 
aH5N1c to provide cross-protection against other H5N1 strains.
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Introduction

The COVID-19 pandemic has highlighted the tremendous bur-
den pandemics can place on individuals and society. Likewise, 
influenza A pandemics involving novel influenza A viruses can 
dramatically increase deaths and hospitalizations.1–3 The potential 
for morbidity and mortality is higher with pandemic than seasonal 
influenza because the population has little or no preexisting 
immunity. During a non-pandemic flu season, children and 
older adults (i.e., those >65 y of age) tend to be most vulnerable 
to complications associated with influenza. However, during an 
influenza pandemic, the risk of severe influenza-associated com-
plications for healthy adults may be similar to that of young 
children and older adults.3 Vaccines, the main prophylactic mea-
sure against pandemic influenza, thus have an important role in 
pandemic preparedness plans worldwide.2–4 Pandemic influenza 
strains result from an antigenic shift and may include hemagglu-
tinin (HA) subtypes of either avian origin such as H5, H7, and H9 
or swine variants of HA subtypes H1, H2, and H3 that have 
further acquired adaptive mutations to become infectious from 
human to human.5,6 Among these subtypes, the highly pathogenic 
avian influenza (HPAI) H5N1 subtype and its genetic reassortants 
(including H5N2, H5N5, H5N6, and H5N8) are a global threat 
not only to poultry and wildlife but also to poultry workers and the 
general population because these viruses can cross the animal- 
human barrier and the human population lacks preexisting 
immunity to H5 viruses. Most human cases reported to date 

have resulted from exposure to poultry or to environments con-
taminated by poultry-borne viruses.7–9 Based on the latest World 
Health Organization (WHO) report of human infection with 
avian influenza H5 virus, from January 2003 to 
25 November 2022, there have been 868 cases of human infection 
with avian influenza A(H5N1) virus reported from 21 countries. 
Of these 868 cases, 457 were fatal (case fatality rate of 53%).10

According to the US Department of Human and Health 
Services (DHHS) and the Department of Homeland Security, 
a vaccine specific to an emerging pandemic influenza strain 
should be available to vaccinate the entire US population within 
6 months of a declaration of a pandemic.2,4 However, time is 
a limiting factor in the process to develop, approve, and produce 
a pandemic-specific vaccine in large quantities, especially when 
using egg-based production methods, which require very large 
numbers of fertilized eggs. Hence, these US agencies prioritize 
maintenance of pandemic influenza vaccine stockpiles, which can 
be used to vaccinate front-line personnel, including healthcare 
workers, first responders, and the military.4 Given the unpredict-
able nature of pandemic viruses, a stockpiled vaccine that can 
provide broad heterologous coverage would represent a major 
asset to pandemic control efforts. Such a vaccine would offer 
enhanced protection until an antigenically matched vaccine 
could be manufactured and distributed.11,12

The adjuvant MF59 (Seqirus Inc., Boston, MA, USA) is an 
oil-in-water emulsion stabilized by Tween 80 and Span 85 that 
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enhances differentiation of immune cells into antigen-present-
ing cells and also promotes macrophage recruitment, antigen 
uptake, lymph node migration, T-cell activation, and B-cell 
expansion.13–20 MF59 adjuvant is present in egg propagated 
trivalent and quadrivalent vaccines licensed for immunization 
against seasonal influenza in adults ≥65 y, a recently licensed 
cell culture-derived H5N1 vaccine, and two versions of egg 
propagated H1N1 vaccine licensed during the 2009 pandemic, 
all for persons 6 months of age or older. MF59 promotes 
production of cross-reactive antibodies against antigenically 
different influenza strains and has a well-established safety 
profile.21–25 In a recent pair of studies with identical designs, 
aH5N1c demonstrated a robust immune response to the 
homologous virus strain in separate adult populations aged 
18–64 y and ≥65 y.26 This report examines the immunogeni-
city of aH5N1c against heterologous strains of H5N1 in the 
same two study populations.

Materials and methods

Study design

Two phase 2, randomized, observer-blind, multicenter studies 
involving adults 18–64 y (NCT01776541) and older adults aged 
≥65 y (NCT01766921) were conducted in Australia, New 
Zealand, the United States, and Thailand. The design, objectives, 
and endpoints were identical for both studies, as previously 
described.26 The studies were conducted in compliance with 
Good Clinical Practices guidelines and the Declaration of 
Helsinki, and study protocols were approved by the Ethics 
Review Committees of the participating centers. Written 
informed consent was obtained from subjects before enrollment.

In a pre-defined exploratory analysis, hemagglutination 
inhibition (HI) and microneutralization (MN) antibody 
responses against five H5N1 heterologous influenza strains 
were evaluated in a randomly selected subset of subjects from 
the full-dose treatment arm from these two phase 2 trials.

Vaccine administration

The aH5N1c vaccine contained A/turkey/Turkey/1/05 
(H5N1)-like strain (NIBRG-23) antigen (Seqirus Inc., NC, 
USA; f/k/a Novartis Influenza Vaccines GmbH, Marburg, 
Germany). Subjects were randomized at a 1:1 ratio to receive 
two vaccinations with either full-dose (7.5 μg of hemagglutinin 
antigen per dose, 0.25 mL MF59) or a half-dose (3.75 μg of 
hemagglutinin antigen per dose, 0.125 mL MF59). Vaccines 
were administered on Day 1 and Day 22 as single intramus-
cular injections in the non-dominant arm. Only subjects who 
received the 7.5 μg antigen dose of aH5N1c were included in 
the heterologous analysis.

Participants

As described previously, adults aged 18–64 y and those aged 
≥65 y were enrolled in separate studies. The main exclusion 
criteria were the presence of serious chronic or progressive 
disease; pregnancy or breastfeeding; prior receipt of any H5N1 
vaccine; receipt of any other influenza vaccines within 60 d 

prior to enrollment; a body mass index ≥35 kg/m2, body tem-
perature ≥38.0°C, and/or any acute illness within 3 d of receiv-
ing study vaccines. The present analysis of heterologous 
responses includes a prespecified subset of subjects receiving 
the full dose of study vaccine; heterologous responses to the 
half dose were not evaluated.

Endpoints

Antibody responses against the homologous H5N1 strain A/ 
turkey/Turkey/1/2005 and the following heterologous strains 
were measured by HI and MN assays: A/Anhui/2005 CC Ab 
(Clade 2.3.4), A/Egypt/2010 CC Ab (Clade 2.2.1), A/Hubei/2010 
CC Ab (Clade 2.3.2.1), A/Indonesia/2005 CC Ab (Clade 2.1.3), 
and A/Vietnam/1203/2004 CC Ab (Clade 1), selected to repre-
sent various genetic clades and subclades from WHO-identified 
H5N1 viruses of concern. Measures of immunogenicity included 
geometric mean titers (GMTs) on Days 1 and 43, Day 43/Day 1 
geometric mean ratio (GMR) of HI and MN titers, the percen-
tage of subjects with HI ≥ 1:40 or MN ≥ 1:40 on Days 1 and 43, 
and percentage of subjects achieving seroconversion (defined as 
HI ≥ 1:40 for subjects negative at baseline [HI < 1:10] or 
a minimum 4-fold increase in HI titer for subjects positive at 
baseline [HI ≥ 1:10]) or a ≥ 4-fold rise in MN titers on Day 43.

Statistical methods

Statistical methodology of the primary studies has been pre-
viously described.26 The percentages of subjects with HI titers 
≥1:40 and achieving seroconversion were calculated along with 
the associated 97.5% Clopper-Pearson confidence intervals 
(CIs). Although the Center for Biologics Evaluation and 
Research (CBER) licensure criteria define lower limits of 95% 
CIs, 97.5% CIs were calculated because two vaccine formula-
tions were assessed, and the 0.05 alpha was distributed across 
tests. GMTs, GMRs, and the associated 2-sided 95% CIs were 
calculated using analysis of covariance (ANCOVA) with factors 
for baseline titer and study center applied on log10-transformed 
values. For the homologous strain, similar methods were used.

Results

Study population

Of subjects enrolled to receive the full dose aH5N1c in the two 
primary studies, 488 were 18–64 y of age (mean age 39 y) and 
700 were ≥65 y (mean age 71 y).26 Among both younger and 
older adults, the majority were white and female. More older 
than younger adults had an influenza vaccination within the 
prior 12 months, and baseline characteristics were similar 
between the age groups (Table 1). HI antibody responses, for 
subjects who had blood drawn/serum availability, to the homo-
logous strain were tested in 478 adults aged 18–64 y and 693 
adults aged ≥65 y in the primary studies,26 and MN titers against 
the homologous strain and HI and MN titers against hetero-
logous strains were measured in 69 and 35 younger and older 
adults, respectively, in this exploratory analysis. The sample size 
for the heterologous strain assays was based on historical pre-
cedents for influenza descriptive statistics.
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Immunogenicity

As shown in Table 2, on Day 43 (3 weeks after the second 
vaccination), HI GMT increased 41-fold vs Day 1 for the 
homologous strain and by 2- to 12-fold against all five hetero-
logous strains in subjects aged 18–64 y. As measured with MN 
in the same population, homologous GMT was 61 times higher 
and heterologous GMTs were 5–34 times higher on Day 43 vs 
Day 1. In adults aged ≥65 y, homologous GMTs increased 16- 
and 23-fold as measured with HI and MN assays, respectively. 
Heterologous HI GMTs increased by 2- to 5-fold and MN 
GMTs by 4- to 12-fold.

HI ≥ 1:40 was achieved by 28% to 64% of subjects aged 18– 
64 y and by 17% to 57% of subjects aged ≥65 y (Figure 1). 
MN ≥ 1:40 was observed in 38% to 100% of younger and 37% 
to 97% of older subjects (Figure 2).

HI seroconversion rates against heterologous strains ranged 
from 28% to 55% among adults 18–64 y and 17% to 46% 
among those ≥65 y of age. The lower bound of the 97.5% CI 
of the seroconversion rate in adults aged 18–64 y was ≥40% for 
the Egypt and Hubei heterologous strains (Figure 3(a,b)). The 
percentage of subjects with a ≥ 4-fold increase in MN titers 
against heterologous strains ranged from 32% to 88% in 

subjects aged 18–64 y and 26% to 74% for older adults. Most 
younger adults achieved a ≥ 4-fold increase in MN against all 
but the Vietnam strain, whereas among older adults, the 
majority achieved this threshold only against the Egypt strain 
(Figure 3(c,d)).

Discussion

This exploratory analysis confirmed that aH5N1c not only 
elicits a robust immune response against the homologous 
strain but also against heterologous strains of the H5N1 pan-
demic influenza virus in adults younger and older than 65 y. 
CBER criteria (97.5% CI of the seroconversion rate ≥40%) 
were met for the Egypt/2010 and Hubei/2010 strains in adults 
aged 18–64 y. Thus, this vaccine could provide essential 
interim coverage to a population – particularly those 10–40 y 
of age where H5N1 morbidity and mortality is highest – 
threatened by an H5N1 pandemic while strain-specific vaccine 
was being developed and manufactured.

Influenza pandemics have historically been characterized 
by shifts in the virus subtype, successive pandemic waves, 
higher transmissibility compared with seasonal influenza, 

Table 1. Study population demographics.

Age 18–64 y (n = 488) Age ≥65 y (n = 700)

Age, mean ± SD (y) 39.0 ± 13.7 71.2 ± 5.1
Male, n (%) 203 (42) 293 (42)
Weight, mean ± SD (kg) 74.1 ± 15.1 71.0 ± 15.9
Height, mean ± SD (cm) 167.8 ± 10.5 164.1 ± 10.7
BMI, mean ± SD (kg/m2) 26.2 ± 4.3 26.1 ± 4.0
Previous influenza vaccination, n (%) 118 (24) 429 (61)
Influenza vaccination within 12 months prior to study, n (%) 98 (20) 388 (55)
Race, n (%)

White 291 (60) 445 (64)
Black 97 (20) 10 (1)
Asian 93 (19) 240 (34)
Native American 2 (<1) 2 (<1)
Other 5 (1) 3 (<1)

Hispanic ethnicity, n (%) 107 (22) 17 (2)

Table 2. HI and MN antibody responses (GMT and GMR) against H5N1 at Day 1 and Day 43 by age group.

HI MN

GMT Day 1  
(95% Cl)

GMT Day 43  
(95% Cl)

GMR Day 43/Day 1  
(95% Cl)

GMT Day 1  
(95% Cl)

GMT Day 43  
(95% Cl)

GMR Day 43/Day 1  
(95% Cl)

Age 18–64 y
Homologous n = 478 n = 451 n = 451 n = 69

Turkey/2005 6.11 (5.78–6.46)a 250 (208–302)a 41 (34–49)a 6.7 (5.62–7.98) 410 (313–537) 61 (44–86)
Heterologous n = 69 n = 69

Anhui/2005 5.02 (4.87–5.18) 11 (6.64–17) 2.09 (1.29–3.37) 16 (12–21) 156 (131–186) 9.93 (7.47–13)
Egypt/2010 5.87 (4.51–7.63) 39 (22–71) 6.52 (3.62–12) 15 (11–22) 522 (398–685) 34 (23–49)
Hubei/2010 7.12 (5.01–10) 56 (31–102) 7.3 (4.01–13) 7.2 (6–8.63) 51 (41–63) 7.07 (5.56–8.98)
Indonesia/2005 5.02 (4.87–5.18) 16 (9.17–28) 3.12 (1.81–5.39) 8.79 (7–11) 114 (89–146) 13 (9.42–18)
Vietnam/1203/2004 5.97 (4.41–8.06) 44 (24–81) 6.99 (3.84–13) 5.59 (4.98–6.27) 27 (21–34) 4.76 (3.74–6.06)

Age ≥65 y
Homologous n = 693 n = 673 n = 673 n = 35

Turkey/2005 8.29 (7.57–9.08)a 129 (110–152)a 16 (13–19)a 7.49 (5.87–9.56) 169 (107–268) 23 (13–39)
Heterologous n = 35 n = 35

Anhui/2005 5 (5–5) 8.53 (5.92–12) 1.71 (1.18–2.46) 28 (20–41) 128 (99–165) 4.52 (2.93–6.97)
Egypt/2010 6.86 (4.94–9.53) 27 (15–47) 3.88 (2.27–6.64) 25 (15–41) 303 (206–447) 12 (6.69–22)
Hubei/2010 7.43 (5.28–10) 36 (20–64) 4.83 (2.8–8.32) 11 (7.98–16) 42 (31–58) 3.75 (2.6–5.4)
Indonesia/2005 5 (5–5) 12 (8.02–18) 2.39 (1.6–3.56) 18 (13–27) 87 (63–120) 4.77 (3.1–7.34)
Vietnam/1203/2004 7.81 (5.24–12) 34 (19–63) 4.41 (2.57–7.57) 7.32 (5.39–9.95) 27 (19–39) 3.68 (2.62–5.17)

Abbreviations: CI, confidence interval; GMR, geometric mean ratio; GMT, geometric mean titer; HI, hemagglutination inhibition; MN, microneutralization. 
a97.5% CI.
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and variable impact in different geographic regions, as well as 
increased morbidity and mortality in older children and adults 
younger than 65 y – the population typically most resistant to 
seasonal influenza complications.3 The vulnerability of 
younger adults to pandemic influenza strains is of special 
concern, as this age group is most likely to be on the front 
lines of the pandemic response, providing health care and 
other essential services.4 The cross-reactivity against five anti-
genic variants shown by aH5N1c in this analysis suggests this 
vaccine could provide these essential workers with cross-pro-
tection during the period between the start of a pandemic and 
distribution of an antigenically matched vaccine.

Millions of fertilized eggs are needed to produce a vaccine, 
and efficiency of this method is often low, requiring one or 
more eggs for each dose of the vaccine produced. These con-
straints could pose challenges during a highly pathogenic avian 
influenza outbreak or pandemic if either egg quantity or qual-
ity become compromised. Cell culture manufacturing methods 
offer efficient vaccine production that minimizes dependency 
on the egg supply and may provide increased efficacy relative 
to egg-derived vaccines.27–32 In addition, enhanced immuno-
genicity with MF59 adjuvant against heterologous strains, 
when added to both seasonal and pandemic influenza vaccines, 
is well documented in children and adults.33–37

Observed differences between MN and HI titers in this 
study may be due to amino acid substitutions found in the 

receptor-binding site of the HA molecule of influenza 
A strains, which can alter the results of HI assays when cell 
culture-derived vaccines are evaluated.38–40 The MN assay is 
not affected by HI mutations because MN measures the con-
centration of antibodies needed to prevent infection of 
a eukaryotic cell.41,42 It is possible that the MN assay may 
represent a more mechanistically relevant estimation of anti-
body-mediated protection than HI.43,44 The choice of erythro-
cyte species can influence the HI titer, which may also explain 
the lack of correlation between HI and MN for some results in 
this study.45 The discrepancy in sample size between the HI 
and MN analysis groups could also have contributed to differ-
ences in titers. However, overall, the trends were consistent 
between the two assays (i.e., when HI increased, so did MN).

This study was limited by the small number of sera 
samples tested from the subgroup in which heterologous 
responses were assessed. Nevertheless, responses were 
robust, with CBER criteria being met for two of five strains 
despite the small sample size. The five heterologous strains 
tested represented a broad spectrum of possible H5N1 
variants, although these were previously identified strains, 
and it cannot be predicted whether the responses to new 
strains would be similar. A limitation of the studies 
included in this analysis is that antibodies with H5-specific 
Fc-mediated effector functions were not determined. 
Vaccination with adjuvanted H7N9 and H5N1 vaccines 
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has been shown to induce antibody-dependent cellular 
cytotoxicity (ADCC)–mediating antibodies. Protection 
from influenza may require Fc-mediated antibody func-
tions in addition to neutralizing antibodies. Additional 
studies are necessary to understand how and to what 
extend ADCC- and antibody-dependent phagocytosis 
(ADP)–mediating antibodies contribute to protection 
from influenza, as these antibodies may also have an 
immunopathological role.

In conclusion, in adults younger than 65 y and those 65 y 
and older, two 7.5 μg doses of aH5N1c, administered three 
weeks apart, demonstrated increased immunogenicity from 
baseline against multiple heterologous H5N1 strains, of five 
separate genetic clades or subclades. These findings illustrate 
the potential for the aH5N1c vaccine to provide cross-protec-
tion against other H5N1 strains during a pandemic and pro-
vide support for future research in this area.
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aged 18–64 y (a) and ≥65 y (b). Error bars represent the 97.5% confidence interval (CI). (c, d) at least 4-fold increase in MN titers in adults aged 18–64 y (c) and ≥65 y 
(d). Error bars represent the 95% CI.
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