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Structural connectome quantifies tumour 
invasion and predicts survival 
in glioblastoma patients
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Glioblastoma is characterized by diffuse infiltration into the surrounding tissue along white matter tracts. Identifying 
the invisible tumour invasion beyond focal lesion promises more effective treatment, which remains a significant 
challenge. It is increasingly accepted that glioblastoma could widely affect brain structure and function, and further 
lead to reorganization of neural connectivity. Quantifying neural connectivity in glioblastoma may provide a valuable 
tool for identifying tumour invasion.
Here we propose an approach to systematically identify tumour invasion by quantifying the structural connectome in 
glioblastoma patients. We first recruit two independent prospective glioblastoma cohorts: the discovery cohort with 
117 patients and validation cohort with 42 patients. Next, we use diffusion MRI of healthy subjects to construct 
tractography templates indicating white matter connection pathways between brain regions. Next, we construct 
fractional anisotropy skeletons from diffusion MRI using an improved voxel projection approach based on the 
tract-based spatial statistics, where the strengths of white matter connection and brain regions are estimated. To 
quantify the disrupted connectome, we calculate the deviation of the connectome strengths of patients from that 
of the age-matched healthy controls. We then categorize the disruption into regional disruptions on the basis of 
the relative location of connectome to focal lesions. We also characterize the topological properties of the patient con
nectome based on the graph theory. Finally, we investigate the clinical, cognitive and prognostic significance of con
nectome metrics using Pearson correlation test, mediation test and survival models.
Our results show that the connectome disruptions in glioblastoma patients are widespread in the normal-appearing 
brain beyond focal lesions, associated with lower preoperative performance (P < 0.001), impaired cognitive function 
(P < 0.001) and worse survival (overall survival: hazard ratio = 1.46, P = 0.049; progression-free survival: hazard ratio 
= 1.49, P = 0.019). Additionally, these distant disruptions mediate the effect on topological alterations of the connec
tome (mediation effect: clustering coefficient −0.017, P < 0.001, characteristic path length 0.17, P = 0.008). Further, the 
preserved connectome in the normal-appearing brain demonstrates evidence of connectivity reorganization, where 
the increased neural connectivity is associated with better overall survival (log-rank P = 0.005).
In conclusion, our connectome approach could reveal and quantify the glioblastoma invasion distant from the focal 
lesion and invisible on the conventional MRI. The structural disruptions in the normal-appearing brain were asso
ciated with the topological alteration of the brain and could indicate treatment target. Our approach promises to 
aid more accurate patient stratification and more precise treatment planning.
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Introduction
Glioblastoma is the most common primary malignant brain tumour 
in adults, characterized by diffuse infiltration into the surrounding 
tissue.1 It is increasingly accepted that glioblastoma widely influ
ences the brain structure and function beyond the focal lesion.2,3,4,5

Evidence shows that glioblastoma can induce profound reorganiza
tion of neural connectivity,5,6 while neuronal activity can promote 
tumour progression.7 This bidirectional interaction underscores 
the promise of characterizing neural connectivity for better under
standing glioblastoma invasion, which may facilitate more accur
ate patient stratification for personalized management.

Diffusion-weighted MRI (dMRI) is a method to estimate the 
structural connectivity of the brain. It is more sensitive to detecting 
occult tumour invasion than conventional T1-weighted and fluid- 
attenuated inversion recovery (FLAIR) images.8 Evidence shows 
that dMRI can indicate the tissue signature of glioma,9 offering va
lue to evaluate invasiveness,10,11 detect peritumoral invasion,12,13

indicate subventricular zone involvement14 and predict molecular 
phenotypes.15 These studies, however, have focused on the focal 
tumour, instead of the systematic disturbance of the brain.

The advance in neuroimaging has represented structural con
nectivity as a complex network, namely structural connectome.16,17

This approach models brain regions as nodes while the white matter 
(WM) connections among brain regions as edges. Graph theoretical 
analysis of the derived structural networks shows to characterize 
various neurological and psychiatric disorders.18,19,20 Moreover, 
studies suggest that brain tumours may alter the connectome top
ology while brain networks correspondingly demonstrate robust
ness and reorganization.5–21,22,23 Recent evidence shows that the 
topological features derived from the connectome may predict tu
mour location frequency in glioma patients24 and appear to predict 
patient survival.25 However, it remains largely unknown whether 
the connectome disruption could be quantified for patient stratifica
tion. Of particular significance is whether the robustness of the con
nectome could affect patient outcome.

The purpose of this study was to characterize the disruption of the 
structural connectome in glioblastoma patients and investigate the 
clinical significance. We hypothesized that glioblastoma could induce 
both focal and global disturbance to the structural connectome, lead
ing to topological alteration of the brain and impacting patient out
comes. We tested this hypothesis in two prospective glioblastoma 
cohorts. First, we constructed the structural networks using the 
dMRI from glioblastoma patients and healthy controls. Second, we 
quantified the focal and distant disrupted connectome separately 
from each patient. Third, we calculated the disruption indices and 

topological features and examined their significance in survival mod
els. Last, we modelled the alteration of the preserved connectivity after 
removing the disrupted connectome and investigated its significance 
on patient survival. The results revealed widespread disruptions of 
the structural connectome, which could lead to topological alterations 
and show prognostic value in glioblastoma patients.

Materials and methods
Subjects

Patients with a radiological diagnosis of de novo supratentorial glio
blastoma were prospectively recruited for resection (discovery: July 
2010–August 2015; validation: July 2017–October 2019) by the multi
disciplinary team central review. For both cohorts, patients were 
consecutively recruited following identical inclusion and exclusion 
criteria, with data prospectively collected (see Supplementary 
methods). All patients underwent preoperative 3D magnetization- 
prepared rapid acquisition gradient echo (MPRAGE) [pre-contrast 
(T1) and post-contrast (T1C)], T2-weighted FLAIR and dMRI se
quences. Patient preoperative cognitive performance was tested 
using the Mini-Mental State Examination (MMSE), dichotomized 
as <27 or ≥27 as reported.26

We included a control cohort with dMRI and T1 sequences avail
able from https://brain-development.org/ixi-dataset/. We also in
cluded the high angular resolution dMRI from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu/) 
for constructing an unbiased template of WM connection with 
high spatial resolution.

Treatment

All patients underwent maximal safe surgery using 5-aminolevuli
nic acid fluorescence (5-ALA, Medac) and neuro-navigation 
(StealthStation, Medtronic). For maximal safe resection in both 
study cohorts, where appropriate, other adjuvants, including 
awake surgery, cortical and subcortical mapping and intraopera
tive electrophysiology were also applied. According to the post
operative MRI within 72 h, the extent of resection was assessed as 
complete or partial resection of enhancing tumour or biopsy. 
Adjuvant therapy was determined by the multidisciplinary team 
as standard based on patient postoperative status. All patients 
were followed up according to the response assessment in 
neuro-oncology criteria. Overall survival (OS) and progression-free 
survival (PFS) were used as endpoints.
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Tumour segmentation

All anatomical MRI (T1, T2 and FLAIR) were co-registered to T1C images 
with an affine transformation, using the linear image registration tool 
(FLIRT) function in the FMRIB Software Library (FSL).27 To segment the 
tumour, we applied a multi-scale 3D Deep Convolutional Neural 
Network,28 implemented in the Cancer Imaging Phenomics Toolkit 
(CaPTk, https://cbica.github.io/CaPTk/index.html). The manual correc
tion was performed using 3D slicer v.4.6.2 (https://www.slicer.org/) by a 
neurosurgeon (C.L.) and a researcher (Y.W.) after an initial training per
iod and reviewed by an experienced neuroradiologist (T.M.). The final 
consensus was achieved to ensure inter-rater reliability.

Quantifying the brain connectome

Tractography is a technique to measure the strength of WM con
nection by tracking the fibre pathway connecting brain regions. 
However, directly performing tractography on the brain with tu
mours may cause tracking failure or artefacts, e.g. an unrealistic fi
bre belt surrounding the tumour.29 To bypass the bias of performing 
tractography on the lesioned brain, we used an approach to gener
ate a template from healthy controls for tract localization and le
veraged the voxel project step of tract-based spatial statistics 
(TBSS)30 to robustly estimate the strength of WM connection in pa
tients by comparing patients to healthy controls.31,32 The complete 
pipeline includes the following steps: (i) constructing a group-based 
tract template (Fig. 1A); (ii) producing individualized skeletonized 
fractional anisotropy (FA) maps (Fig. 1B); (iii) combining the tem
plate with the FA skeleton maps to estimate the connectome 
strength in both patients and controls (Fig. 1C and D); and (iv) 
identifying the significantly disrupted connectome in patients 
(Fig. 1E–G).

Constructing a template of white matter connections

An unbiased WM connection template was generated by performing 
probabilistic tractography on the dMRI of the 10 healthy controls. In 
detail, the cortical/subcortical regions on dMRI were parcellated into 
90 brain regions, using the Automatic Anatomical Labelling (AAL) at
las33 in the standard space.34 The AAL atlas included the grey-WM 
boundary to facilitate tractography. Deformable registration was per
formed using the Advanced Normalization Tools (ANTs).35

Eddy currents and subject motions in dMRI were corrected using 
the FSL eddy tool (v.6.0.0). A crossing fibre model was fitted to each 
control’s dMRI using the FSL function bedpostx. Probabilistic tracto
graphy between each pair of the 90 regions was subsequently per
formed using FSL Probtrackx2.36 Each region of interest (ROI) was 
used as a seed (starting ROI) and target (ending ROI) once in the track
ing. For each pair of seed/target ROI, 5000 streamlines were sampled 
from the seed mask. Only the streamlines reaching the target mask 
were retained. The threshold of tracking curvature was set to 0.2 
(80°). Streamline samples were terminated when they have travelled 
2000 steps with step length of 0.5 mm or entered the cortical/subcor
tical regions. Streamlines were discarded if they entered the cerebro
spinal fluids in the ventricle or re-entered the seed region.

Distribution maps were generated for all possible WM connec
tions between the 90 cortical/subcortical regions in the healthy 
controls. The yielded distribution maps were non-linearly trans
formed to the MNI-152 space and averaged to mean connection dis
tribution across the controls using fslmaths, which was 
thresholded to only retain the voxels with top 5% probability and fi
nally binarized, providing conservative pathways for the template.

Generating skeletonized FA maps

In generating skeletonized FA maps, we included age-matched con
trols to reduce potential bias from ageing-related WM pathology. We 
fitted all dMRIs with a tensor model using the FSL diffusion toolbox.37

The yielded FA maps were non-linearly co-registered to a FA template 
in the standard space using the deformable function of ANTs, which 
could mitigate the brain deformation caused by tumour.38 This ap
proach could outperform FNIRT39 (default registration tool in TBSS) 
in co-registering FA40 and pathology-bearing T1.41 To minimize poten
tial the signal-noise ratio effect from different MRI protocols, we nor
malized the FA maps using the histogram-matching method.42

The local maxima voxels from the FA map of patients and con
trols were projected to this skeleton mask using an improved itera
tive TBSS projection approach guided by tract orientation.43 A FA 
skeleton mask in the standard space (FMRIB58 FA skeleton 1 mm) 
was used as the target for FA voxel projection.44 The generated in
dividualized FA skeletons represent the centre integrity of WM 
tracts in subjects.

Estimating strengths of WM connections and brain regions

For each patient/control, the WM connection strength was calcu
lated as the mean strength of all tract segments in the FA skeleton, 
constrained by the WM connection template. The columns and 
rows of each individualized connection matrix represent the brain 
regions, while the elements in the matrices (Cij) represent the 
strength of WM connection between the brain regions i and j. We 
calculated the strength Bi for region i, by aggregating the connectiv
ity strength of the WM connection Cij connected to this region.

Identification of significantly disrupted connectome

We first calculated the mean strength and standard deviation (SD) 
of each WM connection across all healthy controls, which was com
pared to individual patients (Fig. 1G). We defined the significantly 
decreased connectome in patients as those with a strength of 
over 2SD (95% confidence) lower than the mean strength of the 
whole control group.

Estimating connectome disruptions

We calculated the patient-wise global disruption index by aver
aging the disruption of WM connections and brain regions, respect
ively. To address intra-tumour heterogeneity, we segmented the 
lesion as contrast-enhancing (CE, the entire area within the T1 CE 
rim) and peritumoral non-enhancing (NE, the hyper-intensities 
surrounding CE on FLAIR) subregions (Fig. 1H and I). Based on the 
segmented tumour, we categorized the disrupted WM connections 
and brain regions as follows (Fig. 1J and K):

Disrupted WM connections

(i) Direct disruption: directly disrupted by tumour, travelling across the con

trasting enhancing or NE tumour.

(ii) Indirect disruption: disrupted without crossing the lesion.

Disrupted brain regions

(i) Tumour disrupted regions: disrupted regions within the lesion, further 

categorized into CE or NE disrupted regions, according to the overlap 

with tumour subregions.

(ii) Distant disrupted regions: disrupted regions within the normal- 

appearing brain and connected to the lesion via WM connections.

(iii) Indirect disrupted regions: disrupted regions without any connection to 

the lesion.

https://cbica.github.io/CaPTk/index.html
https://www.slicer.org/
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Finally, we calculated the regional disruption index as the average 
of each category.

Group distribution of tumour disruption

To generate a tumour frequency map, we non-linearly trans
formed all tumour masks from individual patients to the stand
ard space using ANTs, with voxel-wise tumour distribution 
density normalized at the group level. Regional disrupted WM 
connections and brain regions are mapped to the standard space 
for visualization (Fig. 1L and M). We also quantified the disrup
tion probability of brain regions and major tracts among pa
tients. For tracts, we mapped the WM connections to the 42 
anatomical tracts constructed from the 1000 healthy subjects 
available in the XTRACT toolbox of FSL. The disruption probabil
ity for each brain region or tract was calculated as the percent
age of patients with this brain region or tract disrupted. We 
also calculated the proportion of disrupted connectomes out of 
all the patients.

Topological features of the connectome

We calculated two most commonly used topological features for 
each patient using the Brain Connectivity Toolbox17: characteristic 
path length and clustering coefficient. Briefly, the clustering coeffi
cient measures the probability of two direct topological neighbours 
of a specific brain region being connected. The characteristic path 
length measures the average shortest path length of the network 
(see Supplementary material for formulas).45 We filtered the con
nectome with a population-consistency-based strength threshold 
to reduce the noise in feature calculation.46

Preserved connectivity of disrupted distant regions

By removing the disrupted WM connections, we investigated the pre
served connections, defined as the remaining WM connections to the 
disrupted distant regions. Through pairwise comparison between pa
tients and age-matched controls, we categorized patients into two sub
groups with overall increased or decreased connectivity respectively, 
according to the summed strength of the preserved connectivities.

Figure 1 Study design. (A) Probabilistic tractography is performed on the high-resolution dMRI of 10 healthy controls to generate a template for the WM 
connections among the 90 regions on the Automatic Anatomical Labelling atlas. (B) Skeletonized fractional anisotropy (FA) maps are generated from 
both patients and age-matched healthy controls to estimate the WM connection strength, using an improved voxel projection procedure based on 
TBSS. (C and D) The strengths of WM connections are derived in healthy controls and patients by combining WM connection template and skeletonized 
FA. The strengths of brain regions are calculated by aggregating the strengths of linking WM connections. (E–G) By comparing patients to controls, the 
disrupted connectome in patients is identified as the WM connection (Cpatient) or brain region (Bpatient) with a strength of over 2SD (95% 
confidence interval) lower than the mean strength of the control group [μ(Ccontrol) or μ(Bcontrol)]. The disruption indices of WM connections and brain 
regions are calculated by averaging the disruption matrices/vectors. (H) The lesion is segmented as contrast-enhancing (CE, red) and non-enhancing 
(NE, yellow) tumours. (I–K) The brain region disruptions are classified into CE, NE, distant and indirect disruptions. The WM connection disruption is 
classified into direct and indirect disruptions. (L) Categorical disrupted brain regions are mapped to the standard space. (M) Disrupted WM connections 
are mapped to the standard space producing a disruption density map.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac360#supplementary-data
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Statistical analysis

All analyses were performed in RStudio v.3.2.3 and MATLAB 2019b. 
The Benjamini–Hochberg procedure (BH–FDR) correction was per
formed for all multiple comparison tests. The hypothesis of no ef
fect was rejected at a two-sided level of 0.05. The difference 
between global/regional disruptions and topological features of pa
tient cohorts/subgroups were compared using two sample t-test. 
Pearson correlation was used to test the correlations between dis
ruption indices, MMSE score, tumour volume and topological fea
tures. A multiple regression was used to identify significant 
regional disruptions contributing to topological changes. The medi
ation model was used to test whether the previously identified con
tributor mediated the effect of lesion on brain topology.

We performed survival analysis to evaluate disruption indices 
and topological features using OS and PFS. Patients alive at the 
last known follow-up were censored. Kaplan–Meier survival curves 
were compared using log-rank test, based on disruption indices and 
topological features dichotomized by either median or the optimal 
cut-off defined using the maximally selected rank statistics in R 
package ‘Survminer’,47 whichever was more significant.

In addition to the univariate Cox proportional hazards model, 
we conducted multivariate Cox proportional hazards model 
accounting for all relevant clinical covariates, including 
O-6-methylguanine-DNA methyltransferase (MGMT) methylation 
status, isocitrate dehydrogenase-1 (IDH-1) mutation, sex, age, the 
extent of resection, adjuvant therapy and tumour volume. We 
also included two tumour location features from the Visually 
Accessible Rembrandt Images (VASARI) feature set (https://wiki. 
cancerimagingarchive.net/display/Public/TCGA-GBM) describing 
the involvement of eloquent cortex and deep WM to account for 
the effects of tumour cortical/subcortical brain regions.

We used the receiver operating characteristic curves to evaluate 
the accuracy in predicting OS. We fit a generalized linear model and 
calculated the area under the receiver operating characteristic 
curve (AUC). The model included the significant disruption indices 
and topological features from the univariate Cox proportional ha
zards models.

Data availability

Enquiries or requests for the data should be directed to the corre
sponding author.

Results
Subject characteristics

For the discovery cohort, we recruited 136 patients for preoperative 
MRI scanning. After excluding 19 patients according to the trial ex
clusion criteria, we finally included 117 of 136 (86.0%) patients 
(mean age 59 years, range 22–75 years, 89 males) for analysis. Six 
patients (5.1%) were lost to follow-up. The median OS was 392 
(range 34–1932) days. The median PFS was 275 (range 13–1393) days.

For the validation cohort, 49 patients were initially recruited and 
42 patients were finally included according to the trial exclusion cri
teria (mean age 59 years, range 28–75 years, 30 males). Ten patients 
(23.8%) were alive or lost to follow-up. The median OS was 335 
(range 55–962) days. The median PFS was 246 (range 21–805) days. 
Two study cohorts showed no significant differences in clinical 
variables (Supplementary Table 1).

We included 117 healthy age-matched subjects (mean age 59.9 
years, 78 males) from the IXI datasets as healthy controls. In add
ition, we included 10 healthy subjects (mean age 60.9 years, 5 
males) from the ADNI for the tractography template. All cohorts 
showed no significant difference in age.

Global disrupted connectome demonstrates clinical 
significance

We observed that the global disruption of WM connections 
(Pearson: r = −0.67, P < 0.001; Spearman: rho = −0.48, P < 0.001; 
Fig. 2A) and brain regions (Pearson: r = −0.69, P < 0.001; Spearman: 
rho = −0.52, P < 0.001; Fig. 2C) were both negatively correlated with 
the MMSE score. To exclude the potential effect of age on cognition, 
a linear regression model was used to predict the MMSE score based 
on the disruption indices adjusting for age (MMSE ∼ disruption in
dices + Age). The results show that only the disruption indices 
were significant (Age: P = 0.296, Global WM disruption: P < 0.001; 
Age: P = 0.425, Global brain region disruption: P < 0.001). The correl
ation test between age and MMSE score showed no significance 
(Pearson: r = −0.17, P = 0.156; Spearman: rho = −0.17, P = 0.176).

We further compared the patient subgroups stratified by the 
Karnofsky Performance Status (KPS) score of 80 as reported.48 We 
found that a worse KPS score was associated with higher disrup
tions of both brain regions and WM connections (both P < 0.001; 
Fig. 2B and D). We also found significant negative correlations be
tween the KPS score and the global disruption indices (WM disrup
tion: Pearson, r = −0.51, P < 0.001; Spearman: rho = −0.41, P < 0.001, 
Brain region disruption: Pearson, r = −0.49, P < 0.001; Spearman: 
rho = −0.31, P < 0.001). These results indicate that the stratified pa
tient subgroups may have different global disruption indices.

Finally, we trained logistic regression models to predict the bet
ter or worse KPS as stratified previously. The baseline model includ
ing two preoperatively available variables: age and tumour volume, 
achieved an AUC of 0.79 [confidence interval (CI): 0.68–0.91]. Adding 
the global disruption indices into the model improved the AUC to 
0.86 (CI: 0.77–0.94; Supplementary Fig. 1A). The out-of-sample pre
diction on the validation cohort showed improved performance 
(AUC = 0.71, CI: 0.53–0.89) compared to the baseline (AUC = 0.60, 
CI: 0.43–0.78; Supplementary Fig. 1B).

To rigorously assess the reproducibility of WM connection 
strength estimation, we compared the strengths of a cerebellar 
tract (middle cerebellar peduncle, MCP) that is not affected by the 
supratentorial tumours in our cohorts. No significant difference 
was found between controls and patients; Supplementary Fig. 2).

Regional disrupted connectome characteristics

Tumour regions are more significantly disrupted than 
distant regions

The two study cohorts showed no significant difference in disrup
tion indices (Supplementary Table 2). In comparing disruptions of 
WM connections, we observed significantly higher direct disrup
tion (4.77 ± 1.56) than indirect disruption (2.59 ± 0.39, P < 0.001; 
Fig. 2E, F and Supplementary Table 3). Similarly for brain regions, 
focal tumour (CE: 5.83 ± 2.00; NE: 4.67 ± 1.33) were more significantly 
disrupted than the normal-appearing brain (distant: 2.90 ± 0.71, in
direct: 2.56 ± 0.39, each P <0.001; Fig. 2G and H). The validation co
hort showed similar disruption patterns. These results 
correspond to our understanding of tumour invasion and support 
the robustness of the regional disruption indices.

https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
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The regional disruptions are correlated with focal tumour 
volume

Pearson correlation tests showed that the WM connection disrup
tions in tumour (direct) and normal-appearing brain (indirect) 
were positively correlated (r = 0.44, P < 0.001). Similarly, the disrup
tion of distant regions was positively correlated with that of tumour 
regions (distant versus CE: r = 0.43, P < 0.001; distant versus NE: r = 
0.34, P = 0.028; Supplementary Table 4). Further, the tumour volume 
(measured by CE tumour) was positively correlated with the disrup
tions of both direct connections (r = 0.52, P < 0.001) and distant re
gions (r = 0.33, P < 0.001; Supplementary Table 5). Collectively, 
these data indicate that a larger focal tumour is associated with 
higher connectome disruption throughout the brain.

The normal-appearing brain shows widespread 
disruption

We calculated the proportion of disrupted regions out of all brain 
regions. It is worth noting that, in the group analysis, a higher pro
portion of distant regions (16.8 ± 12.0%) was identified than focal le
sion (CE: 5.8 ± 5.1%, P < 0.001), recapitulated by the validation cohort 
(Supplementary Table 6), indicating that the normal-appearing 
brain was widely disrupted.

At the group level, the average disruption probability of distant 
regions was higher (17.2 ± 9.0%) than focal lesion (CE: 11.8 ± 6.8%, 
P < 0.001), possibly due to the more extensive coverage of the dis
tant regions. This finding further confirmed that the disruption of 
brain regions was widespread beyond the lesion.

We further compared the tumour frequency map (Fig. 3A) with 
the distribution probability map of brain regions and tracts. 
Notably, the top five tracts most likely disrupted were mainly asso
ciation tracts and close to the high-frequency regions (Fig. 3B and 

Supplementary Table 7), suggesting that the association tracts 
may be more vulnerable in glioblastoma patients. The top 
five most probably disrupted distant regions (Fig. 3C) were mainly 
in the low-frequency regions (see Supplementary Table 8 for 
details).

Topological features and their association with 
distant regions

The focal tumour alters the topological property of the 
connectome

We observed significantly higher characteristic path lengths in pa
tient networks than healthy controls (P < 0.001; Fig. 4A). In contrast, 
the clustering coefficient of patients was significantly lower than 
that of healthy controls (P < 0.001; Fig. 4B and Supplementary 
Table 9). These results reveal that tumour lesions could dramatical
ly alter the topology property of the structural connectome. No dif
ference was found between topological features between two 
patient cohorts, which suggests the robustness of our approach.

We next determined the clinical significance of connectome 
topology by comparing the topological properties of the patient 
subgroups stratified by MMSE and KPS scores. We found that the 
patients with lower MMSE or KPS scores presented lower clustering 
coefficient (MMSE: P = 0.012, KPS: P < 0.001; Fig. 4C and E) and higher 
characteristic path length (MMSE: P = 0.013, KPS: P < 0.001; Fig. 4D 
and F). Moreover, characteristic path length (r = 0.43, P < 0.001) 
was positively correlated with tumour volume, while 
clustering coefficient (r = −0.45, P < 0.001) was negatively correlated 
with tumour volume, indicating that a larger focal lesion may have 
a greater influence on the connectome topology (Supplementary 
Table 10).

Figure 2 The clinical significance of disruption indices. (A and C) The global disruption indices of WM connections and brain regions are both nega
tively correlated with the MMSE score. (B and D) Higher disruption is associated with worse Karnofsky Performance Status. (E and F) In both discovery 
and validation cohorts, direct connection disruption is higher than Indirect disruption. (G and H) Disruption of tumour regions (CE, NE) are more sig
nificantly disrupted than the normal-appearing brain (distant, indirect). ***P < 0.001.
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The disruption of distant regions is associated with the 
topological alteration

To understand the relation between the regional disruption with 
topological properties, we performed a multiple linear regression, 
which revealed that the disruption of distant regions was the 
only significant predictor of characteristic path length (estimate = 
0.21, P < 0.001) and clustering coefficient (estimate = −0.018, P < 
0.001; Fig. 4I and J).

We further performed the mediation analysis, which showed 
that tumour volume had both significant direct and indirect 
effects (mediated by the disruption of distant regions) on character
istic path length (direct: P < 0.001, indirect P = 0.008) and 
clustering coefficient (direct and indirect P < 0.001) (Fig. 4K and L). 
The findings were confirmed by the validation cohort 
(Supplementary Fig. 3).

We additionally compared the disruptions of distant regions in 
the subgroups stratified by the MMSE and KPS scores. We noticed 
that the patients with higher MMSE or higher KPS scores displayed 
significantly lower disruption of distant regions (Fig. 4G and H), con
sistent with the distinct network topological properties in these 

subgroups. The results further indicate the association between 
the disrupted distant regions and connectome topology.

Topological features and disruption of distant 
regions are prognostic

For both disruption indices and topological features, we evaluated 
the prognostic value using log-rank tests and Cox proportional ha
zards models.

Log-rank test

In the subgroups stratified by the mean disruption of distant regions 
(2.9), patients with higher disruption had worse survival than lower 
disruption (OS: median 293 versus 449 days, P = 0.002, PFS: median 
238 versus 307 days, P = 0.019; Fig. 5A). Further, the subgroups strati
fied by the optimal cut-off of topological features (clustering coeffi
cient 0.46; characteristic path length 3.20) also had distinct survival. 
Precisely, the subgroup with a higher clustering coefficient had better 
survival than that with a lower clustering coefficient (OS: median 475 
versus 294 days, P = 0.040, PFS: median 306 versus 238 days, P = 0.002; 

Figure 3 Tumour density and disrupted anatomical structures. (A) Tumour frequency maps are generated using tumour segmentation masks. The top 
five disrupted focal brain regions include the right superior temporal gyrus (STG.R), right middle temporal gyrus (MTG.R), right insula (INS.R), left insula 
(INS.L) and right lenticular nucleus, putamen (PUT.R). (B) The top five disrupted anatomical tracts and their maximum intensity projection: right ar
cuate fasciculus (af.r), right middle longitudinal fasciculus (mdlf.r), left superior longitudinal fasciculus 3 (slf3.l), left arcuate fasciculus (af.l) and left 
superior longitudinal fasciculus 1 (slf1.l). (C) The top five disrupted distant regions include the left posterior cingulate gyrus (PCG.L), right posterior cin
gulate gyrus (PCG.R), left lingual gyrus (LING.L), left fusiform gyrus (FFG.L) and left hippocampus. L/l = left; R/r = right. ***P < 0.001, **P < 0.01, *P < 0.05.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac360#supplementary-data
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Fig. 5B). The subgroup with lower characteristic path length showed 
better survival than that with higher characteristic path length (OS: 
median 465 versus 288 days, P = 0.005, PFS: median 312 versus 244 
days, P = 0.012; Fig. 5C). We further confirmed the findings in the val
idation cohort using identical cut-offs.

Cox proportional hazards modelling

From the Cox proportional hazards models (Table 1), we 
observed that higher disruptions of indirect connection (OS: HR = 
1.36, P = 0.007; PFS: HR = 2.43, P = 0.046) and distant regions (OS: 
HR = 1.46, P = 0.049; PFS: HR = 1.49, P = 0.019) were associated with 
worse survival. For topological features, a higher clustering coeffi
cient was associated with better survival (OS: HR = 0.63, P = 0.035; 
PFS: HR = 0.49, P = 0.002), while a higher characteristic path length 
was associated with worse survival (OS: HR = 1.56, P = 0.035; PFS: 
HR = 1.82, P = 0.009).

In the multivariate model adjusting for all the significant clinical 
covariates from the univariate models, the disruption of distant 

regions and topological features remained significant (Fig. 6 and 
Supplementary Table 11). Their prognostic value was confirmed 
by the validation cohort (Supplementary Tables 12 and 13).

Logistic model for survival prediction

We trained a logistic regression model on the discovery cohort to 
predict the 2-year OS using the disruption indices and topological 
features significant in the univariate Cox model. The baseline mod
el, including the previous significant clinical variables (i.e. age, ex
tent of resection and adjuvant therapy), achieved an AUC of 0.82 
(CI 0.68–0.96). By adding the disruption indices and topological fea
tures into the baseline model, the AUC was improved to 0.90 (CI 
0.80–0.99; Fig. 5D). We further tested this trained model in the val
idation cohort for out-of-sample validation, which confirmed the 
improved accuracy (AUC = 0.83, CI 0.71–0.96) by including disrup
tion indices and topological features over the baseline model 
(AUC = 0.71, CI 0.54–0.87).

Figure 4 Topological alteration of the connectome. Patients show increased characteristic path length (A) and decreased clustering coefficient (B) com
pared to the controls. Patient subgroups with worse preoperative KPS (C and D) and MMSE (E and F) scores show increased characteristic path length and 
decreased clustering coefficient. Disruption of distant regions is higher in the subgroups with worse MMSE (G) and KPS (H), and it is the only significant 
predictor of characteristic path length (I) and clustering coefficient (J) in multiple linear regression. (K) The effects of tumour volume on characteristic 
path length are mediated by the disruption of distant regions: total effect (c path) = 0.42, P < 0.001; direct effect (c′ path) = 0.25, P < 0.001; mediation effect 
(c—c′) = 0.17, P = 0.008. (L) The effects of tumour volume on clustering coefficient are mediated by the disruption of distant regions: total effect (c path) = 
−0.041, P < 0.001; direct effect (c′ path) = −0.024, P < 0.001; mediation effect (c—c′) = −0.017, P < 0.001. ***P < 0.001, **P < 0.01, *P < 0.05.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac360#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac360#supplementary-data
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We presented two examples (Fig. 5E–J) with similar clinical variables 
but different disruption of distant regions, topological features and fi
nally distinct survival (above and below the median, respectively).

Preserved connectivity and recurrence distance 
associated with distant regions

The preserved connectome of distant regions indicates 
patient survival

As the distant region disruption is the most significant biomarker, 
we further analysed its potential effect on the preserved connec
tome. First, we observed that 93.2% (109/117) patients displayed 
overall changes in connectivity. Among them, 24.7% (29/117) pa
tients displayed overall increased connectivity, while 68.4% (80/ 

117) patients showed overall decreased connectivity. We present 
two case examples with overall increased and decreased connectiv
ity in the preserved connectome of the distant regions, respectively 
(Fig. 7A). The log-rank test showed that those patients with overall 
increased connectivity were associated with better survival (P = 
0.005; Fig. 7B), confirmed by the validation cohort (Supplementary 
Fig. 4). The findings suggest that more integrated brain connectivity 
is associated with better patient survival, suggesting a priori more re
silient connectome or network reorganization.

Disrupted connectome indicates tumour recurrence

Finally, we found that the higher distant region disruption was 
positively correlated with the furthest recurrence distance from 

Figure 5 The prognostic value of disruption indices and topological features. The top shows that in both cohorts, higher disruption of distant regions 
(A), lower clustering coefficient (B) and higher characteristic path length (C) are associated with worse OS. (D) The model of predicting OS using clinical 
factors, disruption indices and topological features show improved AUC compared to clinical factors alone. Bottom shows two examples with worse or 
better survival (OS: 317 versus 1555 days; PFS: 159 versus 747 days). Both are IDH wild-type and MGMT unmethylated tumours of similar visible size in 
two males (aged 67 versus 69 years), who underwent complete resection followed by temozolomide chemoradiotherapy (E and F). Patients have similar 
tumour size on T1C (23.6 versus 25.0 cm3). The patient with worse survival (G) has more widespread connection disruption beyond the visible lesion, 
compared to the patient with better survival (H). The disruption indices of distant regions (blue) are 3.0 (I) and 2.8 (J), respectively. Their topological 
features are distinct (clustering coefficient 0.44 versus 0.48: characteristic path length 3.31 versus 3.17). HR = hazard ratio.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac360#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac360#supplementary-data
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Table 1 Univariate survival statistics of the discovery cohort

OS PFS

HR 95%CI P HR 95%CI P

Clinical variables
Age 1.03 1.01 –1.05 0.004 1.03 1.00–1.05 0.021
Sexa 0.81 0.52–1.25 0.333 0.75 0.47–1.19 0.217
Performanceb 1.60 1.09–2.36 0.018 1.63 1.04–2.55 0.033
IDHc 0.59 0.25–1.36 0.211 0.52 0.22–1.21 0.131
MGMTd 0.77 0.52–1.14 0.196 0.68 0.43–1.07 0.094
EORe 1.89 1.26–2.84 0.002 1.90 1.19–3.03 0.007
Adjuvant treatmentf 0.21 0.13–0.34 <0.001 0.22 0.11–0.41 <0.001
Tumour volume 1.01 1.00–1.01 0.001 1.01 1.00–1.02 0.045
Eloquent locationg 0.93 0.64–1.36 0.711 1.06 0.69–1.62 0.807
Deep WMh 0.85 0.58–1.24 0.386 0.86 0.57–1.31 0.487
NE volume 0.87 0.72–1.05 0.135 0.87 0.70–1.07 0.192
Disruption indices
Direct connection 1.07 0.87–1.30 0.790 1.08 0.88–1.32 0.464
Indirect connection 1.36 1.13–1.65 0.007 2.43 1.02–5.81 0.046
CE regions 0.95 0.86–1.04 0.667 0.96 0.86–1.06 0.418
NE regions 1.01 0.88–1.15 0.939 1.00 0.87–1.15 0.979
Distant regions 1.46 1.08–1.99 0.049 1.49 1.07–2.07 0.019
Indirect regions 1.06 0.87–1.29 0.790 0.80 0.83–1.28 0.795
Topological features
Clustering coefficient 0.63 0.42–0.93 0.035 0.49 0.30–0.78 0.002
Characteristic path length 1.56 1.06–2.29 0.035 1.82 1.16–2.84 0.009

EOR = extent of resection. Bold values = P < 0.05. 
aFemale as the reference. 
bKPS 90–100 as the reference. 
cIDH wild-type as reference. 
dUnmethylated MGMT as reference. 
eIncomplete resection as reference. 
fConcurrent chemoradiotherapy as reference. 
gNon-eloquent location as reference. 
hAffected deep WM as reference.

Figure 6 Forest plots of multivariate survival modelling. For the discovery (A) and validation (B) cohorts, the higher disruption of distant regions, higher 
characteristic path length and lower clustering coefficient are associated with worse survival. The prognostic value is independent of the significant 
clinical variables. EOR = extent of resection.
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tumour centroid (r = 0.60, P < 0.001; Fig. 7C). We present two cases 
that showed distant recurrence in follow-up scans, where the dis
rupted distant regions indicated occult tumour invasion invisible 
on the preoperative MRI (Fig. 7D–M).

Discussion
The present study employed a connectome approach to investigate 
the disruption of structural connectivity in glioblastoma. Our main 
findings include: (i) glioblastomas cause widespread disrupted neural 
connectivity beyond the focal lesion; (ii) the disruption of the normal- 
appearing brain could mediate the alteration of connectome top
ology, associated with worse patient performance and affect patient 

survival; and (iii) the preserved connectome demonstrates evidence 
of network reorganization associated with survival.

The finding that glioblastomas can cause widespread structural 
impairment is in line with the previous studies using resting-state 
fMRI, reporting that glioma induced widespread functional impair
ment.3,4 The evidence supports that glioblastoma should be treated 
as a systematic disease rather than a local disease. Moreover, we 
found that only the disruption of distant regions was associated 
with topological alteration and patient survival among all the re
gional disruptions, suggesting the importance of characterizing 
global neural connectivity.

In the anatomical mapping of the disrupted connectome, we 
found that the top disrupted distant regions, e.g. posterior cingulate 
cortex and hippocampus, are essential structures of the limbic 

Figure 7 The disruptions of the distant regions indicate survival significance and distant recurrence. The top shows that after removing the disrupted 
WM connections of the distant regions, the preserved connections are categorized as increased or decreased connectivity in comparisons with healthy 
controls and aggregated to stratify patients. Two examples of overall increased and decreased connectivity are in A. The subgroup with overall in
creased connectivity shows better survival than overall decreased connectivity (B). The disruption index of the distant region is positively correlated 
with maximum recurrence distance (C). The bottom shows two examples of distant recurrence. Both patients present solitary visible lesions on pre
operative T1C images (D and E), widespread disrupted WM connections (F and H) and brain regions (G and I). In both patients, the distant recurrence 
location, either ipsilesional recurrence (J) or contralesional recurrence (K), corresponds to the distant regions (blue), which are linked to the primary 
lesion via the WM connections shown in F and H. A retrospective review of the preoperative T1C images reveals no visible lesion in the recurrence lo
cation (L and M). T1C = T1 contrast.
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system, suggesting the propensity of the occult invasion affecting 
the limbic system. Moreover, the top affected anatomical tracts, 
e.g. arcuate fasciculus and superior longitudinal fasciculus, are 
long association tracts widely connecting separated gyri, suggest
ing that tumour invasion might spread through these tracts. 
Although at the macroscopic scale, our imaging findings may pro
vide a perspective for previously reported neural–cancer 
interaction.49

We found that the connectivity measures could provide superior 
biomarkers for brain tumour stratification over conventional clinical 
factors, e.g. tumour location and volume. The network efficiency of 
the human brain generally reflects the integrity of brain function.50

Glioblastoma patients displayed decreased network efficiency 
compared to healthy controls, probably due to tumour disturbance 
on brain function. Interestingly, our results show that the 
preserved connectome demonstrates evidence of reorganization. 
The increased connectivity, indicating a more integrated network 
and more robust function, is associated with favourable survival. 
Although the mechanism remains further elucidated, it could suggest 
the opportunities of understanding neural–cancer interaction for pa
tient prognosis.

Our study has important clinical implications. Due to the remark
able heterogeneity of glioblastoma, the development of quantitative 
prognostic markers is crucial for precise diagnosis and treatment. 
The structural connectome and topological features confer a novel ap
proach to investigate the systematic changes of neural connectivity in 
glioblastoma. It could enable us to understand the interaction between 
tumour invasion and neural connectivity, which promises to stratify 
patients more precisely, help to develop targeted therapeutics and re
duce neurological deficits. From a translational perspective, our ap
proach shows the potential to quickly produce metrics to enhance 
prognosis determination and patient stratification through automated 
imaging analytical software in the clinic, incorporating various data 
processing and modelling procedures, which could assist clinical deci
sion making in future. Additionally, tumour invasion in the normal- 
appearing brain visualized on the imaging could be integrated into 
the neuro-navigation and radiotherapy planning systems, offering 
more precise guidance for treatment targets.

Our study has limitations. First, structural connectome can only 
directly measure the connectivity of connecting tracts. Although 
most brain regions are connected via tracts, some functionally re
lated regions may not be structurally connected. Future work could 
include resting-state MRI and functional connectivity. Second, we 
only included de novo glioblastoma who received first-line treatment 
in the trial. Molecular markers, i.e. IDH and MGMT methylation, were 
not significant as previously reported in our cohorts. Finally, neuron
al degeneration, such as Wallerian Degeneration, may also lead to 
the disruptions of WM connections, which may not be differentiated 
by our approach. Nonetheless, the significant prognostic value of dis
ruption indices could support the capability of our approach in indi
cating tumour invasion.

In conclusion, glioblastoma causes widespread impairment to 
the structural connectome. The invisible disruption on conventional 
MRI and connectome integrity are correlated with patient survival. 
Studying neural connectivity may provide a valuable tool for patient 
stratification and precise treatment for patients with brain tumours.
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